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1 Introduction
Recently, in [] the authors introduced the class of simulation functions as follows.

Definition . We say that ξ : [,∞) × [,∞) → R is a simulation function if it satisfies
the following conditions:

(i) ξ (, ) = ;
(ii) ξ (t, s) < s – t, for every t, s > ;

(iii) if {an} and {bn} are two sequences in (,∞), then

lim
n→∞ an = lim

n→∞ bn >  �⇒ lim sup
n→∞

ξ (an, bn) < .

Various examples of simulation functions were presented in []. The class of such func-
tions will be denoted by Z .

Definition . ([]) Let T : X → X be a given operator, where X is a nonempty set
equipped with a metric d. We say that T is a Z-contraction with respect to ξ ∈Z if

ξ
(
d(Tx, Ty), d(x, y)

) ≥ , for all x, y ∈ X.

In [], the authors established the following fixed point theorem that generalizes many
previous results from the literature including the Banach fixed point theorem.

Theorem . ([]) Let T : X → X be a given map, where X is a nonempty set equipped with
a metric d such that (X, d) is complete. Suppose that T is a Z-contraction with respect
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to ξ ∈ Z . Then T has a unique fixed point. Moreover, for any x ∈ X, the sequence {Tnx}
converges to this fixed point.

For other results via simulation functions, we refer to [–].
Let (X, d) be a metric space. Consider a mapping T : A → B, where A and B are

nonempty subsets of X. If d(x, Tx) >  for every x ∈ A, then the set of fixed points of T
is empty. In this case, we are interested in finding a point x ∈ A such that d(x, Tx) is mini-
mum in some sense.

Definition . We say that z ∈ A is a best proximity point of T if

d(z, Tz) = d(A, B) := inf
{

d(x, y) : x ∈ A, y ∈ B
}

.

Observe that if d(A, B) = , then a best proximity point of T is a fixed point of T .
The study of the existence of best proximity points is an interesting field of optimiza-

tion and it attracted recently the attention of several researchers (see [, –] and the
references therein).

In the sequel, we will use the following notations. Set

A =
{

x ∈ A : d(x, y) = d(A, B), for some y ∈ B
}

and

B =
{

y ∈ B : d(x, y) = d(A, B), for some x ∈ A
}

.

We refer to [] for sufficient conditions that guarantee that A and B are nonempty.
Now, we endow the set X with a partial order �. Let us introduce the following class

of mappings. For a given simulation function ξ ∈Z , we denote by Tξ the set of mappings
T : A → B satisfying the following conditions:

(C) for every x, x, y, y ∈ A, we have

y � y, d(x, Ty) = d(x, Ty) = d(A, B) �⇒ x � x;

(C) for every x, y, u, u ∈ A, we have

x � y, x 	= y, d(u, Tx) = d(u, Ty) = d(A, B) �⇒ ξ
(
d(u, u), m(x, y)

) ≥ ,

where

m(x, y) = max

{
d(x, u)d(y, u)

d(x, y)
, d(x, y)

}
.

Our aim in this paper is to study the existence and uniqueness of best proximity points
for non-self mappings T : A → B that belong to the class Tξ , for some simulation function
ξ ∈Z .

2 Main results
Our first main result is the following.
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Theorem . Let T ∈ Tξ , for some ξ ∈Z . Suppose that the following conditions hold:
() (X, d) is complete;
() A is closed with respect to the metric d;
() T(A) ⊆ B;
() there exist x, x ∈ A such that

d(x, Tx) = d(A, B), x � x;

() T is continuous.
Then T has a best proximity point, that is, there is some z ∈ A such that d(z, Tz) = d(A, B).

Proof By condition (), we have

d(x, Tx) = d(A, B),

for some x, x ∈ A such that x � x. Condition () implies that Tx ∈ B, which yields

d(x, Tx) = d(A, B),

for some x ∈ A. Since x � x, condition (C) implies that x � x. Continuing this pro-
cess, by induction, we can construct a sequence {xn} ⊂ A such that

d(xn+, Txn) = d(A, B), n = , , , . . . (.)

and

x � x � x � · · · � xn � xn+ � · · · .

Suppose that for some p = , , , . . . , we have xp+ = xp. In this case, we get d(xp, Txp) =
d(A, B), that is, xp is a best proximity point of T . So, without restriction of the generality,
we may suppose that

xn 	= xn+, n = , , , . . . .

Since

xn � xn+, xn 	= xn+, d(xn, Txn–) = d(xn+, Txn) = d(A, B), n = , , , . . . ,

it follows from condition (C) that

ξ
(
d(xn, xn+), m(xn–, xn)

) ≥ , n = , , , . . . ,

where

m(xn–, xn) = max

{
d(xn–, xn)d(xn, xn+)

d(xn–, xn)
, d(xn–, xn)

}

= max
{

d(xn, xn+), d(xn–, xn)
}

.
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Suppose that for some n = , , , . . . , we have

max
{

d(xn , xn+), d(xn–, xn )
}

= d(xn , xn+).

In this case, we obtain

 ≤ ξ
(
d(xn , xn+), d(xn , xn+)

)
.

On the other hand, since d(xn , xn+) > , using the property (ii) of a simulation function,
we obtain

ξ
(
d(xn , xn+), d(xn , xn+)

)
< ,

which is a contradiction. As a consequence,

max
{

d(xn, xn+), d(xn–, xn)
}

= d(xn–, xn), n = , , , . . . . (.)

Thus, we obtain

ξ
(
d(xn, xn+), d(xn–, xn)

) ≥ , n = , , , . . . . (.)

From (.), we deduce that the sequence {rn} defined by

rn = d(xn, xn+), n = , , , . . .

is decreasing, which yields

lim
n→∞ rn = r,

where r ∈ [,∞). Suppose that r > . Using (.) and the property (iii) of a simulation
function, we deduce that

 ≤ lim sup
n→∞

ξ
(
d(xn, xn+), d(xn–, xn)

)
< ,

which is a contradiction. As consequence, we have

lim
n→∞ d(xn, xn+) = . (.)

Let us prove now that {xn} is a Cauchy sequence. We argue by contradiction by supposing
that {xn} is not a Cauchy sequence. In this case, there is some ε >  for which there are
subsequences {xm(k)} and {xn(k)} of {xn} such that

n(k) > m(k) > k, d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)–) < ε.

Using the triangle inequality, we have

ε ≤ d(xm(k), xn(k)) ≤ d(xm(k), xn(k)–) + d(xn(k)–, xn(k)) < ε + d(xn(k)–, xn(k)).
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Thus we have

ε ≤ d(xm(k), xn(k)) < ε + d(xn(k)–, xn(k)), for all k.

Letting k → ∞ and using (.), we obtain

lim
n→∞ d(xm(k), xn(k)) = ε. (.)

Again, the triangle inequality yields

∣
∣d(xn(k)–, xm(k)) – d(xm(k), xn(k))

∣
∣ ≤ d(xn(k)–, xn(k)), for all k.

Letting k → ∞, using (.) and (.), we obtain

lim
n→∞ d(xn(k)–, xm(k)) = ε. (.)

Similarly, we have

∣
∣d(xn(k)–, xm(k)–) – d(xn(k)–, xm(k))

∣
∣ ≤ d(xm(k)–, xm(k)), for all k.

Letting k → ∞, using (.) and (.), we obtain

lim
n→∞ d(xn(k)–, xm(k)–) = ε. (.)

Observe that for k large enough, we have

xm(k)– � xn(k)–, xm(k)– 	= xn(k)–

and

d(xm(k), Txm(k)–) = d(xn(k), Txn(k)–) = d(A, B).

Then condition (C) yields

ξ
(
d(xm(k), xn(k)), m(xm(k)–, xn(k)–)

) ≥ , for all k. (.)

On the other hand, for all k, we have

m(xm(k)–, xn(k)–) = max

{
d(xm(k)–, xm(k))d(xn(k)–, xn(k))

d(xm(k)–, xn(k)–)
, d(xm(k)–, xn(k)–)

}
.

Passing k → ∞ and using (.) and (.), we get

lim
k→∞

m(xm(k)–, xn(k)–) = ε. (.)

Using (.), (.), (.) and the condition (iii) of a simulation function, we have

 ≤ lim sup
k→∞

ξ
(
d(xm(k), xn(k)), m(xm(k)–, xn(k)–)

)
< ,
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which is a contradiction. As consequence, the sequence {xn} is Cauchy. Since A is a closed
subset of the complete metric space (X, d) (from conditions () and ()), there is some
z ∈ A such that

lim
n→∞ d(xn, z) = .

The continuity of T (from condition ()) yields

lim
n→∞ d(Txn, Tz) = .

Since d(xn+, Txn) = d(A, B) for all n = , , , . . . , we obtain

d(A, B) = lim
n→∞ d(xn+, Txn) = d(z, Tz),

that is, z ∈ A is a best proximity point of T . This ends the proof. �

Next, we obtain a best proximity point result for mappings T ∈ Tξ that are not neces-
sarily continuous.

We say that the set A is (d,�)-regular if it satisfies the following property:

{an} ⊂ A is nondecreasing w.r.t. � and lim
n→∞ d(an, a) =  �⇒ a = sup{an}.

Theorem . Let T ∈ Tξ , for some ξ ∈Z . Suppose that the following conditions hold:
() (X, d) is complete;
() A is closed;
() T(A) ⊆ B;
() there exist x, x ∈ A such that

d(x, Tx) = d(A, B), x � x;

() A is (d,�)-regular.
Then T has a best proximity point, that is, there is some z ∈ A such that d(z, Tz) = d(A, B).

Proof Let us consider the sequence {xn} ⊂ A defined by (.). Following the proof of The-
orem ., we know that {xn} is a Cauchy sequence. Since A is closed, there is some z ∈ A

such that

lim
n→∞ d(xn, z) = .

From condition (), we have Tz ∈ B, which yields

d(y, Tz) = d(A, B),

for some y ∈ A. On the other hand, the regularity condition () implies that

xn � z, for all n.
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Since for all n,

xn � z, d(xn+, Txn) = d(y, Tz) = d(A, B),

condition (C) yields

xn+ � y, for all n.

On the other hand, we know that z = sup{xn}, which implies that

z � y.

Thus we have

d(y, Tz) = d(A, B), z � y.

Again, since Ty ∈ B, there is some y ∈ A such that d(y, Ty) = d(A, B). Condition (C)
yields y � y. Thus we have

d(y, Ty) = d(A, B), y � y.

Set y = z and continuing this process, we can build a sequence {yn} ⊂ A such that

d(yn+, Tyn) = d(A, B), n = , , , . . .

and

y � y � y � · · · � yn � yn+ � · · · .

Following similar arguments as in the proof of Theorem ., we can prove that {yn} is a
Cauchy sequence in the closed subset A of the complete metric space (X, d), which yields

lim
n→∞ d(yn, y) = ,

for some y ∈ A. The regularity assumption () implies that y = sup{yn}. So, we have

xn � z = y � y � · · · � yn � y, for all n.

We claim that z = y. In order to prove our claim, suppose that d(z, y) > . Set

I = {n : xn = z}.

We consider two cases.
Case . If |I| = ∞.
In this case, there is a subsequence {xnk } of {xn} such that

xnk = z, for all k,

which implies that z is a best proximity point. So, this case is trivial.
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Case . If |I| < ∞.
In this case, for n large enough, we have

xn 	= z, xn � z � yn, for all n.

From condition (C), for n large enough, we obtain

ξ
(
d(xn+, yn+), m(xn, yn)

) ≥ ,

where

m(xn, yn) = max

{
d(xn, xn+)d(yn, yn+)

d(xn, yn)
, d(xn, yn)

}
.

Observe that

lim
n→∞ d(xn+, yn+) = lim

n→∞ m(xn, yn) = d(z, y) > .

From the property (iii) of simulation functions, we obtain

 ≤ lim sup
n→∞

ξ
(
d(xn+, yn+), m(xn, yn)

)
< ,

which is a contradiction. As consequence, we have z = y.
Since z = y, we obtain

xn � z = y � y � · · · � yn � y = z, for all n,

which implies that

yn = z, for all n.

Since d(yn+, Tyn) = d(A, B), we have d(z, Tz) = d(A, b), that is, z is a best proximity point
of T . This completes the proof. �

Note that the assumptions in Theorems . and . do not guarantee the uniqueness of
the best proximity point. The next example shows this fact.

Example . Let X be the subset of R given by

X =
{

(, , ), (, , ), (, , –), (–, , )
}

.

We endow X with the partial order � defined by

(x, y, z) � (
x′, y′, z′) ⇐⇒ x ≤ x′, y ≤ y′, z ≤ z′.

Let d be the Euclidean metric on R
. Then (X, d) is a complete metric space. Set

A =
{

(, , ), (, , )
}

and B =
{

(, , –), (–, , )
}

.
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In this case, we have

d(A, B) =
√

, A = A, B = B.

Let T : A → B be the mapping defined by

T(x, y, z) = (–z, –y, –x), (x, y, z) ∈ A.

Then T is continuous and T ∈ Tξ for every ξ ∈ Z . Moreover, it can be shown that all
the other conditions of Theorems . and . are satisfied. However, z = (, , ) and
z = (, , ) are two best proximity points of T .

In the next theorem, we give a sufficient condition for the uniqueness of the best prox-
imity point.

Theorem . In addition to the assumptions of Theorem . (resp. Theorem .), suppose
that

for every (x, y) ∈ A × A, there is some w ∈ A such that x � w, y � w.

Then T has a unique best proximity point.

Proof From Theorem . (resp. Theorem .), the set of best proximity points of T is not
empty. Suppose that z, z ∈ A are two distinct best proximity points of T , that is,

d(z, Tz) = d(z, Tz) = d(A, B), d(z, z) > .

We consider two cases.
Case . If z and z are comparable.
We may assume that z � z. From condition (C), we have

ξ
(
d(z, z), m(z, z)

) ≥ ,

where

m(z, z) = max

{
d(z, z)d(z, z)

d(z, z)
, d(z, z)

}
= d(z, z).

Thus we have

ξ
(
d(z, z), d(z, z)

) ≥ ,

which is a contradiction with the property (ii) of a simulation function.
Case . If z and z are not comparable.
In this case, there is some w ∈ A such that

z � w, z � w, w /∈ {z, z}.
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Since T(A) ⊆ B, we can build a sequence {wn} ⊂ A such that

d(wn+, Twn) = d(A, B), n = , , , . . .

with w = w. From condition (C), we get

z � wn, n = , , , . . . .

If for some k, we have z = wk , using condition (C), we have wk+ � z, which yields
wk+ = z. Arguing similarly, we obtain wn = z for every n ≥ k. Thus we have

lim
n→∞ d(wn, z) = .

If wn 	= z for every n, from condition (C), we have

ξ
(
d(z, wn+), m(z, wn)

) ≥ , n = , , , . . . ,

where

m(z, wn) = max

{
d(z, z)d(wn, wn+)

d(z, wn)
, d(z, wn)

}
= d(z, wn).

Thus we have

ξ
(
d(z, wn+), d(z, wn)

) ≥ , n = , , , . . . .

On the other hand, from the property (ii) of a simulation function, we have

 ≤ ξ
(
d(z, wn+), d(z, wn)

)
< d(z, wn) – d(z, wn+), n = , , , . . . .

We deduce that the sequence {sn} defined by

sn = d(z, wn), n = , , , . . .

converges to some s ≥ . But the property (ii) of a simulation function gives us that s = .
Thus, in all cases, we have

lim
n→∞ d(wn, z) = .

Analogously, we can prove that

lim
n→∞ d(wn, z) = .

Finally, the uniqueness of the limit yields the desired result. �

In the following corollaries we deduce some known and some new results in best prox-
imity point theory via various choices of simulation functions.

We denote by F the set of mappings T : A → B satisfying the following conditions:
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(F) for every x, x, y, y ∈ A, we have

y � y, d(x, Ty) = d(x, Ty) = d(A, B) �⇒ x � x;

(F) for every x, y, u, u ∈ A, we have

x � y, x 	= y, d(u, Tx) = d(u, Ty) = d(A, B)

�⇒ d(u, u) ≤ k max

{
d(x, u)d(y, u)

d(x, y)
, d(x, y)

}
,

for some constant k ∈ (, ).
Take ξ (t, s) = ks – t, for t, s ≥ , we deduce from Theorems ., . and . the following

results.

Corollary . Let T ∈F . Suppose that the following conditions hold:
() (X, d) is complete;
() A is closed with respect to the metric d;
() T(A) ⊆ B;
() there exist x, x ∈ A such that

d(x, Tx) = d(A, B), x � x;

() T is continuous.
Then T has a best proximity point, that is, there is some z ∈ A such that d(z, Tz) = d(A, B).

Corollary . Let T ∈F . Suppose that the following conditions hold:
() (X, d) is complete;
() A is closed;
() T(A) ⊆ B;
() there exist x, x ∈ A such that

d(x, Tx) = d(A, B), x � x;

() A is (d,�)-regular.
Then T has a best proximity point, that is, there is some z ∈ A such that d(z, Tz) = d(A, B).

Corollary . In addition to the assumptions of Corollary . (resp. Corollary .), sup-
pose that

for every (x, y) ∈ A × A, there is some w ∈ A such that x � w, y � w.

Then T has a unique best proximity point.

We denote by G the set of mappings T : A → B satisfying the following conditions:
(G) for every x, x, y, y ∈ A, we have

y � y, d(x, Ty) = d(x, Ty) = d(A, B) �⇒ x � x;
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(G) for every x, y, u, u ∈ A, we have

x � y, x 	= y, d(u, Tx) = d(u, Ty) = d(A, B)

�⇒ d(u, u) ≤ max

{
d(x, u)d(y, u)

d(x, y)
, d(x, y)

}

– ϕ

(
max

{
d(x, u)d(y, u)

d(x, y)
, d(x, y)

})
,

where ϕ : [,∞) → [,∞) is lower semi-continuous function and ϕ–({}) = {}.
Take ξ (t, s) = s – ϕ(s) – t, for t, s ≥ , we deduce from Theorems ., . and . the

following results obtained in [].

Corollary . Let T ∈ G . Suppose that the following conditions hold:
() (X, d) is complete;
() A is closed with respect to the metric d;
() T(A) ⊆ B;
() there exist x, x ∈ A such that

d(x, Tx) = d(A, B), x � x;

() T is continuous.
Then T has a best proximity point, that is, there is some z ∈ A such that d(z, Tz) = d(A, B).

Corollary . Let T ∈ G . Suppose that the following conditions hold:
() (X, d) is complete;
() A is closed;
() T(A) ⊆ B;
() there exist x, x ∈ A such that

d(x, Tx) = d(A, B), x � x;

() A is (d,�)-regular.
Then T has a best proximity point, that is, there is some z ∈ A such that d(z, Tz) = d(A, B).

Corollary . In addition to the assumptions of Corollary . (resp. Corollary .), sup-
pose that

for every (x, y) ∈ A × A, there is some w ∈ A such that x � w, y � w.

Then T has a unique best proximity point.

We denote by H the set of mappings T : A → B satisfying the following conditions:
(H) for every x, x, y, y ∈ A, we have

y � y, d(x, Ty) = d(x, Ty) = d(A, B) �⇒ x � x;
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(H) for every x, y, u, u ∈ A, we have

x � y, x 	= y, d(u, Tx) = d(u, Ty) = d(A, B)

�⇒ d(u, u) ≤ ϕ

(
max

{
d(x, u)d(y, u)

d(x, y)
, d(x, y)

})

× max

{
d(x, u)d(y, u)

d(x, y)
, d(x, y)

}
,

where ϕ : [,∞) → [, ) is a function such that lim supt→r+ ϕ(t) < , for all r > .
Take ξ (t, s) = sϕ(s) – t, for t, s ≥ , we deduce from Theorems ., . and . the follow-

ing results.

Corollary . Let T ∈H. Suppose that the following conditions hold:
() (X, d) is complete;
() A is closed with respect to the metric d;
() T(A) ⊆ B;
() there exist x, x ∈ A such that

d(x, Tx) = d(A, B), x � x;

() T is continuous.
Then T has a best proximity point, that is, there is some z ∈ A such that d(z, Tz) = d(A, B).

Corollary . Let T ∈H. Suppose that the following conditions hold:
() (X, d) is complete;
() A is closed;
() T(A) ⊆ B;
() there exist x, x ∈ A such that

d(x, Tx) = d(A, B), x � x;

() A is (d,�)-regular.
Then T has a best proximity point, that is, there is some z ∈ A such that d(z, Tz) = d(A, B).

Corollary . In addition to the assumptions of Corollary . (resp. Corollary .),
suppose that

for every (x, y) ∈ A × A, there is some w ∈ A such that x � w, y � w.

Then T has a unique best proximity point.

Finally, take A = B = X in Theorems ., . and ., we obtain the following fixed point
theorems.

For a given simulation function ξ ∈Z , we denote by Cξ the class of mappings T : X → X
satisfying the following conditions:

(I) for every x, y ∈ X , we have

x � y �⇒ Tx � Ty;
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(II) for every x, y ∈ X , we have

x � y, x 	= y �⇒ ξ

(
d(Tx, Ty), max

{
d(x, Tx)d(y, Ty)

d(x, y)
, d(x, y)

})
≥ .

Corollary . Let T ∈ Cξ , for some ξ ∈Z . Suppose that
() (X, d) is complete;
() there exists some x ∈ X such that x � Tx;
() T is continuous.

Then T has a fixed point, that is, there is some z ∈ X such that z = Tz.

Corollary . Let T ∈ Cξ , for some ξ ∈Z . Suppose that
() (X, d) is complete;
() there exists some x ∈ X such that x � Tx;
() X is (d,�)-regular.

Then T has a fixed point, that is, there is some z ∈ X such that z = Tz.

Corollary . In addition to the assumptions of Corollary . (resp. Corollary .),
suppose that

for every (x, y) ∈ X × X, there is some w ∈ X such that x � w, y � w.

Then T has a unique fixed point.
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