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Abstract
We present a procedure to construct a compatible metric from a given fuzzy metric
space. We use this approach to obtain a characterization of a large class of complete
fuzzy metric spaces by means of a fuzzy version of Caristi’s fixed point theorem,
obtaining, in this way, partial solutions to a recent question posed in the literature.
Some illustrative examples are also given.
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1 Introduction and preliminaries
Throughout this paper the symbols R, R+, and N will denote the set of all real numbers,
the set of all non-negative real numbers and the set of all positive integers, respectively.
Our basic reference for general topology is [].

We start by recalling the notion of a continuous t-norm as well as some types of contin-
uous t-norm which will be crucial throughout this paper.

According to [], a binary operation ∗ : [, ] × [, ] → [, ] is a continuous t-norm if ∗
satisfies the following conditions: (i) ∗ is associative and commutative; (ii) ∗ is continuous;
(iii) a ∗  = a for every a ∈ [, ]; (iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, with a, b, c, d ∈
[, ].

Distinguished examples of continuous t-norm are ∧, Prod, and ∗L (the Łukasiewicz
t-norm), which are defined as follows: a ∧ b = min{a, b}, a Prod b = ab, and a ∗L b =
max{a + b – , } for all a, b ∈ [, ].

The following well-known relations hold: ∧ ≥ Prod ≥ ∗L. In fact, ∧ ≥ ∗ for any continu-
ous t-norm ∗.

Two important classes of continuous are the so-called Yager continuous t-norms and
Hamacher continuous t-norms, which are constructed as follows.

(A) Given p > , define for each a, b ∈ [, ]:

a ∗Yp b =  – min
{

,
[
( – a)p + ( – b)p]/p}.

Then ∗Yp is a continuous t-norm referred to in the literature as the Yager
continuous t-norm (see e.g. []).
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It is easy to see that a ∗Yp
b ≥ a ∗Yp

b whenever p ≥ p, with a, b ∈ [, ]. In particular
we see that ∗Y coincides with the Łukasiewicz t-norm.

(B) Hamacher constructed in [] a family of continuous t-norms (∗Hλ
)λ∈R+ defined as

follows. Given λ ∈ R, for each a, b ∈ [, ], a ∗Hλ
b =  if a = b = λ = , and

a ∗Hλ
b =

ab
λ + ( – λ)(a + b – ab)

,

otherwise. Furthermore, we have a ∗Hλ
b ≤ a ∗Hλ

b whenever λ ≥ λ, with
a, b ∈ [, ]. In particular we see that ∗H coincides with the product t-norm.

In this paper we shall work with fuzzy metric spaces in the sense of Kramosil and
Michalek [] (see Definition  below). At this point it seems suitable to remark that George
and Veeramani introduced in [] an interesting modification of Kramosil and Michalek’s
notion. However, from the well-known fact that every fuzzy metric space (X, M,∗) in the
sense of George and Veeramani can be considered as a fuzzy metric space in the sense of
Kramosil and Michalek, simply putting M(x, y, ) =  for all x, y ∈ X, we deduce that the
obtained results in this paper remain valid for fuzzy metric spaces in George and Veera-
mani’s sense.

Definition  (Kramosil and Michalek []) A fuzzy metric on a set X is a pair (M,∗) such
that ∗ is a continuous t-norm and M is a function from X × X ×R

+ to [, ] such that for
all x, y, z ∈ X:

(FM) M(x, y, ) = ;
(FM) x = y if and only if M(x, y, t) =  for all t > ;
(FM) M(x, y, t) = M(y, x, t);
(FM) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all t, s ≥ ;
(FM) M(x, y, _) : R+ → [, ] is left continuous.

By a fuzzy metric space we mean a triple (X, M,∗) such that X is a set and (M,∗) is a
fuzzy metric on X.

It is well known that for each x, y ∈ X, M(x, y, _) is a non-decreasing function on R
+.

Each fuzzy metric (M,∗) on a set X induces a topology τM on X which has as a base
the family of open sets {BM(x, ε, t) : ε ∈ (, ), t > }, where BM(x, ε, t) = {y ∈ X : M(x, y, t) >
 – ε} for all ε ∈ (, ), t > .

A Cauchy sequence in a fuzzy metric space (X, M,∗) is a sequence (xn)n∈N in X such that
for each ε ∈ (, ) and t >  there exists an n ∈ N satisfying M(xn, xm, t) >  – ε whenever
n, m ≥ n.

A fuzzy metric space (X, M,∗) is said to be complete if every Cauchy sequence (xn)n∈N
converges with respect to the topology τM , i.e., if there exists y ∈ X such that for each t > ,
limn M(y, xn, t) =  (see e.g. []).

It is well known (see e.g. []) that every fuzzy metric space is metrizable, i.e., given a
fuzzy metric space (X, M,∗) there exists a metric on X whose induced topology coincides
with the topology τM . A short and easy proof of this result consists in showing that the
countable family {Un : n ∈ N}, where Un = {(x, y) ∈ X × X : M(x, y, /n) >  – /n} for all
n ∈N, is a base for a uniformity on X whose induced topology coincides with the topology
τM , and then to apply the famous Kelley metrization lemma [], p..
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However, the important problem of obtaining a general procedure to construct a visual
and manageable compatible metric for any fuzzy metric space, in such a way that the fixed
point theory for fuzzy metric spaces could be deduced from the classical fixed point theory
for metric spaces, remains unsolved.

Radu obtained some partial but interesting solutions to this problem. Thus, he proved
in [] the following theorem.

Theorem  [] Let (X, M,∗) be a fuzzy metric space such that ∗ ≥ ∗L. For each x, y ∈ X put

dR(x, y) = sup
{

t ≥  : M(x, y, t) ≤  – t
}

.

Then dR is a metric on X such that

dR(x, y) < ε ⇐⇒ M(x, y, ε) >  – ε,

for all ε ∈ (, ). Therefore, the uniformities, and hence the topologies, induced by (M,∗)
and dR coincide on X. In particular, (X, M,∗) is complete if and only if (X, dR) is complete.

Theorem  was successfully applied (see e.g. [–]) to deduce several fixed point theo-
rems for complete fuzzy metric spaces from the corresponding results for complete metric
spaces. See also [–] and the references therein, for some recent contributions to the
fixed point theory in fuzzy metric spaces and related structures.

Hicks [] generalized Theorem , by replacing the condition ∗ ≥ ∗L with the following
more general condition:

M(x, y, t) >  – t, M(y, z, s) >  – s 
⇒ M(x, z, t + s) >  – (t + s).

Later on, Radu [], Theorem .., obtained a substantial improvement of Hicks’ result,
which is established below in a slightly different form.

Theorem  [] Let (X, M,∗) be a fuzzy metric space. Suppose that there exists a function
μ : R+ →R

+ satisfying the following conditions:
(R) μ is continuous on R

+;
(R) μ(t) =  ⇐⇒ t = ;
(R) μ(t + s) ≥ μ(t) + μ(s) for all t, s ≥ ;
(R) M(x, y, t) >  – μ(t), M(y, z, s) >  – μ(s) 
⇒ M(x, z, t + s) >  – μ(t + s).
Then the function dRμ : X × X →R

+ defined as

dRμ(x, y) = sup
{

t ≥  : M(x, y, t) ≤  – μ(t)
}

,

is a metric on X such that

dRμ(x, y) < ε ⇐⇒ M(x, y, ε) >  – μ(ε),

for all ε ∈ (, ). Thus the uniformities, and hence the topologies, induced by (M,∗) and dRμ

coincide on X. Moreover, (X, M,∗) is complete if and only if (X, dRμ) is complete.
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Here, we shall present a modification of Theorem  which can be applied to certain cases
and instances where Radu’s theorem does not work. From our approach we deduce a fixed
point theorem of Caristi type for multivalued mappings which is valid for any complete
fuzzy metric space (X, M,∗), as well as a characterization of those complete fuzzy metric
spaces (X, M,∗) with ∗ ≥ ∗Yp , p > , in terms of Caristi’s fixed point theorem. These results
provide partial solutions to a question posed in []. Several illustrative examples are also
given.

2 Constructing metrics from fuzzy metrics
We start this section by establishing our promised modification of Theorem  above
(a background in this direction may be found in [], Lemma .).

Theorem  Let (X, M,∗) be a fuzzy metric space. Suppose that there exists a function α :
R

+ → R
+ satisfying the following conditions:

(c) α is strictly increasing on [, ];
(c)  < α(t) ≤ t for all t ∈ (, ) and α(t) >  for all t > ;
(c) ( – α(t)) ∗ ( – α(s)) ≥  – α(t + s) for all t, s ∈ [, ].
Then the function dα : X × X →R

+ defined as

dα(x, y) = sup
{

t ≥  : M(x, y, t) ≤  – α(t)
}

,

is a metric on X such that dα(x, y) ≤  for all x, y ∈ X.
If, in addition, the function α is left continuous on (, ], then

dα(x, y) < ε ⇐⇒ M(x, y, ε) >  – α(ε), ()

for all ε ∈ (, ). Thus the uniformities, and hence the topologies, induced by (M,∗) and dα

coincide on X. Moreover, (X, M,∗) is complete if and only if (X, dα) is complete.

Proof We first note that α() =  because, by (c) and (c), α() < α(t) ≤ t for all t ∈ (, ).
Now we prove that dα is a metric on X such that dα(x, y) ≤  for all x, y ∈ X.
Let x, y ∈ X. Since M(x, y, ) =  <  – α() we deduce that dα(x, y) ≥ . Moreover,

dα(x, y) ≤  because, by (c), α(t) >  for all t > .
We also have dα(x, x) =  because for each t > , M(x, x, t) =  >  – α(t).
Next we show that x = y whenever dα(x, y) = . Indeed, suppose that dα(x, y) = . Then

M(x, y, t) >  – α(t) for all t > . Choose an arbitrary s > . Then, for every t ∈ (, ) with
t < s, we obtain

M(x, y, s) ≥ M(x, y, t) >  – α(t) ≥  – t,

so that M(x, y, s) = . Since s is arbitrary, we deduce that x = y.
Furthermore, we have dα(x, y) = dα(y, x) because M(x, y, t) = M(y, x, t) for all t > .
It remains to prove that dα satisfies the triangle inequality. To this end, let x, y, z ∈ X.

If dα(x, z) + dα(z, y) ≥  we immediately obtain dα(x, y) ≤ dα(x, z) + dα(z, y), because
dα(x, y) ≤ .

Hence, we assume, without loss of generality, that dα(x, z) + dα(z, y) < . In this case, we
shall use the following relation for any a ∈ (, ):

M(x, y, a) ≥  – α(a) 
⇒ dα(x, y) ≤ a. ()
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(To show () suppose that dα(x, y) > a. Then there exists t ∈ (a, ] such that M(x, y, t) ≤
–α(t). Since t > a, we deduce that α(t) > α(a), and thus, –α(a) ≤ M(x, y, a) ≤ M(x, y, t) ≤
 – α(t), so α(t) ≤ α(a), a contradiction.)

Choose an arbitrary ε >  such that dα(x, z) + dα(z, y) + ε < . Then, from the definition
of dα and condition (c), we deduce

M
(
x, y, dα(x, z) + dα(z, y) + ε

) ≥ M
(
x, z, dα(x, z) + ε

) ∗ M
(
z, y, dα(z, y) + ε

)

≥ (
 – α

(
dα(x, z) + ε

)) ∗ (
 – α

(
dα(z, y) + ε

))

≥  – α
(
dα(x, z) + dα(z, y) + ε

)
.

It follows from () that dα(x, y) ≤ dα(x, z) + dα(z, y) + ε. Since ε is arbitrary, we conclude
that dα(x, y) ≤ dα(x, z) + dα(z, y).

We have proved that dα is a metric on X.
Now suppose that α is left continuous on (, ]. If dα(x, y) < ε, with ε ∈ (, ), then

M(x, y, t) > –α(ε) by the definition of dα . Conversely, if M(x, y, ε) > –α(ε), then dα(x, y) ≤
ε by the definition of dα . In that case, if dα(x, y) = ε, left continuity of M(x, y, _) and of α at
ε, provide a contradiction. So dα(x, y) < ε, and thus we have shown the equivalence ().

From this equivalence it immediately follows that the uniformities, and hence, the
topologies induced by (M,∗) and dα coincide. In particular, a sequence in X is a Cauchy se-
quence in (X, M,∗) if and only if it is a Cauchy sequence in (X, dα). Consequently (X, M,∗)
is complete if and only if (X, dα) is complete. This concludes the proof. �

Example  Let (X, M,∗) be a fuzzy metric space such that ∗ ≥ ∗Yp for some p ≥ . Let
α : R+ → R

+ be defined as α(t) = tp for all t ∈ R
+. Clearly, α is continuous and strictly

increasing on R
+, and satisfies conditions (c) and (c) of Theorem . Hence, the function

d : X × X →R
+ defined as

d(x, y) = sup
{

t ≥  : M(x, y, t) ≤  – tp},

is a metric on X such that

d(x, y) < ε ⇐⇒ M(x, y, ε) >  – εp,

for all ε ∈ (, ). Thus the uniformities, and hence the topologies, induced by (M,∗) and d
coincide on X. Furthermore (X, M,∗) is complete if and only if (X, d) is complete.

Example  Let (X, M,∗) be a fuzzy metric space such that ∗ ≥ ∗Yp for some p ∈ (, ). Let
α : R+ → R

+ be defined as α(t) = t/p for all t ∈ R
+. Clearly, α is continuous and strictly

increasing on R
+, and satisfies conditions (c) and (c) of Theorem . Hence, the function

d : X × X →R
+, defined as

d(x, y) = sup
{

t ≥  : M(x, y, t) ≤  – t/p},

is a metric on X such that

d(x, y) < ε ⇐⇒ M(x, y, ε) >  – ε/p,
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for all ε ∈ (, ). Thus the uniformities, and hence the topologies, induced by (M,∗) and d
coincide on X. Furthermore (X, M,∗) is complete if and only if (X, d) is complete.

Although Theorem  can we also applied to Examples  and  above, the following pro-
vides an instance where Theorem  works but not Theorem .

Example  Let (X, M,∗) be a fuzzy metric space such that ∗ ≥ ∗Hλ
for some λ ∈ (, ].

Let α : R+ → R
+ defined as α(t) = λt/ if t ∈ [, ], and α(t) = (t + )/ if t > . It is clear

that α is left continuous and strictly increasing on R
+, and it satisfies condition (c) of

Theorem .
Next we show that it also satisfies condition (c). Indeed, for λ ∈ (, ] fixed, and t, s ∈

[, ], we have

α(t + s) +
((

 – α(t)
) ∗Hλ

(
 – α(s)

))
= α(t + s) +

( – α(t))( – α(s))
λ + ( – λ)( – α(t)α(s))

= α(t + s) +
 + λts – λ(t + s)

 + λ(λ – )ts
.

If t + s > , we obtain α(t + s) = ((t + s) + )/ > , so, in this case, the inequality

α(t + s) +
((

 – α(t)
) ∗Hλ

(
 – α(s)

)) ≥ ,

is trivially satisfied.
If t + s ≤ , we have α(t + s) = λt/, and an easy computation shows that condition

α(t + s) +
((

 – α(t)
) ∗Hλ

(
 – α(s)

)) ≥ 

is equivalent to condition λ(λ–)(t +s) ≥ λ–, which is clearly satisfied because λ ∈ (, ].
Therefore, we can apply Theorem . However, the function α is not continuous at t = ,

so it does not satisfy condition (R) of Theorem . Moreover, it does not satisfy condition
(R) of Theorem  because for any λ ∈ (/, ] we have

α( + ) = α() =



< λ = α() + α().

3 Application to the fixed point theory of multivalued mappings on fuzzy
metric spaces

Given a non-empty set X we shall denote by P(X) the collection of all non-empty subsets
of X.

Let (X, d) be a metric space. A multivalued mapping T : X →P(X) is said to be a Caristi
multivalued mapping (on (X, d)) if there is a lower semicontinuous function ϕ : X → R

+

such that for each x ∈ X there is yx ∈ Tx satisfying d(x, yx) ≤ ϕ(x) – ϕ(yx).
In particular, a self-mapping T of a metric space (X, d) is said to be a Caristi mapping

if there is a lower semicontinuous function ϕ : X → R
+ such that d(x, Tx) ≤ ϕ(x) – ϕ(Tx),

for all x ∈ X.
Caristi proved in [] his celebrated theorem that every Caristi mapping on a complete

metric space has a fixed point.
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Kirk proved in [] that Caristi’s fixed point theorem actually characterizes the metric
completeness.

On the other hand, it is well known that Caristi’s fixed point theorem admits an easy a
natural multivalued generalization (see e.g. []).

These results are usually combined as follows.

Theorem  [–] For a metric space (X, d) the following are equivalent.
() (X, d) is complete.
() Every Caristi multivalued mapping T : X →P(X) has a fixed point, i.e., there is

z ∈ X such that z ∈ Tz.
() Every Caristi mapping T : X → X has a fixed point.

In a recent paper [] it was obtained a fuzzy version of Theorem . To this end, the
authors of [] introduced the following notion.

Let (X, M,∗) be a fuzzy metric space. A multivalued mapping Ṫ : X → P(X) is called
a fuzzy Caristi multivalued mapping if there exists a lower semicontinuous function ϕ :
X →R

+ such that for each x ∈ X there exists yx ∈ Tx satisfying the following condition:

ϕ(x) – ϕ(yx) < t 
⇒ M(x, yx, t) >  – t, t > .

The notion of a fuzzy Caristi mapping for a self-mapping T : X → X is defined in the
obvious manner (see [], Definition ).

Then in Theorem  of [] the following was proved.

Theorem  [] Let (X, M,∗) be a fuzzy metric space such that ∗ ≥ ∗L. The following are
equivalent.

() (X, M,∗) is complete.
() Every fuzzy Caristi multivalued mapping T : X →P(X) has a fixed point.
() Every fuzzy Caristi’s mapping T : X → X has a fixed point.

Remark  Actually Theorem  was proved in [] for multivalued mappings from X to the
set C(X) of all non-empty closed subsets of (X, M,∗). However, the proof remains valid,
without changes, for the case that T take values in P(X).

We are going to improve Theorem  in two directions, which will provide partial solu-
tions to a question posed in [], p..

Definition  Let (X, M,∗) be a fuzzy metric space and Ṫ : X →P(X) a multivalued map-
ping. We say that T is an α-fuzzy Caristi multivalued mapping if there exist a lower semi-
continuous function ϕ : X → R

+, and a function α : R+ → R
+ which is left continuous on

(, ] and satisfies conditions (c)-(c) of Theorem , and such that for each x ∈ X there
exists yx ∈ Tx for which the following holds:

ϕ(x) – ϕ(yx) < t 
⇒ M(x, yx, t) >  – α(t), t > . ()

The notion of an α-fuzzy Caristi mapping for a self-map T : X → X is defined in the
obvious manner.

Then we obtain the following.
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Theorem  Let (X, M,∗) be a complete fuzzy metric space. Then every α-fuzzy Caristi
multivalued mapping has a fixed point.

Proof Let T : X → P(X) be an α-fuzzy Caristi multivalued mapping. Then there exist a
lower semicontinuous function ϕ : X → R

+, and a left continuous function α : R+ → R
+

satisfying the conditions of Definition . By Theorem , the function dα : X × X → R
+

defined as

dα(x, y) = sup
{

t ≥  : M(x, y, t) ≤  – α(t)
}

,

is a metric on X such that

dα(x, y) < ε ⇐⇒ M(x, y, ε) >  – α(ε),

for all ε ∈ (, ). Thus the topologies, induced by (M,∗) and dα coincide on X, and (X, M,∗)
is complete if and only if (X, dα) is complete.

We now show that T is a Caristi multivalued mapping on (X, dα). Indeed, by Definition ,
for each x ∈ X there exists yx ∈ Tx for which condition () is satisfied. Hence, for each t > 
such that M(x, y, t) ≤  – α(t), we deduce that ϕ(x) – ϕ(yx) ≥ t. Consequently, dα(x, y) ≤
ϕ(x) – ϕ(yx).

Finally, T has a fixed point by Theorem , () 
⇒ (). �

Theorem  Let (X, M,∗) be a fuzzy metric space such that ∗ ≥ ∗Yp for some p > . The
following are equivalent.

() (X, M,∗) is complete.
() Every α-fuzzy Caristi multivalued mapping has a fixed point.
() Every α-fuzzy Caristi mapping has a fixed point.

Proof () 
⇒ () follows from Theorem , and () 
⇒ () is obvious.
() 
⇒ () Construct the metric d of Example  if p ≥ , or the metric d of Example  if

p ∈ (, ). In any case, we shall prove that every Caristi mapping on (X, d) has a fixed point.
Indeed, let T : X → X such that there exists a lower semicontinuous function ϕ : X →R

+

satisfying

d(x, Tx) ≤ ϕ(x) – ϕ(Tx),

for all x ∈ X. We claim that T is an α-fuzzy Caristi mapping for α taken as in Example  or
Example , respectively. In fact, if for some x ∈ X and t > , we have ϕ(x) – ϕ(Tx) < t but
M(x, Tx, t) ≤  –α(t), it follows that d(x, Tx) ≥ t, and thus ϕ(x) –ϕ(Tx) ≥ t, a contradiction.
We conclude that T is an α-fuzzy Caristi mapping, and by hypothesis, it has a fixed point.
Therefore, by Theorem , (X, d) is complete, and thus (X, M,∗) is complete by Theorem 
(or by Examples  and ). �

We conclude the paper with an example that illustrates our results in this section.

Example  Let X = [, ] and let ∗ be a continuous t-norm such that ∗ ≥ ∗Yp , p ∈ (, ].
Define M : X × X × R

+ → [, ] as M(x, y, ) = , M(x, y, t) = x ∗ y if x �= y and t > , and
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M(x, x, t) =  for all t > . It is well known, and easy to check, that (X, M,∗) is a complete
fuzzy metric space. For each x ∈ X\{}, fix a subset Ax of X such that x /∈ Ax and  ∈ Ax.
Define T : X → P(X) as T = {} and Tx = Ax for all x ∈ X\{}. We show that T is an
α-fuzzy Caristi multivalued mapping on X for ϕ : X → R

+ given by ϕ() =  and ϕ(x) = 
for all x ∈ X\{} and α : R+ → R

+ given by α(t) = t/p for all t ≥ . Indeed, let x ∈ X\{}.
Take yx =  ∈ Tx. If ϕ(x) – ϕ(yx) < t, then  < t, and thus,  < t/p. Hence M(x, yx, t) ≥  >
–t/p = –α(t). Therefore T is an α-fuzzy Caristi multivalued mapping, and all conditions
of Theorem  are satisfied (note that we can also apply Theorem , () 
⇒ ()).
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