
Fathollahi et al. Fixed Point Theory and Applications  (2015) 2015:234 
DOI 10.1186/s13663-015-0490-3

R E S E A R C H Open Access

A comparative study on the convergence
rate of some iteration methods involving
contractive mappings
Shahin Fathollahi1, Adrian Ghiura2, Mihai Postolache2* and Shahram Rezapour1

*Correspondence:
emscolar@yahoo.com
2Department of Mathematics and
Informatics, University Politehnica of
Bucharest, Bucharest, 060042,
Romania
Full list of author information is
available at the end of the article

Abstract
We compare the rate of convergence for some iteration methods for contractions. We
conclude that the coefficients involved in these methods have an important role to
play in determining the speed of the convergence. By using Matlab software, we
provide numerical examples to illustrate the results. Also, we compare mathematical
and computer-calculating insights in the examples to explain the reason of the
existence of the old difference between the points of view.
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1 Introduction
Iteration schemes for numerical reckoning fixed points of various classes of nonlinear op-
erators are available in the literature. The class of contractive mappings via iteration meth-
ods is extensively studied in this regard. In , Plunkett published a paper on the rate of
convergence for relaxation methods []. In , Bowden presented a talk in a symposium
on digital computing machines entitled ‘Faster than thought’ []. Later, this basic idea has
been used in engineering, statistics, numerical analysis, approximation theory, and physics
for many years (see, for example, [–] and []). In , Argyros published a paper about
iterations converging faster than Newton’s method to the solutions of nonlinear equations
in Banach spaces [, ]. In , Lucet presented a method faster than the fast Legen-
dre transform []. In , Berinde used the notion of rate of convergence for iterations
method and showed that the Picard iteration converges faster than the Mann iteration
for a class of quasi-contractive operators []. Later, he provided some results in this area
[, ]. In , Babu and Vara Prasad showed that the Mann iteration converges faster
than the Ishikawa iteration for the class of Zamfirescu operators []. In , Popescu
showed that the Picard iteration converges faster than the Mann iteration for the class of
quasi-contractive operators []. Recently, there have been published some papers about
introducing some new iterations and comparing of the rates of convergence for some it-
eration methods (see, for example, [–] and []).

In this paper, we compare the rates of convergence of some iteration methods for con-
tractions and show that the involved coefficients in such methods have an important role
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to play in determining the rate of convergence. During the preparation of this work, we
found that the efficiency of coefficients had been considered in [] and []. But we ob-
tained our results independently, before reading these works, and one can see it by com-
paring our results and those ones.

2 Preliminaries
As we know, the Picard iteration has been extensively used in many works from different
points of view. Let (X, d) be a metric space, x ∈ X, and T : X → X a selfmap. The Picard
iteration is defined by

xn+ = Txn

for all n ≥ . Let {αn}n≥, {βn}n≥, and {γn}n≥ be sequences in [, ]. Then the Mann iter-
ation method is defined by

xn+ = αnxn + ( – αn)Txn (.)

for all n ≥  (for more information, see []). Also, the Ishikawa iteration method is de-
fined by

xn+ = ( – αn)xn + αnTyn,

yn = ( – βn)xn + βnTxn

(.)

for all n ≥  (for more information, see []). The Noor iteration method is defined
by

xn+ = ( – αn)xn + αnTyn,

yn = ( – βn)xn + βnTzn, (.)

zn = ( – γn)xn + γnTxn

for all n ≥  (for more information, see []). In , Agarwal et al. defined their new
iteration methods by

xn+ = ( – αn)Txn + αnTyn,

yn = ( – βn)xn + βnTxn

(.)

for all n ≥  (for more information, see []). In , Abbas et al. defined their new
iteration methods by

xn+ = ( – αn)Tyn + αnTzn,

yn = ( – βn)Txn + βnTzn, (.)

zn = ( – γn)xn + γnTxn
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for all n ≥  (for more information, see []). In , Thakur et al. defined their new
iteration methods by

xn+ = ( – αn)Txn + αnTyn,

yn = ( – βn)zn + βnTzn, (.)

zn = ( – γn)xn + γnTxn

for all n ≥  (for more information, see []). Also, the Picard S-iteration was defined
by

xn+ = Tyn,

yn = ( – βn)Txn + βnTzn, (.)

zn = ( – γn)xn + γnTxn

for all n ≥  (for more information, see [] and []).

3 Self-comparing of iteration methods
Now, we are ready to provide our main results for contractive maps. In this respect, we
assume that (X,‖·‖) is a normed space, x ∈ X, T : X → X is a selfmap and {αn}n≥, {βn}n≥

and {γn}n≥ are sequences in (, ).
The Mann iteration is given by xn+ = ( – αn)xn + αnTxn for all n ≥ .
Note that we can rewrite it as xn+ = αnxn + ( – αn)Txn for all n ≥ .
We call these cases the first and second forms of the Mann iteration method.
In the next result we show that choosing a type of sequence {αn}n≥ in the Mann iteration

has a notable role to play in the rate of convergence of the sequence {xn}n≥.
Let {un}n≥ and {vn}n≥ be two fixed point iteration procedures that converge to the

same fixed point p and ‖un – p‖ ≤ an and ‖vn – p‖ ≤ bn for all n ≥ . If the sequences
{an}n≥ and {bn}n≥ converge to a and b, respectively, and limn→∞ ‖an–a‖

‖bn–b‖ = , then we say
that {un}n≥ converges faster than {vn}n≥ to p (see [] and []).

Proposition . Let C be a nonempty, closed, and convex subset of a Banach space X,
x ∈ C, T : C → C a contraction with constant k ∈ (, ) and p a fixed point of T . Consider
the first case for Mann iteration. If the coefficients of Txn are greater than the coefficients
of xn, that is,  – αn < αn for all n ≥  or equivalently {αn}n≥ is a sequence in ( 

 , ), then
the Mann iteration converges faster than the Mann iteration which the coefficients of xn are
greater than the coefficients of Txn.

Proof Let {xn} be the sequence in the Mann iteration which the coefficients of Txn are
greater than the coefficients of xn, that is,

xn+ = ( – αn)xn + αnTxn (.)

for all n. In this case, we have

‖xn+ – p‖ =
∥
∥( – αn)xn + αnTxn – p

∥
∥ ≤ ( – αn)‖xn – p‖ + αn‖Txn – p‖

≤ (

 – αn( – k)
)‖xn – p‖
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for all n. Since αn ∈ ( 
 , ),  – αn( – k) <  – 

 ( – k). Put an = ( – 
 ( – k))n‖x – p‖ for

all n. Now, let {xn} be the sequence in the Mann iteration of which the coefficients of xn

are greater than the coefficients of Txn. In this case, we have

‖xn+ – p‖ =
∥
∥αnxn + ( – αn)Txn – p

∥
∥ ≤ αn‖xn – p‖ + ( – αn)‖Txn – p‖

≤ (

 – ( – αn)( – k)
)‖xn – p‖

for all n. Since  – αn < αn for all n ≥ , we get  – ( – αn)( – k) <  for all n ≥ . Put bn =
‖x – p‖ for all n. Note that lim an

bn
= lim

(– 
 (–k))n‖x–p‖

‖x–p‖ = . This completes the proof. �

Note that we can use  – αn < αn, for n large enough, instead of the condition  – αn < αn,
for all n ≥ . One can use similar conditions instead of the conditions which we will use
in our results.

As we know, we can consider four cases for writing the Ishikawa iteration method. In
the next result, we indicate each case by different enumeration. Similar to the last result,
we want to compare the Ishikawa iteration method with itself in the four possible cases.
Again, we show that the coefficient sequences {αn}n≥ and {βn}n≥ have effective roles to
play in the rate of convergence of the sequence {xn}n≥ in the Ishikawa iteration method.

Proposition . Let C be a nonempty, closed, and convex subset of a Banach space X,
x ∈ C, T : C → C a contraction with constant k ∈ (, ), and p a fixed point of T . Consider
the following cases of the Ishikawa iteration method:

{

xn+ = ( – αn)xn + αnTyn,
yn = ( – βn)xn + βnTxn,

(.)

{

xn+ = αnxn + ( – αn)Tyn,
yn = βnxn + ( – βn)Txn,

(.)

{

xn+ = αnxn + ( – αn)Tyn,
yn = ( – βn)xn + βnTxn,

(.)

and
{

xn+ = ( – αn)xn + αnTyn,
yn = βnxn + ( – βn)Txn

(.)

for all n ≥ . If  – αn < αn and  – βn < βn for all n ≥ , then the case (.) converges faster
than the others. In fact, the Ishikawa iteration method is faster whenever the coefficients of
Tyn and Txn simultaneously are greater than the related coefficients of xn for all n ≥ .

Proof Let {xn}n≥ be the sequence in the case (.). Then we have

‖yn – p‖ =
∥
∥( – βn)xn + βnTxn – p

∥
∥

≤ ( – βn)‖xn – p‖ + βn‖Txn – p‖
≤ (

( – βn) + βnk
)‖xn – p‖
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and

‖xn+ – p‖ =
∥
∥( – αn)xn + αnTyn – p

∥
∥

≤ ( – αn)‖xn – p‖ + αn‖Tyn – p‖
≤ ( – αn)‖xn – p‖ + kαn‖yn – p‖
≤ (

 – αn + kαn
[

( – βn) + βnk
])‖xn – p‖

≤ (

 – αn + αnk – αnβnk + αnβnk)‖xn – p‖
≤ (

 – αn( – k) – αnβnk( – k)
)‖xn – p‖

for all n ≥ . Since αn,βn ∈ ( 
 , ),  – αn( – k) – αnβnk( – k) <  – 

 ( – k) – 
 k( – k) for

all n ≥ . Put an = ( – 
 ( – k) – 

 k( – k))n‖x – p‖ for all n ≥ . If {xn}n≥ is the sequence
in the case (.), then we get

‖yn – p‖ =
∥
∥βnxn + ( – βn)Txn – p

∥
∥

≤ βn‖xn – p‖ + ( – βn)‖Txn – p‖
≤ (

 – ( – βn)( – k)
)‖xn – p‖

and

‖xn+ – p‖ =
∥
∥αnxn + ( – αn)Tyn – p

∥
∥

≤ αn‖xn – p‖ + ( – αn)‖Tyn – p‖
≤ αn‖xn – p‖ + k( – αn)‖yn – p‖
≤ (

αn + k( – αn)
(

 – ( – βn)( – k)
))‖xn – p‖

=
(

αn + ( – αn)k – k( – αn)( – βn)( – k)
)‖xn – p‖

=
(

 – ( – αn)( – k) – ( – αn)( – βn)k( – k)
)‖xn – p‖

for all n ≥ . Since αn,βn ∈ ( 
 , ),  – ( – αn)( – k) – ( – αn)( – βn)( – k) <  for all n ≥ .

Put bn = ‖x – p‖ for all n ≥ . Since

 –



( – k) –



k(k – ) <  +



k( – k),

we get lim an
bn

= lim
(– 

 (–k)– 
 k(–k))n‖x–p‖

‖x–p‖ =  and so the iteration (.) converges faster
than the case (.). Now, let {xn}n≥ be the sequence in the case (.). Then

‖yn – p‖ =
∥
∥βxn + ( – βn)Txn – p

∥
∥

≤ βn‖xn – p‖ + ( – βn)‖Txn – p‖
≤ (

βn + k( – βn)
)‖xn – p‖

=
(

 – ( – βn)( – k)
)‖xn – p‖
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and

‖xn+ – p‖ =
∥
∥( – αn)xn + αnTyn – p

∥
∥

≤ ( – αn)‖xn – p‖ + αn‖Tyn – p‖
≤ (

 – αn + kαn
[(

 – ( – βn)( – k)
)])‖xn – p‖

=
(

 – αn + kαn – αn( – βn)k( – k)
)‖xn – p‖

=
(

 – αn( – k) – αn( – βn)k( – k)
)‖xn – p‖

for all n ≥ . Since αn,βn ∈ ( 
 , ) for all n ≥ , –( – k) < –αn( – k) < – 

 ( – k) and –
 k( –

k) < –αn( – βn)k( – k) <  for all n. Hence,

 – αn( – k) – αn( – βn)k( – k) <  –



( – k)

for all n ≥ . Put cn = ( – 
 ( – k))n‖x – p‖ for all n ≥ . Thus, we obtain

lim
an

cn
= lim

( – 
 ( – k) – 

 k( – k))n‖x – p‖
( – 

 ( – k))n‖x – p‖ = 

and so the iteration (.) converges faster than the case (.). Now, let {xn}n≥ be the se-
quence in the case (.). Then we have

‖yn – p‖ =
∥
∥( – β)xn + βnTxn – p

∥
∥

≤ ( – βn)‖xn – p‖ + βn‖Txn – p‖
≤ (

 – βn( – k)
)‖xn – p‖

and

‖xn+ – p‖ =
∥
∥αnxn + ( – αn)Tyn

∥
∥

≤ αn‖xn – p‖ + ( – αn)‖Tyn – p‖
≤ αn‖xn – p‖ + k( – αn)‖yn – p‖
≤ (

αn + k( – αn)
[

 – βn( – k)
])‖xn – p‖

≤ (

αn + k( – αn) – ( – αn)βnk( – k)
)‖xn – p‖

≤ (

 – ( – αn) + k( – αn) – ( – αn)βnk( – k)
)‖xn – p‖

≤ (

 – ( – αn)( – k) – ( – αn)βnk( – k)
)‖xn – p‖

for all n ≥ . Since αn,βn ∈ ( 
 , ) for all n, –( – k) < –αn( – k) < – 

 ( – k), and – 
 k( –

k) < –( – αn)βnk( – k) <  and so

 – αn( – k) – ( – αn)βnk( – k) <  –



( – k)
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for all n ≥ . Put dn = ( – 
 ( – k))n‖x – p‖ for all n ≥ . Then we have

lim
an

dn
= lim

( – 
 ( – k) – 

 k( – k))n‖x – p‖
( – 

 ( – k))n‖x – p‖ = 

and so the iteration (.) converges faster than the case (.). �

By using a similar condition, one can show that the iteration (.) is faster than the
case (.).

Now consider eight cases for writing the Noor iteration method. By using a condition,
we show that the coefficient sequences {αn}n≥, {βn}n≥, and {γn}n≥ have effective roles
to play in the rate of convergence of the sequence {xn}n≥ in the Noor iteration method.
We enumerate the cases of the Noor iteration method during the proof of our next re-
sult.

Theorem . Let C be a nonempty, closed, and convex subset of a Banach space X, x ∈ C,
T : C → C a contraction with constant k ∈ (, ) and p a fixed point of T . Consider the case
(.) of the Noor iteration method

⎧

⎪⎨

⎪⎩

xn+ = ( – αn)xn + αnTyn,
yn = ( – βn)xn + βnTzn,
zn = ( – γn)xn + γnTxn

for all n ≥ . If  – αn < αn,  – βn < βn, and  – γn < γn for all n ≥ , then the iteration (.)
is faster than the other possible cases.

Proof First, we compare the case (.) with the following Noor iteration case:

⎧

⎪⎨

⎪⎩

un+ = ( – αn)un + αnTvn,
vn = ( – βn)un + βnTwn,
wn = γnun + ( – γn)Tun

(.)

for all n ≥ . Note that

‖zn – p‖ =
∥
∥( – γn)xn + γnTxn – p

∥
∥

≤ ( – γn)‖xn – p‖ + kγn‖xn – p‖
=

(

 – ( – k)γn
)‖xn – p‖

and

‖yn – p‖ =
∥
∥( – βn)xn + βnTzn – p

∥
∥

≤ ( – βn)‖xn – p‖ + kβn‖zn – p‖
≤ ( – βn) + kβn

((

 – ( – k)γn
))‖xn – p‖

≤ [

 – βn( – k) – βnγnk( – k)
]‖xn – p‖
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for all n ≥ . Also, we have

‖xn+ – p‖ =
∥
∥( – αn)xn + αnTyn – p

∥
∥

≤ ( – αn)‖xn – p‖ + kαn‖yn – p‖
≤ ( – αn)‖xn – p‖ + kαn

[

 – βn( – k) – βnγnk( – k)
]‖xn – p‖

≤ (

 – αn + kαn
(

 – βn( – k) – βnγnk( – k)
))‖xn – p‖

≤ (

 – αn + kαn – k( – k)βnαn – αnβnγnk( – k)
)‖xn – p‖

≤ (

 – ( – k)αn – k( – k)βnαn – αnβnγnk( – k)
)‖xn – p‖

for all n ≥ . Since αn,βn,γn ∈ ( 
 , ) for all n, –( – k) < –αn( – k) < – 

 ( – k), –k( – k) <
–αnβnk( – k) < – 

 k( – k), and

–k( – k) < –αnβnγnk( – k) < –



k( – k)

for all n. This implies that

 – ( – k)αn – k( – k)βnαn – αnβnγnk( – k) <  –



( – k) –



k( – k) –



k( – k)

for all n. Put an = ( – 
 ( – k) – 

 k( – k))n‖x – p‖ for all n ≥ . Now for the sequences
{un}n≥ with u = x and {vn}n≥ in (.), we have

‖wn – p‖ =
∥
∥γnun + ( – γn)Tun – p

∥
∥

≤ γn‖un – p‖ + k( – γn)‖un – p‖
=

(

 – ( – γn)( – k)
)‖un – p‖

and

‖vn – p‖ =
∥
∥( – βn)un + βnTwn – p

∥
∥

≤ ( – βn)‖un – p‖ + kβn‖wn – p‖
≤ ( – βn) + kβn

(

 – ( – γn)( – k)
)‖un – p‖

≤ (

 – βn + kβn – βn( – γn)k( – k)
)‖un – p‖

≤ (

 – βn( – k) – βn( – γn)k( – k)
)‖un – p‖

for all n ≥ . Hence,

‖un+ – p‖ =
∥
∥( – αn)un + αnTvn – p

∥
∥

≤ ( – αn)‖un – p‖ + kαn‖vn – p‖
≤ ( – αn)‖un – p‖ + kαn

(

 – βn( – k) – βn( – γn)k( – k)
)‖un – p‖

≤ (

( – αn) + kαn – αnβnk( – k) – αβn( – γn)K( – k)
)‖un – p‖

≤ (

 – αn( – k) – αnβnk( – k) – αβn( – γn)K( – k)
)‖un – p‖
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for all n. Since αn,βn,γn ∈ ( 
 , ) for all n, –k( – k) < –αnβnk( – k) < – 

 k( – k) and 
 k( –

k) < –αnβn( – γn)k( – k) <  for all n. Hence,

 – αn( – k) – αnβnk( – k) – αβn( – γn)k( – k) <  –



( – k) –



k( – k)

for all n. Put bn = ( – 
 ( – k) – 

 k( – k))n‖u – p‖ for all n ≥ . Then we have

lim
n→∞

an

bn
=

( – 
 ( – k) – 

 k( – k) – 
 k( – k))n‖x – p‖

( – 
 ( – k) – 

 k( – k))n‖u – p‖ = .

Thus, {xn}n≥ converges faster than the sequence {un}n≥. Now, we compare the case (.)
with the following Noor iteration case:

⎧

⎪⎨

⎪⎩

un+ = ( – αn)un + αnTvn,
vn = βnun + ( – βn)Twn,
wn = ( – γn)un + γnTun

(.)

for all n ≥ . Note that

‖wn – p‖ =
∥
∥( – γn)un + γnTun – p

∥
∥

≤ ( – γn)‖un – p‖ + kγn‖un – p‖
=

(

 – ( – k)γn
)‖un – p‖

and

‖vn – p‖ =
∥
∥βnun + ( – βn)Twn – p

∥
∥

≤ βn‖un – p‖ + k( – βn)‖wn – p‖
≤ (

βn + k( – βn) – βnγnk( – k)
)‖un – p‖

≤ (

 – ( – k)( – βn) – βnγnk( – k)
)‖un – p‖

for all n ≥ . Hence,

‖un+ – p‖ =
∥
∥( – αn)un + αnTvn – p

∥
∥

≤ ( – αn)‖un – p‖ + kαn‖wn – p‖
≤ ( – αn)‖un – p‖ + kαn

(

 – ( – k)( – βn) – βnγnk( – k)
)‖un – p‖

≤ (

( – αn) + kαn – k( – k)αn( – βn) – αnβnγnk( – k)
)‖un – p‖

≤ (

 – ( – k)αn – αn( – βn)k( – k) – αnβnγnk( – k)
)‖un – p‖

for all n ≥ . Since αn,βn,γn ∈ ( 
 , ) for all n, – 

 k( – k) < –αn( – βn)k( – k) < , and
–k( – k) < –αnβn( – γn)k( – k) < – 

 k( – k) and so

 – ( – k)αn – αn( – βn)k( – k) – αnβnγnk( – k) <  –



( – k) –



k( – k)
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for all n. Put cn = ( – 
 ( – k) – 

 k( – k))n‖u – p‖ for all n ≥ . Then we have

lim
n→∞

an

cn
=

( – 
 ( – k) – 

 k( – k) – 
 k( – k))n‖x – p‖

( – 
 ( – k) – 

 k( – k))n‖u – p‖ = .

Thus, {xn}n≥ converges faster than the sequence {un}n≥. Now, we compare the case (.)
with the following Noor iteration case:

⎧

⎪⎨

⎪⎩

un+ = ( – αn)un + αnTvn,
vn = βnun + ( – βn)Twn,
wn = γnun + ( – γn)Tun

(.)

for all n ≥ . Note that

‖wn – p‖ =
∥
∥γnun + ( – γn)Tun – p

∥
∥

≤ γn‖un – p‖ + k( – γn)‖un – p‖
=

(

 – ( – γn)( – k)
)‖un – p‖

and

‖vn – p‖ =
∥
∥( – βn)un + βnTwn – p

∥
∥

≤ ( – βn)‖un – p‖ + kβn‖wn – p‖
≤ (

 – βn + kβn
(

 – ( – γn)( – k)
))‖un – p‖

≤ (

 – βn + kβn – βn( – γn)k( – k)
)‖un – p‖

≤ (

 – βn( – k) – βn( – γn)k( – k)
)‖un – p‖

and so

‖un+ – p‖ =
∥
∥( – αn)un + αnTvn – p

∥
∥

≤ ( – αn)‖un – p‖ + kαn‖wn – p‖
≤ ( – αn)‖un – p‖ + kαn

(

 – βn( – k) – βn( – γn)k( – k)
)‖un – p‖

≤ (

 – αn + kαn – αnβnk( – k) – αnβn( – γn)k( – k)
)‖un – p‖

≤ (

 – ( – k)αn – αnβnk( – k) – αnβn( – γn)k( – k)
)‖un – p‖

for all n. Since αn,βn,γn ∈ ( 
 , ) for all n, –k( – k) < –αnβnk( – k) < – 

 k( – k), and
– 

 k( – k) < –αnβn( – γn)k( – k) <  for all n. This implies that

 – ( – k)αn – αnβnk( – k) – αnβn( – γn)k( – k) <  –



( – k) –



k( – k)

for all n. Put dn = ( – 
 ( – k) – 

 k( – k))n‖u – p‖ for all n ≥ . Then we get

lim
n→∞

an

dn
=

( – 
 ( – k) – 

 k( – k) – 
 k( – k))n‖x – p‖

( – 
 ( – k) – 

 k( – k))n‖u – p‖ = 
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and so the sequence {xn}n≥ converges faster than the sequence {un}n≥. By using similar
proofs, one can show that the case (.) is faster than the following cases of the Noor
iteration method:

⎧

⎪⎨

⎪⎩

un+ = αnun + ( – αn)Tvn,
vn = ( – βn)un + βnTwn,
wn = ( – γn)un + γnTun,

(.)

⎧

⎪⎨

⎪⎩

un+ = αnun + ( – αn)Tvn,
vn = ( – βn)un + βnTwn,
wn = γnun + ( – γn)Tun,

(.)

⎧

⎪⎨

⎪⎩

un+ = αnun + ( – αn)Tvn,
vn = βnun + ( – βn)Twn,
wn = ( – γn)un + γnTun,

(.)

and

⎧

⎪⎨

⎪⎩

un+ = αnun + ( – αn)Tvn,
vn = βnun + ( – βn)Twn,
wn = γnun + ( – γn)Tun

(.)

for all n ≥ . This completes the proof. �

By using similar conditions, one can show that the case (.) converges faster than (.),
(.) converges faster than (.), (.) converges faster than (.) and (.) converges
faster than (.).

As we know, the Agarwal iteration method could be written in the following four cases:

{

xn+ = ( – αn)Txn + αnTyn,
yn = ( – βn)xn + βnTxn,

(.)

{

xn+ = αnTxn + ( – αn)Tyn,
yn = βnxn + ( – βn)Txn,

(.)

{

xn+ = αnTxn + ( – αn)Tyn,
yn = ( – βn)xn + βnTxn,

(.)

and
{

xn+ = ( – αn)Txn + αnTyn,
yn = βnxn + ( – βn)Txn

(.)

for all n ≥ . One can easily show that the case (.) converges faster than the other ones
for contractive maps. We record it as the next lemma.

Lemma . Let C be a nonempty, closed, and convex subset of a Banach space X, x ∈ C,
T : C → C a contraction with constant k ∈ (, ) and p a fixed point of T . If  – αn < αn and
 – βn < βn for all n ≥ , then the case (.) converges faster than (.), (.), and (.).
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Also by using a similar condition, one can show that the case (.) converges faster
than (.). Similar to Theorem ., we can prove that for contractive maps one case
in the Abbas iteration method converges faster than the other possible cases whenever
the elements of the sequences {αn}n≥, {βn}n≥, and {γn}n≥ are in ( 

 , ) for sufficiently
large n. Also, one can show that for contractive maps the case (.) of the Thakur-Thakur-
Postolache iteration method converges faster than the other possible cases whenever el-
ements of the sequences {αn}n≥, {βn}n≥, and {γn}n≥ are in ( 

 , ) for sufficiently large n.
We record these results as follows.

Lemma . Let C be a nonempty, closed, and convex subset of a Banach space X, u ∈ C,
T : C → C a contraction with constant k ∈ (, ), and p a fixed point of T . Consider the
following case in the Abbas iteration method:

⎧

⎪⎨

⎪⎩

un+ = αnTvn + ( – αn)Twn,
vn = ( – βn)Tun + βnTwn,
wn = ( – γn)un + γnTun

(.)

for all n. If  –αn < αn,  –βn < βn, and  –γn < γn for sufficiently large n, then the case (.)
converges faster than the other possible cases.

Also by using similar conditions in the Abbas iteration method, one can show that the
cases

⎧

⎪⎨

⎪⎩

un+ = αnTvn + ( – αn)Twn,
vn = βnTun + ( – βn)Twn,
wn = ( – γn)un + γnTun

(.)

and
⎧

⎪⎨

⎪⎩

un+ = αnTvn + ( – αn)Twn,
vn = ( – βn)Tun + βnTwn,
wn = γnun + ( – γn)Tun

(.)

converge faster than the case
⎧

⎪⎨

⎪⎩

un+ = αnTvn + ( – αn)Twn,
vn = βnTun + ( – βn)Twn,
wn = γnun + ( – γn)Tun.

(.)

Also the case
⎧

⎪⎨

⎪⎩

un+ = ( – αn)Tvn + αnTwn,
vn = ( – βn)Tun + βnTwn,
wn = ( – γn)un + γnTun

(.)

converges faster than the cases
⎧

⎪⎨

⎪⎩

un+ = ( – αn)Tvn + αnTwn,
vn = βnTun + ( – βn)Twn,
wn = ( – γn)un + γnTun

(.)
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and

⎧

⎪⎨

⎪⎩

un+ = ( – αn)Tvn + αnTwn,
vn = ( – βn)Tun + βnTwn,
wn = γnun + ( – γn)Tun,

(.)

and

⎧

⎪⎨

⎪⎩

un+ = ( – αn)Tvn + αnTwn,
vn = βnTun + ( – βn)Twn,
wn = γnun + ( – γn)Tun.

(.)

Lemma . Let C be a nonempty, closed, and convex subset of a Banach space X, u ∈ C,
T : C → C a contraction with constant k ∈ (, ) and p a fixed point of T . If  – αn < αn,
 –βn < βn, and  –γn < γn for sufficiently large n, then the case (.) in the Thakur-Thakur-
Postolache iteration method converges faster than the other possible cases.

Also by using similar conditions, one can show that the cases

⎧

⎪⎨

⎪⎩

un+ = ( – αn)Tun + αnTvn,
vn = βnwn + ( – βn)Twn,
wn = ( – γn)un + γnTun

(.)

and

⎧

⎪⎨

⎪⎩

un+ = ( – αn)Tun + αnTvn,
vn = ( – βn)wn + βnTwn,
wn = γnun + ( – γn)Tun

(.)

converge faster than the case

⎧

⎪⎨

⎪⎩

un+ = ( – αn)Tun + αnTvn,
vn = βnwn + ( – βn)Twn,
wn = γnun + ( – γn)Tun.

(.)

Also the case

⎧

⎪⎨

⎪⎩

un+ = αnTun + ( – αn)Tvn,
vn = ( – βn)wn + βnTwn,
wn = ( – γn)un + γnTun

(.)

converges faster than the cases

⎧

⎪⎨

⎪⎩

un+ = αnTun + ( – αn)Tvn,
vn = βnwn + ( – βn)Twn,
wn = ( – γn)un + γnTun

(.)
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and
⎧

⎪⎨

⎪⎩

un+ = αnTun + ( – αn)Tvn,
vn = ( – βn)wn + βnTwn,
wn = γnun + ( – γn)Tun,

(.)

and
⎧

⎪⎨

⎪⎩

un+ = αnTun + ( – αn)Tvn,
vn = βnwn + ( – βn)Twn,
wn = γnun + ( – γn)Tun.

(.)

Finally, we have a similar situation for the Picard S-iteration which we record here.

Lemma . Let C be a nonempty, closed, and convex subset of a Banach space X, x ∈ C,
T : C → C a contraction with constant k ∈ (, ) and p a fixed point of T . If  – αn < αn

and  – βn < βn for sufficiently large n, then the case (.) in the Picard S-iteration method
converges faster than the other possible cases.

4 Comparing different iterations methods
In this section, we compare the rate of convergence of some different iteration methods
for contractive maps. Our goal is to show that the rate of convergence relates to the coef-
ficients.

Theorem . Let C be a nonempty, closed, and convex subset of a Banach space X, u ∈ C,
T : C → C a contraction with constant k ∈ (, ) and p a fixed point of T . Consider the case
(.) in the Abbas iteration method

⎧

⎪⎨

⎪⎩

un+ = ( – αn)Tvn + αnTwn,
vn = ( – βn)Tun + βnTwn,
wn = ( – γn)un + γnTun,

the case (.) in the Abbas iteration method

⎧

⎪⎨

⎪⎩

un+ = αnTvn + ( – αn)Twn,
vn = ( – βn)Tun + βnTwn,
wn = ( – γn)un + γnTun,

and the case (.) in the Thakur-Thakur-Postolache iteration method

⎧

⎪⎨

⎪⎩

un+ = ( – αn)Tun + αnTvn,
vn = ( – βn)wn + βnTwn,
wn = ( – γn)un + γnTun

for all n ≥ . If  – αn < αn,  – βn < βn, and  – γn < γn for sufficiently large n, then the case
(.) in the Abbas iteration method converges faster than the case (.) in the Thakur-
Thakur-Postolache iteration method. Also, the case (.) in the Thakur-Thakur-Postolache
iteration method is faster than the case (.) in the Abbas iteration method.
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Proof Let {un}n≥ be the sequence in the case (.). Then we have

‖wn – p‖ =
∥
∥( – γn)un + γnTun – p

∥
∥

≤ ( – γn)‖un – p‖ + kγn‖un – p‖
=

(

 – ( – k)γn
)‖un – p‖,

‖vn – p‖ =
∥
∥( – βn)Tun + βnTwn – p

∥
∥

≤ k( – βn)‖un – p‖ + kβn‖wn – p‖
≤ k

[

( – βn) + βn
(

 – ( – k)γn
)]‖un – p‖

≤ k
[

 – βnγn( – k)
]‖un – p‖,

and

‖un+ – p‖ =
∥
∥αnTvn + ( – αn)Twn – p

∥
∥

≤ αnk‖vn – p‖ + kαn‖wn – p‖
≤ αnk( – βnγn( – k)

)‖un – p‖ + k( – αn)
(

 – ( – k)γn
)‖un – p‖

≤ k
[

kαn – αnβnγnk( – k) + ( – αn)
(

 – ( – k)γn
)]‖un – p‖

= k
[

kαn – αnβnγnk( – k) +  – αn – ( – αn)γn( – k)
]‖un – p‖

= k
[

 – αn( – k) – ( – αn)γn( – k) – αnβnγnk( – k)
]‖un – p‖

for all n. Since αn,βn,γn ∈ ( 
 , ) for sufficiently large n, we have

–( – k) < –αn( – k) < –



( – k),

– 
 ( – k) < –αnγn( – k) < , and –k( – k) < –αnβnγnk( – k) < – 

 k( – k) for sufficiently
large n. Hence,

 – αn( – k) – ( – αn)γn( – k) – αnβnγnk( – k) <  –



( – k) –



k( – k)

for sufficiently large n. Put an = kn( – 
 ( – k) – 

 k( – k))n‖u – p‖ for all n. Now, let
{un}n≥ be the sequence in the case (.). Then we have

‖wn – p‖ =
∥
∥( – γn)un + γnTun – p

∥
∥

≤ ( – γn)‖un – p‖ + kγn‖un – p‖
=

(

 – ( – k)γn
)‖un – p‖,

‖vn – p‖ =
∥
∥( – βn)wn + βnTwn – p

∥
∥

≤ ( – βn)‖un – p‖ + kβn‖wn – p‖
≤ ( – βn)

(

 – ( – k)γn
)

+ kβn
((

 – ( – k)γn
))‖un – p‖

≤ [

 – βn( – k)
][

 – γn( – k)
]‖un – p‖,
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and

‖un+ – p‖ =
∥
∥( – αn)Tun + αnTvn – p

∥
∥

≤ ( – αn)k‖un – p‖ + kαn‖vn – p‖
≤ k( – αn)‖un – p‖ + kαn

[

 – βn( – k)
][

 – γn( – k)
]‖un – p‖

≤ k
[

 – αn + αn
(

 – βn( – k)
)(

 – γn( – k)
)]‖un – p‖

≤ k
[

 – αn +
(

αn – ( – k)βnαn
)(

( – γn) + kγn
)]‖un – p‖

≤ k
[

 – αn + αn( – γn) + αnγnk – βnαn( – γn)( – k)

– αnβnγnk( – k)
]‖un – p‖

≤ k
[

 – αnγn( – k) – αnβn( – γn)( – k) – αnβnγnk( – k)
]‖un – p‖

for all n. Since αn,βn,γn ∈ ( 
 , ) for sufficiently large n, we have

–( – k) < –αnγn( – k) < –



( – k),

– 
 ( – k) < –αnβn( – γn)( – k) < , and –k( – k) < –αnβnγnk( – k) < – 

 k( – k) for suffi-
ciently large n. Hence,

 – αnγn( – k) – αnβn( – γn)( – k) – αnβnγnk( – k) <  –



( – k) –



k( – k)

for sufficiently large n. Put bn = kn( – 
 ( – k) – 

 k( – k))n‖u – p‖ for all n. Then

lim
n→∞

an

bn
=

kn( – 
 ( – k) – 

 k( – k))n‖u – p‖
kn( – 

 ( – k) – 
 k( – k))n‖u – p‖ = .

Thus, the case (.) in the Abbas iteration method converges faster than the case (.) in
the Thakur-Thakur-Postolache iteration method.

Now for the case (.), we have

‖wn – p‖ = ‖ – γnun + γnTun – p‖
≤ ( – γn)‖un – p‖ + kγn‖un – p‖
=

(

 – ( – k)γn
)‖un – p‖,

‖vn – p‖ =
∥
∥( – βn)Tun + βnTwn – p

∥
∥

≤ k( – βn)‖un – p‖ + kβn‖wn – p‖
≤ k

[

( – βn) + βn
(

 – ( – k)γn
)]‖un – p‖

≤ k
[

 – βnγn( – k)
]‖un – p‖,

and

‖un+ – p‖ =
∥
∥( – αn)Tvn + αnTwn – p

∥
∥

≤ ( – αn)k‖vn – p‖ + kαn‖wn – p‖
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≤ ( – αn)k( – βnγn( – k)
)‖un – p‖ + kαn

(

 – ( – k)γn
)‖un – p‖

≤ k
[

( – αn)k – ( – αn)βnγnk( – k) + αn – αnγn( – k)
]‖un – p‖

≤ k
[

 – ( – αn)( – k) – αnγn( – k) – ( – αn)βnγnk( – k)
]‖un – p‖

for all n. Since αn,βn,γn ∈ ( 
 , ) for sufficiently large n, – 

 ( – k) < –( – αn)( – k) < ,
–(–k) < –αnγn(–k) < – 

 (–k), and – 
 k(–k) < –(–αn)βnγnk(–k) <  for sufficiently

large n. Hence,

 – ( – αn)( – k) – αnγn( – k) – ( – αn)βnγnk( – k) <  –



( – k)

for sufficiently large n. Put cn = kn( – 
 ( – k))n‖x – p‖ for all n. Then we have

lim
n→∞

bn

cn
=

kn( – 
 ( – k) – 

 k( – k))n‖u – p‖
kn( – 

 ( – k))n‖u – p‖ = 

and so the case (.) in the Thakur-Thakur-Postolache iteration method is faster than the
case (.) in the Abbas iteration method. �

By using a similar proof, we can compare the Thakur-Thakur-Postolache and the
Agarwal iteration methods as follows.

Theorem . Let C be a nonempty, closed, and convex subset of a Banach space X, x ∈ C,
T : C → C a contraction with constant k ∈ (, ) and p a fixed point of T . If  – αn < αn,
 –βn < βn, and  –γn < γn for sufficiently large n, then the case (.) in the Thakur-Thakur-
Postolache iteration method converges faster than the case (.) in the Agarwal iteration
method and the case (.) in the Agarwal iteration method is faster than the cases (.)
and (.) in the Thakur-Thakur-Postolache iteration method.

Also by using similar proofs, we can compare some another iteration methods. We
record those as follows.

Theorem . Let C be a nonempty, closed, and convex subset of a Banach space X, x ∈ C,
T : C → C a contraction with constant k ∈ (, ), and p a fixed point of T . If  – αn < αn,
 – βn < βn, and  – γn < γn for sufficiently large n, then the case (.) in the Abbas iteration
method converges faster than the case (.) in the Ishikawa iteration method and the case
(.) in the Ishikawa iteration method is faster than the cases (.) and (.) in the Abbas
iteration method.

It is notable that there are some cases which the coefficients have no effective roles to
play in the rate of convergence. By using similar proofs, one can check the next result.
One can obtain some similar cases. This shows us that researchers should stress more the
probability of the efficiency of coefficients in the rate of convergence for iteration methods.

Theorem . Let C be a nonempty, closed, and convex subset of a Banach space X, x ∈ C,
T : C → C a contraction with constant k ∈ (, ), p a fixed point of T , and αn,βn,γn ∈ (, )
for all n ≥ . Then the case (.) in the Agarwal iteration method is faster than the case (.)
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in the Mann iteration method, the case (.) in the Abbas iteration method is faster than the
case (.) in the Mann iteration method, the case (.) in the Thakur-Thakur-Postolache
iteration method is faster than the case (.) in the Mann iteration method, the case (.) in
the Agarwal iteration method is faster than the case (.) in the Ishikawa iteration method,
the case (.) in the Abbas iteration method is faster than the case (.) in the Ishikawa
iteration method and the case (.) in the Thakur-Thakur-Postolache iteration method is
faster than the case (.) in the Ishikawa iteration method.

5 Examples and figures
In this section, we provide some examples to illustrate our results.

Example  Let X = R, C = [, ], x = , αn = ., and βn = . for all n ≥ . Define the
map T : C → C by the formula T(x) = (x+) 

 for all x ∈ C. It is easy to see that T is a con-
traction. In Tables -, we first compare two cases of the Mann iteration method and also
four cases of the Ishikawa and Agarwal iteration methods separately. From a mathematical
point of view, one can see that the Mann iteration (.) is more than . times faster than
the Mann iteration (.), the Ishikawa iteration (.) is more than . times faster than
the Ishikawa iteration (.), the Ishikawa iteration (.) is more than . times faster
than the Ishikawa iteration (.), the Ishikawa iteration (.) is more than  times faster

Table 1 Cases of Mann iteration

Step Mann (2.1) Mann (3.1)

1 15.2817976045 8.9908610772
2 11.8962912491 5.186577882
3 9.4591508761 3.8138707904
4 7.6992520365 3.305644632
5 6.4247631019 3.1152016077
6 5.4994648986 3.0434826465
7 4.8262347919 3.0164213456
8 4.3355308466 3.0062028434
9 3.977352589 3.0023431856
10 3.7156123245 3.0008851876
11 3.5241766763 3.000334402
12 3.3840675849 3.0001263293
13 3.2814716521 3.0000477244
14 3.2063163994 3.0000180292
15 3.1512468009 3.000006811
16 3.11088634 3.0000025731
17 3.0813015724 3.000000972
18 3.0596130334 3.0000003672
19 3.0437118532 3.0000001387
20 3.0320530065 3.0000000524
21 3.0235042722 3.0000000198
22 3.0172357852 3.0000000075
23 3.0126392095 3.0000000028
24 3.0092685565
25 3.0067968355
26 3.004984289
...

...
63 3.0000000517
64 3.0000000379
65 3.0000000278
66 3.0000000204

CPU time 0.0010 0.0007
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Table 2 Cases of Ishikawa iteration

Step Ishikawa (3.2) Ishikawa (3.3) Ishikawa (3.5) Ishikawa (3.4)

1 6.022745179 17.599516463 6.397259957 17.53342562
2 3.55504988 15.542488073 3.725044385 15.426710149
3 3.102829451 13.778956254 3.157958555 13.626959863
4 3.019085154 12.266356345 3.034584416 12.089125019
5 3.003543432 10.968408676 3.007580568 10.774826445
6 3.000657931 9.854176549 3.001661995 9.651358665
7 3.000122164 8.89726621 3.000364402 8.690843013
8 3.000022683 8.07514758 3.000079898 7.86950815
9 3.000004212 7.368577613 3.000017518 7.167078769
10 3.000000782 6.76111087 3.000003841 6.566256169
11 3.000000145 6.23868412 3.000000842 6.052276815
12 3.000000027 5.789263769 3.000000185 5.612537089
13 3.000000005 5.402546543 3.00000004 5.23627424
14 3.000000001 5.069705312 3.000000009 4.91429501
15 4.783173147 3.000000002 4.638744748
16 4.536459758 4.402910896
17 4.323995342 4.201055645
18 4.14099766 4.028273397
19 3.983358785 3.880369278
20 3.847548529 3.753755571
21 3.730532022 3.645363373
22 3.629699305 3.55256722
23 3.542805134 3.473120743
24 3.467917475 3.405101727
25 3.403373393 3.346865184
26 3.347741258 3.297003256
27 3.299788327 3.254310946
28 3.258452935 3.217756821
29 3.222820611 3.18645797
30 3.192103569 3.159658578
31 3.165623078 3.136711605
32 3.142794307 3.117063114
33 3.123113286 3.100238856
34 3.1061457 3.0858328
35 3.09151723 3.07349731

CPU time 0.00086 0.0035 0.0016 0.0085

Table 3 Cases of Agarwal iteration

Step Agarwal (3.13) Agarwal (3.14) Agarwal (3.16) Agarwal (3.15)

1 3.663643981 4.231276342 4.038158759 4.165185499
2 3.034148064 3.125898552 3.08652991 3.112771857
3 3.001785887 3.013368608 3.007415671 3.011314821
4 3.000093479 3.001425297 3.000637055 3.001139398
5 3.000004893 3.000152024 3.000054738 3.000114779
6 3.000000256 3.000016216 3.000004703 3.000011563
7 3.000000013 3.00000173 3.000000404 3.000001165
8 3.000000001 3.000000184 3.000000035 3.000000117
9 3 3.00000002 3.000000003 3.000000012
10 3.000000002 3 3.000000001
11 3 3

CPU time 0.00095 0.0034 0.0011 0.0011
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Figure 1 CPU time.

than the Ishikawa iteration (.), the Ishikawa iteration (.) is more than . times faster
than the Ishikawa iteration (.), the Agarwal iteration (.) is . times faster than the
Agarwal iteration (.), the Agarwal iteration (.) is . times faster than the Agarwal
iteration (.), the Agarwal iteration (.) is . times faster than the Agarwal itera-
tion (.) and so on. We first add our CPU time in Tables - for each iteration method.
Also, we provide Figure  by using at least  times calculating of CPU times for our faster
cases in the methods. From a computer-calculation point of view, we get a different an-
swer. As one can see in the CPU time table, we found that the Agarwal iteration (.) and
the Mann iteration (.) are faster than the Ishikawa iteration (.). This note emphasizes
the difference of the mathematical results and computer-calculation results which have
appeared many times in the literature.

The next example illustrates Lemma ..

Example  Let X = R, C = [, ], x = , αn = ., βn = ., and γn = . for all
n ≥ . Define the map T : C → C by the formula T(x) = √x for all x ∈ C. Table  shows
us that the Abbas iteration (.) converges faster than the other cases, the Abbas iteration
(.) is . times faster than the Abbas iteration (.), the Abbas iteration (.) is .
times faster than the Abbas iteration (.), the Abbas iteration (.) is . times faster
than the Abbas iteration (.) and . times faster than the Abbas iteration (.) and the
Abbas iteration (.). One can get similar results about difference of the mathematical
and computer-calculating points of views for this example.

The next example illustrates Theorem ..

Example  Let X = R, C = [, ], x = , αn = ., βn = ., and γn = . for all n ≥ .
Define the map T : C → C by T(x) =

√
x – x +  for all x ∈ C (see []). Table  shows

the Abbas iteration (.) converges . times faster than the Thakur-Thakur-Postolache
iteration (.) and the Thakur-Thakur-Postolache iteration (.) is . times faster than
the Abbas iteration (.) from the mathematical point of view. Again, we get different
results from the computer-calculating point of view by checking Table  and Figures 
and .

The next example shows that choosing the coefficients is very important in the rate of
convergence of an iteration method.
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Table 4 Cases of Abbas iteration

Step Abbas (3.17) Abbas (3.18) Abbas (3.19) Abbas (3.20) Abbas (3.21) Abbas (3.22) Abbas (3.23) Abbas (3.24)

1 20.933947 23.074444 29.706456 30.294581 42.622758 43.000492 74.725586 74.829373
2 3.501533 3.915728 4.912771 5.052334 6.872931 6.975246 14.057893 14.097781
3 1.650123 1.789347 2.07514 2.127569 2.605814 2.644699 4.919453 4.938021
4 1.218545 1.278689 1.392374 1.417334 1.596596 1.615195 2.581994 2.592232
5 1.080705 1.109014 1.161005 1.174049 1.254442 1.264388 1.750749 1.757015
6 1.030883 1.044439 1.069469 1.076461 1.115609 1.121158 1.389425 1.39348
7 1.011982 1.018426 1.030642 1.034379 1.054109 1.057231 1.212285 1.214975
8 1.004673 1.007695 1.013649 1.015622 1.025684 1.02743 1.119022 1.120821
9 1.001827 1.003223 1.006106 1.007132 1.012273 1.013239 1.067815 1.069015
10 1.000715 1.001351 1.002737 1.003264 1.005884 1.006411 1.038999 1.039794
11 1.00028 1.000567 1.001228 1.001495 1.002825 1.00311 1.022548 1.02307
12 1.000109 1.000238 1.000551 1.000685 1.001357 1.00151 1.013078 1.013417
13 1.000043 1.0001 1.000247 1.000314 1.000653 1.000733 1.007599 1.007818
14 1.000017 1.000042 1.000111 1.000144 1.000314 1.000356 1.00442 1.00456
15 1.000007 1.000018 1.00005 1.000066 1.000151 1.000173 1.002572 1.002661
16 1.000003 1.000007 1.000022 1.00003 1.000073 1.000084 1.001498 1.001554
17 1.000001 1.000003 1.00001 1.000014 1.000035 1.000041 1.000872 1.000907
18 1.000001 1.000005 1.000006 1.000017 1.00002 1.000508 1.00053
19 1.000001 1.000002 1.000003 1.000008 1.00001 1.000296 1.00031
20 1 1.000001 1.000001 1.000004 1.000005 1.000172 1.000181
21 1 1 1.000001 1.000002 1.000002 1.0001 1.000106
22 1 1 1 1.000001 1.000001 1.000058 1.000062
23 1 1 1 1 1.000001 1.000034 1.000036
24 1 1 1 1 1.00002 1.000021
25 1 1 1 1.000012 1.000012
26 1 1 1 1.000007 1.000007
27 1 1 1.000004 1.000004
28 1 1 1.000002 1.000002
29 1 1 1.000001 1.000001
30 1.000001 1.000001
31 1 1
32 1 1
33 1 1
34 1 1
35 1 1
36 1 1
37 1 1

Table 5 Comparison between Thakur iteration and Abbas iteration

Step Thakur (2.6) Abbas (2.5) Abbas (3.17)

1 31.77453587 33.18158852 31.22317681
2 23.81196041 26.52340588 22.75386567
3 16.33019829 20.11920431 14.88031305
4 9.89958703 14.1634562 8.4317634
5 5.97706669 9.11456867 5.36305686
6 5.07407177 5.96019967 5.01260299
7 5.00409402 5.0925653 5.00037245
8 5.00022019 5.00645474 5.00001094
9 5.00001182 5.00043527 5.00000032
10 5.00000063 5.00002928 5.00000001
11 5.00000003 5.00000197 5
12 5 5.00000013
13 5 5.00000001
14 5

CPU time 0.0012 0.0012 0.0009
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Figure 2 Convergence behavior of the iteration methods of Thakur equation (2.6), Abbas equation
(2.5), and Abbas equation (3.17).

Figure 3 CPU time.

Example  Let X = R, C = [, ], and x = . Define the map T : R → R by T(x) =
x
 +  for all x ∈ C. Consider the following coefficients separately in the Thakur-Thakur-
Postolache iteration (.):

(a) αn = βn = γn =  – 
(n+) ,

(b) αn = βn = γn =  – 
n+ ,

(c) αn = βn = γn =  – 

(n+)



,

(d) αn = βn = γn =  – 

(n+)



for all n ≥ . Table  shows that the Thakur-Thakur-Postolache iteration (.) with coeffi-
cients (a) is . times faster than the Thakur-Thakur-Postolache iteration (.) with coef-
ficients (b), the Thakur-Thakur-Postolache iteration (.) with coefficients (a) is . times
faster than the Thakur-Thakur-Postolache iteration (.) with coefficients (c) and the
Thakur-Thakur-Postolache iteration (.) with coefficients (a) is . times faster than the
Thakur-Thakur-Postolache iteration (.) with coefficients (d). This note satisfies other
iteration methods of course from the mathematical point of view. Here, we find a little
different computer-calculating result for the CPU time table of this example, which one
can check in Figure .
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Table 6 Cases of Thakur iteration

Step (a) (b) (c) (d)

1 4.2609841803 9.03125 10.2844561595 10.8540663001
2 2.2826469537 4.2135416667 5.4804739263 6.2632682688
3 2.0353310377 2.6009419759 3.3595601275 4.0142167756
4 2.004416382 2.1466298421 2.5007642765 2.9360724936
5 2.0005520478 2.0330086855 2.1756764587 2.4287794141
6 2.000069006 2.0069770545 2.0591364356 2.1939030837
7 2.0000086257 2.0014018838 2.0192087915 2.0866824323
8 2.0000010782 2.0002701847 2.0060472121 2.0383477219
9 2.0000001348 2.0000502881 2.0018515929 2.0168034488
10 2.0000000168 2.0000090866 2.0005529869 2.0072985299
11 2.0000000021 2.0000016005 2.0001614712 2.0031443476
12 2.0000000003 2.0000002757 2.0000461907 2.0013443922
13 2.0000000466 2.0000129668 2.0005707329
14 2.0000000077 2.0000035774 2.0002406784
15 2.0000000013 2.0000009712 2.0001008564
16 2.0000002597 2.0000420126
17 2.0000000685 2.0000174019
18 2.0000000178 2.0000071693
19 2.0000000046 2.0000029385
20 2.0000000012 2.0000011985
21 2.0000004865
22 2.0000001966
23 2.0000000791
24 2.0000000317
25 2.0000000127
26 2.000000005

CPU time 0.0013 0.0014 0.0015 0.0017

Figure 4 CPU time.
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