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Abstract
Under some weaker conditions, some coincidence point and common fixed point
theorems are established in partially ordered fuzzy metric spaces using weakly
compatible mappings. By using the theorems, we obtain some coupled and
multidimensional fixed point results, which are generalization and improvement of
very recent theorems in the corresponding literature. In order to illustrate our main
results, we give three examples.
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1 Introduction
In , the notion of coupled fixed point was first introduced by Guo and Lakshmikan-
tham []. Recently, Gnana-Bhaskar and Lakshmikantham [] established some coupled
fixed point theorems in partially ordered metric space. The fuzzy version of the results
of Gnana-Bhaskar and Lakshmikantham [] was studied by Sedghi et al. []. After that,
common coupled fixed point results in fuzzy metric spaces were established by Hu [] and
Hu et al. []. Very recently, Choudhury et al. [] established coupled coincidence point
and fixed point results for compatible mappings in partially ordered fuzzy metric spaces.
Later, Roldán et al. [] obtained multidimensional coincidence point theorems for nonlin-
ear mappings in any number of variables in partially ordered fuzzy metric spaces. Their
results generalize, clarify and unify several classical and very recent related results in the
literature in the setting of metric spaces.

But many results (see, e.g., [–]) are obtained under the assumptions: (a) φ(t) = kt for
all t > , where k ∈ (, ); or (b)

∑∞
n= φn(t) < ∞ for all t > . It is obvious that the condition

(a) is special. In [], Ćirić [] has pointed out, the condition (b) is very strong and difficult
for testing in practice. Then Ćirić introduced the condition (CBW): φ() = , φ(t) < t and
lim infr→t+ φ(t) < t for all t > . Later, Jachymski [] presented the condition (c):  < φ(t) < t
and limn→∞ φn(t) =  for all t > . In order to weaken the condition (c) further, Fang []
introduced the condition (d): for each t >  there exists r ≥ t such that limn→∞ φn(r) =
 in the context of Menger probabilistic metric spaces and fuzzy metric spaces. In this
paper, under the condition (d), we present some coincidence point and common fixed
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point results for weakly compatible mappings in partially ordered fuzzy metric spaces. By
using the theorems, we obtain some coupled and multidimensional fixed point results,
which are generalization and improvement of very recent theorems in the corresponding
literature. In addition, we illustrate our main results with three examples.

2 Preliminaries
In order to fix the framework needed to state our main results, we recall the following
notions. Let n ∈N, X be a non-empty set and Xn be the Cartesian product of n copies of X.
For brevity, g(x), (y, y, . . . , yn), (y

m, y
m, . . . , yn

m), (z
m, z

m, . . . , zn
m), (z, z, . . . , zn), (v, v, . . . , vn)

and (x
, x

, . . . , xn
) will be denoted by gx, Y , Ym, Zm, Z, V , and X, respectively.

Throughout this paper, let {A, B} be a partition of the set �n = {, , . . . , n}, i.e., A ∪ B =
�n and A ∩ B = ∅. Let σ,σ, . . . ,σn : �n → �n be n mappings from �n into itself. We
denote �A,B = {σ : �n → �n : σ (A) ⊆ A and σ (B) ⊆ B}, �

′
A,B = {σ : �n → �n : σ (A) ⊆

B and σ (B) ⊆ A}, N = {, , . . . , n, . . .}, N = {, . . . , n, . . .}, R+ = [,∞), and I = [, ]. If (X,�)
is a partially ordered space, we use the following notation from [], for y, v ∈ X and i ∈ �n

y �i v ⇔
⎧
⎨

⎩

y � v, if i ∈ A,

y  v, if i ∈ B.

Consider on Xn the next natural partial order: for Y , V ∈ Xn

Y �n V ⇔ yi �i vi ()

for all i. If Y �n V or Y n V , then two points Y and V are comparable (denoted by Y � V ).

Proposition . ([]) If Y �n V , it follows that (yσ (), yσ (), . . . , yσ (n)) �n (vσ (), vσ (), . . . ,
vσ (n)) if σ ∈ �AB, (yσ (), yσ (), . . . , yσ (n)) n (vσ (), vσ (), . . . , vσ (n)) if σ ∈ �′

AB.

Definition . ([]) Let (Xn,�n) be a partially ordered set, and T and G be self-mappings
of Xn. It is said that T is a G-isotone mapping if, for any Y, Y ∈ Xn

G(Y) �n G(Y) ⇒ T(Y) �n T(Y).

Definition . ([]) Let (X,�) be a partially ordered set and F : X → X. We say F has
the mixed g-monotone property if F is monotone non-decreasing in its first argument and
is monotone non-increasing in its second argument, that is, for any x, y ∈ X,

x, x ∈ X, g(x) � g(x) implies qF(x, y) � F(x, y),

and

y, y ∈ X, g(y) � g(y) implies F(x, y)  F(x, y).

Definition . ([]) Let (X,�) be a partially ordered space. We say that F has the mixed g-
monotone property if F is g-monotone non-decreasing in arguments of A and g-monotone
non-increasing in arguments of B, i.e., for all x, x, . . . , xn, y, z ∈ X and all i

gy � gz ⇒ F(x, . . . , xi–, y, xi+, . . . , xn) �i F(x, . . . , xi–, z, xi+, . . . , xn).
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Definition . ([]) An element Y ∈ Xn is called a coincidence point of the mappings
T : Xn → Xn and G : Xn → Xn if T(Y ) = G(Y ). Furthermore, if T(Y ) = G(Y ) = Y , then we
say that Y is a common fixed point of T and G.

Definition . Let F : Xn → X and g : X → X be two mappings. A point (x, x, . . . , xn) ∈
Xn is:

(i) A coupled coincidence point ([]) if n = , F(x, x) = g(x), and F(x, x) = g(x). If
g is the identity mapping on X , then (x, x) ∈ X is called a coupled fixed point of
the mapping F ([]). A coupled common fixed point of F and g ([]) if n = ,
F(x, x) = g(x) = x, and F(x, x) = g(x) = x.

(ii) A ϒ-coincidence point ([]) of F and g if

F(xσi(), xσi(), . . . , xσi(n)) = gxi

for i ∈ �n. If g is the identity mapping on X , then (x, x, . . . , xn) ∈ Xn is called a
ϒ-fixed point of the mapping F .

Definition . ([]) A triple (X, τ ,�) is called a partially ordered topological space if τ

is a Hausdorff topology on X and � is a partial order on X. A partially ordered topological
space (X, τ ,�) is said to have the sequential g-monotone property if it verifies:

(i) If {xm} is a non-decreasing sequence and {xm} → x, then gxm � gx for all m.
(ii) If {ym} is a non-increasing sequence and {ym} → y, then gym  gy for all m.

If g is the identity mapping, then X is said to have the sequential monotone property.

Definition . ([]) A triangular norm (also called a t-norm) is a map ∗ : I× I → I that
is associative, commutative, non-decreasing in both arguments and has  as identity. A
t-norm is continuous if it is continuous in I

 as mapping. If a, a, . . . , am ∈ I, then

∗m
i=ai = a ∗ a ∗ · · · ∗ am.

For each a ∈ [, ], the sequence {∗ma}∞m= is defined inductively by ∗a = a and ∗m+a =
(∗ma) ∗ a for all m ≥ .

Definition . ([]) A t-norm is said to be of H-type if the sequence {∗ma}∞m= is equicon-
tinuous at a = , i.e., for all ε ∈ (, ), there exists η ∈ (, ) such that if a ∈ ( – η, ], then
∗ma >  – ε for all m ∈ N.

Definition . ([]) A fuzzy metric space in the sense of Kramosil and Michálek
(briefly, a FMS) is a triple (X, M,∗) where X is a non-empty set, ∗ is a t-norm and
M : X × X × R

+ → I is a fuzzy set satisfying the following conditions for all x, y, z ∈ X
and t, s ≥ :

(FM-) M(x, y, ) = ;
(FM-) M(x, y, t) = , for all t >  if and only if x = y;
(FM-) M(x, y, t) = M(y, x, t);
(FM-) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s);
(FM-) M(x, y, ·) : R+ → I is left continuous.

Remark . Note that ∗ is continuous in the original definition in [].
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Definition . ([]) A triple (X, M,∗) is called a fuzzy metric space (in the sense of
George and Veeramani) if X is an arbitrary non-empty set, ∗ is a continuous t-norm and
M : X × X × R

+ → I is a fuzzy set satisfying, for each x, y, z ∈ X and t, s > , conditions
(FM-), (FM-), (FM-), (GV-): M(x, y, ·) : (,∞) → I is continuous, and (GV-):
M(x, y, t) > .

Definition . ([]) Let (X, M,∗) be a FMS. A sequence {xn} in X is said to be convergent
to x ∈ X if limn→∞ M(xn, x, t) =  for all t > . A sequence {xn} in X is said to an M-Cauchy
sequence, if for each ε ∈ (, ) and t >  there exists n ∈ N such that M(xn, xm, t) >  – ε

for all m, n ≥ n. A fuzzy metric space is called complete if every M-Cauchy sequence is
convergent in X.

Lemma . ([]) If (X, M) is a FMS under some t-norm and x, y ∈ X, then M(x, y, ·) is a
non-decreasing function on (,∞).

Definition . ([]) A partially ordered fuzzy metric space (for short, poFMS) is a
quadruple (X, M,∗,�) such that (X, M,∗) is a FMS and � is a partial order on X.

Definition . ([]) Let p ∈N and let (X, M,∗) be a FMS. A mapping G : Xp → X is said
to be continuous at a point Y ∈ Xp if, for any sequence {Ym}m≥ in Xp converging to Y,
the sequence {G(Ym)}m≥ converges to G(Y). If G is continuous at each Y ∈ Xp, then G
is said continuous on Xp.

Definition . ([]) Let (X, M,∗) be a FMS. The mappings F and g where F : X → X
and g : X → X, are said to be compatible if for all t > 

lim
n→∞ M

(
g
(
F(xn, yn)

)
, F

(
g(xn), g(yn)

)
, t

)
= 

and

lim
n→∞ M

(
g
(
F(yn, xn)

)
, F

(
g(yn), g(xn)

)
, t

)
= ,

whenever {xn} and {yn} are sequences in X such that limn→∞ F(xn, yn) = limn→∞ g(xn) = x
and limn→∞ F(yn, xn) = limn→∞ g(yn) = y for some x, y ∈ X.

Definition . ([]) Let (X, M,∗,�) be a poFMS and let 
 = (σ,σ, . . . ,σn) be an n-
tuple of mappings from �n into itself. Two mappings F : Xn → X and g : X → X are
said to be 
-compatible if, for all sequences {x

m}m≥, {x
m}m≥, . . . , {xn

m}m≥ ⊂ X such that
{gx

m}m≥, {gx
m}m≥, . . . , {gxn

m}m≥ are monotone and

∃ lim
m→∞ F

(
xσi()

m , xσi()
m , . . . , xσi(n)

m
)

= lim
m→∞ gxi

m ∈ X for all i,

we have

lim
m→∞ M

(
gF

(
xσi()

m , xσi()
m , . . . , xσi(n)

m
)
, F

(
gxσi()

m , gxσi()
m , . . . , gxσi(n)

m
)
, t

)
= 

for all t >  and all i.
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Remark . If n =  in Definition ., then F , g : X → X are compatible w.r.t. (X, M,
∗,�).

Definition . ([]) We will say that the maps f , g : X → X are weakly compatible (or
the pair (f , g) is w-compatible) if fgx = gfx for all x ∈ X such that fx = gx.

Let 
′ denote the family of all functions φ : R+ → R
+ such that limn→∞ φn(t) =  for all

t > , and let 
w denote the family of all functions φ : R+ → R
+ verifying the condition

(d), that is, for each t >  there exists r ≥ t such that limn→∞ φn(r) = .
It is evident that the condition limn→∞ φn(t) =  for all t >  implies the condition

(d). However, the following example shows that the reverse is not true in general. Hence

′ ⊆ 
w.

Example . ([]) Let the function φ : R+ →R
+ be defined by

φ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t
+t , if  ≤ t < ,

– t
 + 

 , if  ≤ t ≤ ,

t – 
 , if  < t < ∞.

()

Notice that φ ∈ 
w but φ /∈ 
′.

Lemma . ([]) Let φ ∈ 
w, then for each t >  there exists r ≥ t such that φ(r) < t.

3 Main results
In this section we establish our main results and use them to obtain some coupled and
multidimensional fixed point theorems.

Lemma . If (X, M,∗) is a FMS with M(x, y, ·) : R+ → I is continuous, then M is a contin-
uous mapping on X × (,∞).

Proof The proof is the same as that for a fuzzy metric space in the sense of George and
Veeramani (see Rodríguez-López and Romaguera [], Proposition ). �

Lemma . Let (X, M,∗) be a FMS such that ∗ is a t-norm of H-type. Let {xn} be a sequence
in (X, M,∗). If there exists a function φ ∈ 
w satisfying

(i) φ(t) >  for all t > ;
(ii) M(xn, xm,φ(t)) ≥ M(xn–, xm–, t) for all n, m ∈N and t > ;

(iii) limt→∞ M(x, x, t) = ,
then {xm} is a Cauchy sequence.

Proof We proceed with the following steps:
Step . We claim that for any t > ,

M(xn, xn+, t) →  as n → ∞. ()

By (iii), for any ε ∈ (, ), there exists t >  such that M(x, x, t) >  – ε. Since φ ∈ 
w,
there exists t ≥ t such that limn→∞ φn(t) = . Thus, for each t > , there exists n ∈ N
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such that φn(t) < t for all n ≥ n. It is evident that (ii) implies that

M
(
xn, xn+,φ(t)

) ≥ M(xn–, xn, t) for all n ∈N and t > . ()

It follows from (i) that φn(t) >  for all n ∈ N and t > . By induction, it follows from ()
that

M
(
xn, xn+,φn(t)

) ≥ M(x, x, t) for all n ∈N and t > . ()

So, by () and the monotonicity of M(x, y, ·), we have

M(xn, xn+, t) ≥ M
(
xn, xn+,φn(t)

) ≥ M(x, x, t) ≥ M(x, x, t) >  – ε

for all n ≥ n. Taking into account that ε, t >  are arbitrary, we conclude that () holds.
Step . We claim that for any t > ,

M(xn, xm, t) ≥ ∗m–nM
(
xn, xn+, t – φ(r)

)
for all m ≥ n + , ()

where r ≥ t. Since φ ∈ 
w, for any t > , there exists r ≥ t such that φ(r) < t by Lemma ..
Since M(xn, xn+, t) ≥ M(xn, xn+, t – φ(r)) = ∗M(xn, xn+, t – φ(r)), then () holds for m =
n + . Suppose now that M(xn, xm, t) ≥ ∗m–nM(xn, xn+, t – φ(r)) holds for some fixed m ≥
n + . By (FM-), (ii) and the monotonicity of ∗, we get

M(xn, xm+, t) = M
(
xn, xm+, t – φ(r) + φ(r)

)

≥ M
(
xn, xn+, t – φ(r)

) ∗ M
(
xn+, xm+,φ(r)

)

≥ M
(
xn, xn+, t – φ(r)

) ∗ M(xn, xm, r)

≥ M
(
xn, xn+, t – φ(r)

) ∗ M(xn, xm, t)

≥ M
(
xn, xn+, t – φ(r)

) ∗ (∗m–nM
(
xn, xn+, t – φ(r)

))

= ∗m+–nM
(
xn, xn+, t – φ(r)

)
.

Thus, we prove that if () holds for some m ≥ n + , then it also holds for m + . By induc-
tion, we conclude that () holds for all m ≥ n + .

Step . We claim that {xn} is a Cauchy sequence. As ∗ is a t-norm of H-type, for any
ε ∈ (, ) there exists η ∈ (, ) such that

if a ∈ ( – η, ], then ∗l a >  – ε for all l ∈N. ()

It follows from () that there exists n ∈ N such that M(xn, xn+, t – φ(r)) >  – η for all
n ≥ n. So, by (), we have

∗m–nM
(
xn, xn+, t – φ(r)

)
>  – ε ()

for all m > n ≥ n. By () and (), we get for each t >  and ε ∈ (, ), M(xn, xm, t) >  – ε for
all m > n ≥ n, which implies that {xn} is a Cauchy sequence. �
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Now, we state and prove some fixed point results for weakly compatible mappings in
partially ordered fuzzy metric spaces.

Theorem . Let (X, M,∗,�) be a complete poFMS such that ∗ is a t-norm of H-type.
Let T : X → X and G : X → X be two mappings such that T is a G-isotone mapping and
T(X) ⊆ G(X). Assume that there exists φ ∈ 
w such that, for all t >  and y, v ∈ X with
G(y) � G(v),

M
(
T(y), T(v),φ(t)

) ≥ M
(
G(y), G(v), t

)
. ()

Also suppose that either
(C) T and G are continuous and compatible and M(x, y, ·) : R+ → I is continuous or
(C) (X, τM,�) has the sequential monotone property and G(X) is closed.
If there exists y ∈ X such that G(y) � T(y) and limt→∞ M(G(y), T(y), t) = . Then T

and G have a coincidence point.

Proof Let y ∈ X such that G(y) � T(y) and limt→∞ M(G(y), T(y), t) = . Since T(X) ⊆
G(X), there exists y ∈ X such that G(y) = T(y). Recursively, we see that, for every m ∈N,
there exists ym+ ∈ X such that G(ym+) = T(ym). Set z = G(y) and zm+ = G(ym+) = T(ym)
for every m ∈ N.

Since G(y) � T(y), we suppose that G(y) � T(y), i.e., z � z (the case G(y)  T(y)
is treated similarly). Assume that zm– � zm for some m ∈ N, that is, G(ym–) � G(ym).
Since T is a G-isotone mapping, we get zm = T(ym–) � T(ym) = zm+. This actually means
that the sequence {zm} is non-decreasing. Using () and monotonicity of {zm}, we get

M
(
zn, zm,φ(t)

)
= M

(
T(yn–), T(ym–),φ(t)

)

≥ M
(
G(yn–), G(ym–), t

)

= M(zn–, zm–, t)

for all m, n ∈ N and t > . Obviously, the inequality () implies that φ(t) >  for all t > .
Indeed, if there exists some t >  such that φ(t) = . It follows from () that

 = M
(
T(y), T(y),φ(t)

) ≥ M
(
G(y), G(y), t

)
= ,

which is a contradiction. Since limt→∞ M(G(y), T(y), t) = , we have limt→∞ M(z, z,
t) = . So, by Lemma ., {zm} is a Cauchy sequence.

Now suppose that the condition (C) holds. Since (X, M,∗,�) is complete, there exists
ẑ ∈ X such that limm→∞ zm = ẑ, that is,

lim
m→∞ T(ym) = lim

m→∞ G(ym) = ẑ. ()

Since T and G are compatible, we have

lim
m→∞ M

(
G

(
G(ym+)

)
, T

(
G(ym)

)
, t

)
= lim

m→∞ M
(
G

(
T(ym)

)
, T

(
G(ym)

)
, t

)
=  ()
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for all t > . As G is continuous, we have

lim
m→∞ G

(
G(ym)

)
= G(ẑ). ()

Using Lemma ., we find that M is a continuous mapping on X × (,∞). By the continu-
ity of M and ()-(), we have  = limm→∞ M(G(G(ym+)), T(G(ym)), t) = M(G(ẑ), T(ẑ), t)
for all t > , which implies that G(ẑ) = T(ẑ) and ẑ is a coincidence point of T and G.

Now suppose that the condition (C) holds. Since (X, M,∗,�) is complete and G(X) is
closed, there exists z ∈ X such that limm→∞ T(ym) = limm→∞ G(ym) = G(z). Since (X, τM,�)
has the sequential monotone property, we have G(ym) � G(z) for all m ∈ N. Since φ ∈

w, for each t >  there exists r ≥ t such that φ(r) < t by Lemma .. So, by () and the
monotonicity of M(x, y, ·), we have

M
(
T(ym), T(z), t

) ≥ M
(
T(ym), T(z),φ(r)

) ≥ M
(
G(ym), G(z), r

) ≥ M
(
G(ym), G(z), t

)

for all t >  and m ∈ N. Letting m → ∞ in the above inequality, we get T(ym) → T(z) as
m → ∞. By the uniqueness of the limit, we conclude that G(z) = T(z) and z is a coincidence
point of T and G. �

Theorem . In addition to the hypotheses of Theorem ., let G be weakly compatible
with T if assumption (C) holds. Suppose that for all coincidence points y, v ∈ X of mappings
T and G, there exists u ∈ X such that

(C) G(u) is comparable to G(y) and G(v);
(C) limt→∞ M(G(u), G(y), t) = limt→∞ M(G(u), G(v), t) = .

Then T and G have a unique common fixed point.

Proof Put u = u and define a sequence {G(um)} by G(um+) = T(um) for m ∈ N. We may as-
sume that G(y) � G(u) (the case G(y)  G(u) is treated similarly). Since T is a G-isotone
mapping, we have G(y) = T(y) � T(u) = G(u). By induction we obtain G(y) � G(um) for
all m ∈N. Owing to limt→∞ M(G(u), G(y), t) = , for any ε ∈ (, ), there exists t >  such
that M(G(u), G(y), t) >  – ε. Since φ ∈ 
w, there exists t ≥ t such that φm(t) →  as
m → ∞. Thus, for each t > , there exists m ∈ N such that φm(t) < t for all m ≥ m. So,
by () and the monotonicity of M(x, y, ·), we get for all m ≥ m and t > ,

M
(
G(um), G(y), t

) ≥ M
(
G(um), G(y),φm(t)

)

= M
(
T(um–), T(y),φm(t)

)

≥ M
(
G(um–), G(y),φm–(t)

)

≥ · · ·
≥ M

(
G(u), G(y), t

)

≥ M
(
G(u), G(y), t

)

>  – ε.

Since ε, t >  are arbitrary, we deduce that M(G(um), G(y), t) →  as m → ∞. This shows
that limm→∞ G(um) = G(y). Similarly, we find that limm→∞ G(um) = G(v). The uniqueness
of the limit proves that G(y) = G(v).
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Denote w = T(y) = G(y). Since T and G are weakly compatible mappings, we have T(w) =
TG(y) = GT(y) = G(w). So, w is also a coincidence point of T and G. Therefore, G(w) =
G(y) = w and w is a common fixed point of T and G. In order to prove the uniqueness,
assume that w∗ is another common fixed point of T and G. Then we have w∗ = G(w∗) =
G(w) = w. This completes the proof. �

Example . Let (X,�) be the partially ordered set with X = [, ] and the natural order-
ing ≤ of the real numbers as the partial ordering �. Define M : X × X ×R

+ → I by

M(x, y, t) =

⎧
⎨

⎩

, if t = ,

e– |x–y|
t , if t > .

Then M(x, y, ·) : R+ → I is continuous. Let x ∗ y = min{x, y} for all x, y ∈ X. Then (X, M,∗)
is a complete FMS with M(x, y, t) →  as t → ∞, for all x, y ∈ X. Consider T , G : X → X
defined by T(x) = x

 + 
 and G(x) = x.

It is easy to verify the following statements.
(i) T(X) ⊆ G(X) and T is a G-isotone mapping.

(ii) The condition (C) holds.
(iii) There exists y =  such that G(y) =  ≤ 

 = T(y).
Let y, v ∈ X such that G(y) � G(v), that is, y ≤ v. Next, we show that the inequality () is

satisfied with φ(t) = 
 t, for all t > . If () does not hold, then there exists t >  such that

M
(

T(y), T(v),



t
)

< M
(
G(y), G(v), t

)
,

that is,

e–|y/–v/|/(t/) < e–|y–v|/t ,

that is,



∣
∣y – v∣∣ > |y – v|.

Since y, v ∈ [, ],

|y – v| <


∣
∣y – v∣∣ =



|y – v|(y + v) ≤ 


|y – v|,

which is impossible. Hence () holds.
By Theorems . and ., T and G have a unique common fixed point, which is z = .

In this example, computing according to z = G(y) and zm+ = G(ym+) = T(ym) for every
m ∈ N, we obtain {z = , z = 

 , z = 
 , z = 

 , . . .}. Thus the sequence {zn} is a non-
trivial sequence.

Example . Let X = {, ., ., ., ., } and define M : X × X ×R
+ → I as follows:

M(x, y, t) =

⎧
⎨

⎩

, if |x – y| < t,
t

|x–y|+t , if |x – y| ≥ t.
()
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As Gregori et al. have pointed out in [], any FMS(X, M) is equivalent to Menger space
in the sense that M(x, y, t) = Fx,y(t) for all x, y ∈ X and t ≥ . Thus, (X, M) is a FMS under
∗ = min (see Example in []).

Let τM be the discrete topology on X. Note that the metric space (X, d) is complete,
where d is defined by d(x, y) = |x – y|. Next, we claim that if {xn} is a Cauchy sequence
in (X, M,∗), then {xn} is also a Cauchy sequence in (X, d). Indeed, if {xn} is not a Cauchy
sequence in (X, d), then there exist ε >  and two sequences {ni} and {mi} such that mi >
ni ≥ i and d(xmi , xni ) ≥ ε for all i ∈N. Taking λ ∈ (, 

 ], it follows from () that

M(xmi , xni , ε) =
ε

ε + |xmi – xni |
≤ 


≤  – λ for all i ∈N,

which contradicts that {xn} is a Cauchy sequence in (X, M,∗). So, {xn} is also a Cauchy
sequence in (X, d). Since (X, d) is complete, there exists x ∈ X such that xn → x as n → ∞,
and so for any t >  there exists n ∈ N such that |xn – x| < t for all n ≥ n. Thus, for any
t >  and ε ∈ (, ), by (), we have M(xn, x, t) =  >  – ε for all n ≥ n, which implies that
(X, M,∗) is complete.

Endow X with the following partial order:

x, y ∈ X, x � y ⇔ x = y or (x, y) ∈ {
(, .), (, .)

}
.

Let φ : R+ →R
+ be defined by (). Consider T , G : X → X defined by

T(x) =

⎧
⎨

⎩

, if x ∈ {, ., ., ., },
., if x = .;

G(x) =

⎧
⎪⎪⎨

⎪⎪⎩

, if x ∈ {, .},
., if x = .,

., if x ∈ {., ., }.

It is not difficult to prove the following statements.
(i) T(X) ⊆ G(X).

(ii) The condition (C) holds (since τM is the discrete topology on X).
(iii) There exists y =  such that G(y) � T(y) and limt→∞ M(G(y), T(y), t) = .
(iv) All conditions of Theorem . hold. In fact, y =  and v = . are all coincidence

points of T and G. Since TG() = GT() and TG(.) = GT(.), by
Definition ., G is weakly compatible with T . In addition, there exists u = .
such that G(y) � G(u) and G(v) � G(u). It follows from () that (C) holds.

(v) T is a G-isotone mapping. Indeed, let y, v ∈ X such that G(y) � G(v).
(a) If G(y) = G(v) then y = v or y, v ∈ {, .} or y, v ∈ {., ., }. Thus,

T(y) = T(v).
(b) If (G(y), G(v)) = (, .), then y ∈ {, .} and v ∈ {., ., }. Thus,

T(y) = T(v).
(c) If (G(y), G(v)) = (, .), then y ∈ {, .} and v = .. Thus,

(T(y), T(v)) = (, .).
Therefore, T(y) � T(v).

Next, we shall prove that () holds. Let y, v ∈ X such that G(y) � G(v). It follows
from (a) and (b) that  = |T(y) – T(v)| < φ(t) for all t > . Thus, M(T(y), T(v),φ(t)) =
 ≥ M(G(y), G(v), t) for all t > , i.e., () holds. By (c), we have |T(y) – T(v)| = . and
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|G(y) – G(v)| = .. If φ(t) > ., by (), it is evident that () holds. Suppose that φ(t) ≤
.. From (), it is easy to see that φ(t) ≥ t

+t for all t ≥ . So, we have t ≤ 
 . Therefore,

|G(y) – G(v)| > t. By (), we have

M
(
T(y), T(v),φ(t)

)
=

φ(t)

 + φ(t)

≥
t

+t

 + t

+t
=

t
t + +t


≥ t

t + 


= M
(
G(y), G(v), t

)
,

i.e., () holds.
By Theorems . and ., T and G have a unique common fixed point, which is z = .

However, the totally ordered version of Theorems . and . cannot be applied to this
example (since () does not hold). In fact, if (G(y), G(v)) = (., .), then y = . and v ∈
{., ., }. Taking t = 

 , by (), we have φ(t) = 
 < 

 = |T(y) – T(v)|. By (), we have

M
(
T(y), T(v),φ(t)

)
=

φ(t)
|T(y) – T(v)| + φ(t)

=



<  = M
(
G(y), G(v), t

)
.

So, () does not hold.

If G is the identity mapping on X in Theorems . and ., then the following corollary
is obtained immediately.

Corollary . Let (X, M,∗,�) be a complete poFMS such that ∗ is a t-norm of H-type. Let
T : X → X be a non-decreasing mapping. Assume that there exists φ ∈ 
w such that, for all
t >  and y, v ∈ X with y � v,

M
(
T(y), T(v),φ(t)

) ≥ M(y, v, t).

Also suppose that either T and M(x, y, ·) : R+ → I are continuous or (X, τM,�) has
the sequential monotone property. If there exists y ∈ X, such that y � T(y) and
limt→∞ M(y, T(y), t) = , then T has a fixed point.

Furthermore, suppose that for all fixed points y, v ∈ X of T , there exists u ∈ X such that
u is comparable to y and v and limt→∞ M(u, y, t) = limt→∞ M(u, v, t) = . Then T has a
unique fixed point.

Remark . Corollary . can be considered as a partially ordered version of Theorem .
in [].

Example . Let (X, M,�,∗), T , φ be the same as in Example .. Using a similar argu-
ment to Example ., we deduce that the conditions of Corollary . are satisfied. So, T
has a unique fixed point, which is z = . However, Theorem . in [] cannot be applied
to this example because the condition ‘M(T(y), T(v),φ(t)) ≥ M(y, v, t) for all y, v ∈ X and
t > ’ does not hold. In fact, if (y, v) = (., .), then |T(y) – T(v)| = 

 . Taking t = 
 , by (),

we have φ(t) = 
 . Thus, by (), we have

M
(
T(y), T(v),φ(t)

)
=

φ(t)
|T(y) – T(v)| + φ(t)

=



<



= M(y, v, t).

Next, we give some basic concepts and results that we will need to obtain some coupled
and multidimensional fixed point results.
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Definition . Let F : Xn → X and g : X → X be two mappings. A point (x, x, . . . , xn) ∈
Xn is a common fixed point of F and g if F(xσi(), xσi(), . . . , xσi(n)) = gxi = xi for i ∈ �n.

Definition . Given n ≥ , the mappings F : Xn → X and g : X → X are weakly com-
patible (or the pair (F , g) is w-compatible) if

F(xσi(), xσi(), . . . , xσi(n)) = gxi, ∀i ∈ �n

⇒ gF(xσi(), xσi(), . . . , xσi(n)) = F(gxσi(), gxσi(), . . . , gxσi(n)), ∀i ∈ �n.

Lemma . Let (X, M,∗) be a FMS such that ∗ is a continuous t-norm. Let Mn : Xn ×
Xn ×R

+ → I be given by

Mn(A, B, t) = ∗n
i=M(ai, bi, t) ()

for all A = (a, a, . . . , an), B = (b, b, . . . , bn) ∈ Xn, and all t ≥ . Then the following proper-
ties hold:

(i) (Xn, Mn,∗) is also a FMS.
(ii) Let {Am = (a

m, a
m, . . . , an

m)} be a sequence on Xn and let A = (a, a, . . . , an) ∈ Xn.
Then {Am} → A if, and only if, {ai

m} → ai for all i ∈ {, , . . . , n}.
(iii) If (X, M,∗) is complete, then (Xn, Mn,∗) is complete.

Proof The proofs of (i) and (ii) in Lemma . are the same as Lemma  in []. Next, we
shall prove that (iii) holds. Suppose that {Ym} is a Cauchy sequence in (Xn, Mn,∗). Thus, for
any ε ∈ (, ) and t > , there exists n ∈N such that Mn(Yn, Ym, t) >  – ε for all n, m ≥ n.
By (), we have

min
≤i≤n

M
(
yi

n, yi
m, t

) ≥ ∗n
i=M

(
yi

n, yi
m, t

)
>  – ε for all n, m ≥ n.

Thus, for n, m ≥ n, we have M(yi
n, yi

m, t) > –ε for each i ∈ �n. Therefore, {yi
m} is a Cauchy

sequence in (X, M,∗) for each i ∈ �n. Since (X, M,∗) is complete, then {yi
m} converges to a

point yi of X for each i ∈ �n. Thus, {Ym} converges to a point Y of Xn. That is, (Xn, Mn,∗)
is complete. This completes the proof. �

The following multidimensional fixed point theorem is an immediate consequence of
Theorems . and ..

Theorem . Let (X, M,∗,�) be a complete poFMS with a continuous t-norm ∗ of H-
type. Let 
 = (σ,σ, . . . ,σn) be an n-tuple of mappings from �n into itself verifying σi ∈ �A,B

if i ∈ A and σi ∈ �
′
A,B if i ∈ B. Suppose that F : Xn → X and g : X → X are two mappings

such that F has the mixed g-monotone property on X and F(Xn) ⊆ g(X). Assume that there
exists φ ∈ 
w such that

M
(
F(x, x, . . . , xn), F(y, y, . . . , yn),φ(t)

) ≥ γ
(∗n

i=M(gxi, gyi, t)
)

()

for all t >  and all x, x, . . . , xn, y, y, . . . , yn ∈ X with gxi �i gyi for i ∈ �n, where γ :
[, ] → [, ] is a mapping such that ∗nγ (a) ≥ a for each a ∈ [, ]. Suppose that

γ
(∗n

i=M(gxσj(i), gyσj(i), t)
) ≥ γ

(∗n
i=M(gxi, gyi, t)

)
for j ∈ �n, ()
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for all x, x, . . . , xn, y, y, . . . , yn ∈ X with gxi �i gyi for i ∈ �n. Suppose that either
(C) F and g are continuous and 
-compatible and M(x, y, ·) : R+ → I is continuous, or
(C) (X, τM,�) has the sequential monotone property and g(X) is closed.

If there exist x
, x

, . . . , xn
 ∈ X satisfying

gxi
 �i F

(
xσi()

 , xσi()
 , . . . , xσi(n)


)

and

lim
t→∞ M

(
gxi

, F
(
xσi()

 , xσi()
 , . . . , xσi(n)


)
, t

)
= 

()

for i ∈ �n, then F and g have, at least, one ϒ-coincidence point.
Furthermore, assume that for all pairs of ϒ-coincidence points (x, x, . . . , xn), (y, y,

. . . , yn) ∈ Xn of F and g there exists (u, u, . . . , un) ∈ Xn such that
(C) (gu, gu, . . . , gun) is comparable to (gx, gx, . . . , gxn) and (gy, gy, . . . , gyn);
(C) limt→∞ M(gui, gxi, t) = limt→∞ M(gui, gyi, t) =  for i ∈ �n.

Also, assume that F is weakly compatible with g if assumption (C) holds. Then F and g
have a unique common fixed point.

Proof Since (X, M,∗,�) is a complete poFMS such that ∗ is a continuous t-norm of H-
type, so is (Xn, Mn,∗,�n) by Lemma .. Let T : Xn → Xn and G : Xn → Xn be two map-
pings defined by

T(Y ) =
(
F(yσ(), yσ(), . . . , yσ(n)), . . . , F(yσi(), yσi(), . . . , yσi(n)), . . . ,

F(yσn(), yσn(), . . . , yσn(n))
)

()

and

G(Y ) = (gy, gy, . . . , gyn) ()

for Y ∈ Xn. It follows from F(Xn) ⊆ g(X) that T(Xn) ⊆ G(Xn). By (), () and the conti-
nuity of ∗, there exists X such that G(X) �n T(X) and limt→∞ Mn(G(X), T(X), t) = .

Suppose that {Ym}m≥ ⊂ Xn such that {G(Ym)}m≥ is monotone and the following limit
exists: limm→∞ T(Ym) = limm→∞ G(Ym) ∈ Xn. From () and (), we see that, for se-
quences {y

m}m≥, {y
m}m≥, . . . , {yn

m}m≥ ⊂ X such that {gy
m}m≥, {gy

m}m≥, . . . , {gyn
m}m≥ are

monotone and the following limit exists: for all i ∈ �n, limm→∞ F(yσi()
m , yσi()

m , . . . , yσi(n)
m ) =

limm→∞ gyi
m ∈ X. Since F and g are 
-compatible, we have

lim
m→∞ Mn(GT(Ym), TG(Ym), t

)
= ∗n

i= lim
m→∞ M

(
gF

(
yσi()

m , yσi()
m , . . . , yσi(n)

m
)
,

F
(
gyσi()

m , gyσi()
m , . . . , gyσi(n)

m
)
, t

)
= .

Therefore, T and G are compatible.
Now, we show that T is a G-isotone mapping. Suppose that G(Y ) �n G(V ) for Y , V ∈ Xn.

By () and (), we have gyj � gvj when j ∈ A and gyj  gvj when j ∈ B. For each i ∈ A, we
have σi ∈ �A,B. So, for fixed i ∈ A, we have gyσi(j) � gvσi(j) when j ∈ A and gyσi(j)  gvσi(j)

when j ∈ B. Thus, by the mixed g-monotone property of F , for fixed i ∈ A, we have

F(yσi(), . . . , yσi(j–), yσi(j), yσi(j+), . . . , yσi(n))

� F(yσi(), . . . , yσi(j–), vσi(j), yσi(j+), . . . , yσi(n)) ()
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when j ∈ A. Similarly, if j ∈ B, then inequality () holds for fixed i ∈ A. So, for fixed i ∈ A,
inequality () holds for all j. From this, we have

F(yσi(), yσi(), . . . , yσi(n)) � F(vσi(), yσi(), yσi(), . . . , yσi(n))

� F(vσi(), vσi(), yσi(), . . . , yσi(n))

� . . .

� F(vσi(), vσi(), . . . , vσi(n)) ()

for i ∈ A. Similarly, we have

F(yσi(), yσi(), . . . , yσi(n))  F(vσi(), vσi(), . . . , vσi(n)) ()

for i ∈ B. Thus, by (), (), and (), we deduce that T is a G-isotone mapping.
The conditions (C) and (C) imply that (C) and (C) hold w.r.t. (Xn, Mn,∗,�n). It

is easy to deduce that T and G are weakly compatible if assumption (C) holds w.r.t.
(Xn, Mn,∗,�n). If F and g are continuous, then T and G are continuous.

Given G(Y ) �n G(V ), by Proposition ., (gyσi(), gyσi(), . . . , gyσi(n)) and (gvσi(), gvσi(), . . . ,
gvσi(n)) are comparable by �n. Therefore, () and () can be applied to these points, and
it follows that for all t > ,

Mn(T(Y ), T(V ),φ(t)
)

= ∗n
i=M

(
F(yσi(), yσi(), . . . , yσi(n)), F(vσi(), vσi(), . . . , vσi(n)),φ(t)

)

≥ ∗n
i=γ

(∗n
j=M(gyσi(j), gvσi(j), t)

)

≥ ∗n
i=γ

(∗n
j=M(gyj, gvj, t)

)

= ∗n
i=γ

(
Mn(G(Y ), G(V ), t

))

= ∗nγ
(
Mn(G(Y ), G(V ), t

))

≥ Mn(G(Y ), G(V ), t
)
. ()

Next we shall prove that the condition (C) of Theorem . holds w.r.t. (Xn, Mn,∗,�n).
Since g(X) is closed, so is G(X). Suppose that {Zm} is a non-decreasing sequence in Xn such
that Zm → Z (m → ∞). Using Lemma ., we have zi

m → zi (m → ∞) for all i ∈ �n. Since
Zm �n Zm+ for all m ∈ N, then (zi

m)m∈N is a non-decreasing sequence when i ∈ A and
(zi

m)m∈N is a non-increasing sequence when i ∈ B. If i ∈ A, as (X, τM,�) has the sequential
monotone property, then we have zi

m � zi for all m ∈ N. Similarly, if i ∈ B, then zi
m  zi

for all m ∈N. That is, Zm �n Z for every m ∈N. The other case is treated similarly.
Therefore, all conditions of Theorems . and . hold w.r.t. (Xn, Mn,∗,�n). Theo-

rem . implies that T and G have a coincidence point, which is a ϒ-coincidence point
of F and g . Moreover, it follows from Theorem . that T and G have a unique common
fixed point, which is a unique common fixed point of F and g . �

Remark . Theorem . improves Theorems  and  in []:
(i) We use φ ∈ 
w, and 
w is a class of more general functions than φ(t) = kt, k ∈ (, ).

(ii) The continuity of g and 
-compatible of F and g are omitted if assumption (C)
holds. The continuity of γ is not necessary.
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(iii) The condition limt→∞ M(x, y, t) =  for all x, y ∈ X is weakened by conditions ()
and (C).

(iv) Our result is valid for fuzzy metric spaces in the sense of Kramosil and Michálek, so
it is also valid for fuzzy metric spaces in the sense of George and Veeramani. The
completeness is a weaker kind of completeness in Theorem . (see []).

Taking n = , A = {}, and B = {} in Theorem ., we deduce the following coupled
fixed point theorem improving Theorem . in [].

Corollary . Let (X, M,∗,�) be a complete poFMS such that ∗ is a continuous t-norm
of H-type. Let F : X → X and g : X → X be two mappings such that F has the mixed
g-monotone property on X and F(X) ⊆ g(X). Assume that there exists φ ∈ 
w such that

M
(
F(x, x), F(y, y),φ(t)

) ≥ γ
(
M

(
g(x), g(y), t

) ∗ M
(
g(x), g(y), t

))

for all t >  and x, x, y, y ∈ X with g(x) � g(y) and g(x)  g(y), where γ : [, ] →
[, ] is a mapping such that γ (a) ∗ γ (a) ≥ a for each a ∈ [, ]. Suppose that either F
and g are continuous and compatible and M(x, y, ·) : R+ → I is continuous or condi-
tion (C) holds. If there are x

, x
 ∈ X such that g(x

) � F(x
, x

), g(x
)  F(x

, x
) and

limt→∞ M(g(x
), F(x

, x
), t) = limt→∞ M(g(x

), F(x
, x

), t) = , then F and g have a cou-
pled coincidence point in X.

Furthermore, assume that for all pairs of coupled coincidence points (x, x), (y, y) ∈ X

of F and g there exists (u, u) ∈ X such that (gu, gu) is comparable to (gx, gx) and
(gy, gy), limt→∞ M(gui, gxi, t) = limt→∞ M(gui, gyi, t) =  for i ∈ �. Also, assume that F
are weakly compatible with g if assumption (C) holds. Then F and g have a unique com-
mon coupled fixed point.

Remark . Corollary . is better than Theorem . in [] in two senses.
(i) In Corollary ., we use φ ∈ 
w, and 
w is a class of more general functions than 


in Theorem . of [].
(ii) Corollary . is valid for partially ordered fuzzy metric spaces in the sense of

Kramosil and Michálek, so it is also valid for fuzzy metric spaces in the sense of
George and Veeramani.
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