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Abstract
The first purpose of this paper is to prove an existence and uniqueness result for the
multivariate fixed point of a contraction type mapping in complete metric spaces.
The proof is based on the new idea of introducing a convenient metric space and an
appropriate mapping. This method leads to the changing of the non-self-mapping
setting to the self-mapping one. Then the main result of the paper will be applied to
an initial-value problem related to a class of differential equations of first order. The
second aim of this paper is to prove strong and weak convergence theorems for the
multivariate fixed point of a N-variables nonexpansive mapping. The results of this
paper improve several important works published recently in the literature.
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1 Introduction
Banach’s contraction principle is one of the most powerful tool in applied nonlinear analy-
sis. Weak contractions (also called φ-contractions) are generalizations of Banach contrac-
tion mappings which have been studied by several authors. Let T be a self-map of a metric
space (X, d) and φ : [, +∞) → [, +∞) be a function. We say that T is a φ-contraction if

d(Tx, Ty) ≤ φ
(
d(x, y)

)
, ∀x, y ∈ X.

In , Browder [] proved that if φ is non-decreasing and right continuous and (X, d) is
complete, then T has a unique fixed point x∗ and limn→∞ Tnx = x∗ for any given x ∈ X.
Subsequently, this result was extended in  by Boyd and Wong [] by weakening the
hypothesis on φ, in the sense that it is sufficient to assume that φ is right upper semi-
continuous (not necessarily monotone). For a comprehensive study of the relations be-
tween several such contraction type conditions, see [–].

On the other hand, in , Su and Yao [] proved the following generalized contraction
mapping principle.
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Theorem SY Let (X, d) be a complete metric space. Let T : X → X be a mapping such that

ψ
(
d(Tx, Ty)

) ≤ φ
(
d(x, y)

)
, ∀x, y ∈ X, (.)

where ψ ,φ : [, +∞) → [, +∞) are two functions satisfying the conditions:

() ψ(a) ≤ φ(b) ⇒ a ≤ b;

()

⎧
⎨

⎩
ψ(an) ≤ φ(bn)

an → ε, bn → ε
⇒ ε = .

Then T has a unique fixed point and, for any given x ∈ X, the iterative sequence Tnx

converges to this fixed point.

In particular, the study of the fixed points for weak contractions and generalized con-
tractions was extended to partially ordered metric spaces in [–]. Among them, some
results involve altering distance functions. Such functions were introduced by Khan et al.
in [], where some fixed point theorems are presented.

The first purpose of this paper is to prove an existence and uniqueness result of the
multivariate fixed point for contraction type mappings in complete metric spaces. The
proof is based on the new idea of introducing a convenient metric space and an appropriate
mapping. This ingenious method leads to the changing of the non-self-mapping setting to
the self-mapping one. Then the main result of the paper will be applied to an initial-value
problem for a class of differential equations of first order. The second aim of this paper
is to prove strong and weak convergence theorems for the multivariate fixed point of N-
variables nonexpansive mappings. The results of this paper improve several important
results recently published in the literature.

2 Contraction principle for multivariate mappings
We will start with some concepts and results which are useful in our approach.

Definition . A multiply metric function 	(a, a, . . . , aN ) is a continuous N variable
non-negative real function with the domain

{
(a, a, . . . , aN ) ∈ RN : ai ≥ , i ∈ {, , , . . . , N}}

which satisfies the following conditions:
() 	(a, a, . . . , aN ) is non-decreasing for each variable ai, i ∈ {, , , . . . , N};
() 	(a + b, a + b, . . . , aN + bN ) ≤ 	(a, a, . . . , aN ) + 	(b, b, . . . , bN );
() 	(a, a, . . . , a) = a;
() 	(a, a, . . . , aN ) →  ⇔ ai → , i ∈ {, , , . . . , N}, for all ai, bi, a ∈R,

i ∈ {, , , . . . , N}, where R denotes the set of all real numbers.

The following are some basic examples of multiply metric functions.

Example . () 	(a, a, . . . , aN ) = 
N

∑N
i= ai. () 	(a, a, . . . , aN ) = 

h
∑N

i= qiai, where
qi ∈ [, ), i ∈ {, . . . , N}, and  < h :=

∑N
i= qi < .
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Example . 	(a, a, . . . , aN ) =
√


N

∑N
i= a

i .

Example . 	(a, a, . . . , aN ) = max{a, a, . . . , aN }.

An important concept is now presented.

Definition . Let (X, d) be a metric space, T : XN → X be a N variable mapping, an
element p ∈ X is called a multivariate fixed point (or a fixed point of order N ; see []) of
T if

p = T(p, p, . . . , p).

In the following, we prove the following theorem, which generalizes the Banach con-
traction principle.

Theorem . Let (X, d) be a complete metric space, T : XN → X be an N variable mapping
that satisfies the following condition:

d(Tx, Ty) ≤ h	(
d(x, y), d(x, y), . . . , d(xN , yN )

)
, ∀x, y ∈ XN ,

where 	 is a multiply metric function,

x = (x, x, . . . , xN ) ∈ XN , y = (y, y, . . . , yN ) ∈ XN ,

and h ∈ (, ) is a constant.
Then T has a unique multivariate fixed point p ∈ X and, for any p ∈ XN , the iterative

sequence {pn} ⊂ XN defined by

p = (Tp, Tp, . . . , Tp),

p = (Tp, Tp, . . . , Tp),

p = (Tp, Tp, . . . , Tp),

· · ·
pn+ = (Tpn, Tpn, . . . , Tpn),

· · ·

converges, in the multiply metric 	, to (p, p, . . . , p) ∈ XN and the iterative sequence {Tpn} ⊂
X converges, with respect to d, to p ∈ X.

Proof We define a two variable function D on XN by the following relation:

D
(
(x, x, . . . , xN ), (y, y, . . . , yN )

)
= 	(

d(x, y), d(x, y), . . . , d(xN , yN )
)

for all (x, x, . . . , xN ), (y, y, . . . , yN ) ∈ XN . Next we show that D is a metric on XN . The
following two conditions are obvious:
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(i) D((x, x, . . . , xN ), (y, y, . . . , yN )) =  ⇔ (x, x, . . . , xN ) = (y, y, . . . , yN );
(ii) D((y, y, . . . , yN )), (x, x, . . . , xN ) = D((x, x, . . . , xN ), (y, y, . . . , yN )), for all

(x, x, . . . , xN ), (y, y, . . . , yN ) ∈ XN .
Next we prove the triangular inequality. For all

(x, x, . . . , xN ), (y, y, . . . , yN ), (z, z, . . . , zN ) ∈ XN ,

from the definition of 	, we have

D
(
(x, x, . . . , xN ), (y, y, . . . , yN )

)

= 	(
d(x, y), d(x, y), . . . , d(xN , yN )

)

≤ 	(
d(x, z) + d(z, y), d(x, z) + d(z, y), . . . , d(xN , zN ) + d(zN , yN )

)

≤ 	(
d(x, z), d(x, z), . . . , d(xN , zN )

)
+ 	(

d(z, y), d(z, y), . . . , d(zN , yN )
)

= D
(
(x, x, . . . , xN ), (z, z, . . . , zN )

)
+ D

(
(z, z, . . . , zN ), (y, y, . . . , yN )

)
.

Next we prove that (XN , D) is a complete metric space. Let {pn} ⊂ XN be a Cauchy se-
quence, then we have

lim
n,m→∞ D(pn, pm) = lim

n,m→∞	(
d(x,n, x,m), d(x,n, x,m), . . . , d(xN ,n, xN ,m)

)
= ,

where

pn = (x,n, x,n, x,n, . . . , xN ,n), pm = (x,m, x,m, x,m, . . . , xN ,m).

From the definition of 	, we have

lim
n,m→∞ d(xi,n, xi,m) = ,

for all i ∈ {, , , . . . , N}. Hence each {xi,n} (i ∈ {, , , . . . , N}) is a Cauchy sequence. Since
(X, d) is a complete metric space, there exist x, x, x, . . . , xN ∈ X such that limn→∞ d(xi,n,
xi) =  for all i ∈ {, , , . . . , N}. Therefore

lim
n→∞ D(pn, x) = ,

where

x = (x, x, x, . . . , xN ) ∈ XN ,

which implies that (XN , D) is a complete metric space.
We define a mapping T∗ : XN → XN by the following relation:

T∗(x, x, . . . , xN ) =
(
T(x, x, . . . , xN ), T(x, x, . . . , xN ), . . . , T(x, x, . . . , xN )

)
,
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for all (x, x, . . . , xN ) ∈ XN . Next we prove that T∗ is a contraction mapping from (XN , D)
into itself. Observe that, for any

x = (x, x, . . . , xN ), y = (y, y, . . . , yN ) ∈ XN ,

we have

D
(
T∗x, T∗y

)
= 	(

d(Tx, Ty), d(Tx, Ty), . . . , d(Tx, Ty)
)

= d(Tx, Ty)

≤ h	(
d(x, y), d(x, y), . . . , d(xN , yN )

)

= hD(x, y).

By the Banach contraction mapping principle, there exists a unique element u ∈ XN such
that u = T∗u = (Tu, Tu, . . . , Tu) and, for any u = (x, x, . . . , xN ) ∈ XN , the iterative se-
quence un+ = T∗un converges to u. That is,

u = (Tu, Tu, . . . , Tu),

u = (Tu, Tu, . . . , Tu),

u = (Tu, Tu, . . . , Tu),

· · ·
un+ = (Tun, Tun, . . . , Tun),

· · ·

converges to u ∈ XN . By the structure of {un}, we know that there exists a unique element
p ∈ X such that u = (p, p, . . . , p) and hence the iterative sequence {Tun} converges to p ∈ X.
By

T∗u = u = (p, p, . . . , p), Tu = T(p, p, . . . , p), T∗u = (Tu, Tu, . . . , Tu),

we obtain p = T(p, p, . . . , p), that is, p is the unique multivariate fixed point of T . This
completes the proof. �

Notice that taking N = , 	(a) = a in Theorem ., we obtain Banach’s contraction prin-
ciple.

Some other consequences of the above general result are the following corollaries.

Corollary . Let (X, d) be a complete metric space, T : XN → X be a N variables mapping
satisfying the following condition:

d(Tx, Ty) ≤ h
N

N∑

i=

d(xi, yi),  < h < ,

where

x = (x, x, . . . , xN ) ∈ XN , y = (y, y, . . . , yN ) ∈ XN .
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Then T has a unique multivariate fixed point p ∈ X and, for any p ∈ XN , the iterative
sequence {pn} ⊂ XN defined by

p = (Tp, Tp, . . . , Tp),

p = (Tp, Tp, . . . , Tp),

p = (Tp, Tp, . . . , Tp),

· · ·
pn+ = (Tpn, Tpn, . . . , Tpn),

· · ·

converges, in the multiply metric, to (p, p, . . . , p) ∈ XN and the iterative sequence {Tpn} ⊂ X
converges, with respect to d, to p ∈ X.

Notice that the above corollary is related to the well-known Prešić’s fixed point theorem
(see []).

Prešić’s theorem Let (X, d) be a complete metric space, N be a given natural number, and
T : XN → X be an operator, such that, for all x, . . . , xN , xN+ ∈ X, we have

d
(
T(x, x, . . . xN ), T(x, . . . , xN , xN+)

) ≤ qd(x, x) + · · · + qN d(xN , xN+),

where q, . . . , qN ∈R+ with q + · · · + qN < .
Then there exists a unique multivariate fixed point p ∈ X and p is the limit of the sequence

(xn) given by

xn+k := T(xn, . . . , xn+k–), for n ≥ ,

independently of the initial N values.

Choosing � := �, h :=
∑N

i= qi, and x = (x, x, . . . , xN ), y = (x, x, . . . , xN+) ∈ XN , the
contraction condition given in Theorem . leads to Prešić’s contraction type condition.

Corollary . Let (X, d) be a complete metric space and T : XN → X be a N variable
mapping which satisfies the following condition:

d(Tx, Ty) ≤ h

√√
√√ 

N

N∑

i=

d(xi, yi),  < h < ,

where

x = (x, x, . . . , xN ) ∈ XN , y = (y, y, . . . , yN ) ∈ XN .

Then T has a unique multivariate fixed point p ∈ X and, for any p ∈ XN , the iterative
sequence {pn} ⊂ XN defined by

p = (Tp, Tp, . . . , Tp),
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p = (Tp, Tp, . . . , Tp),

p = (Tp, Tp, . . . , Tp),

· · ·
pn+ = (Tpn, Tpn, . . . , Tpn),

· · ·

converges, in the multiply metric, to (p, p, . . . , p) ∈ XN and the iterative sequence {Tpn} ⊂ X
converges, with respect to d, to p ∈ X.

Corollary . Let (X, d) be a complete metric space and T : XN → X be a N variable
mapping which satisfies the following condition:

d(Tx, Ty) ≤ h max
{

d(x, y), d(x, y), . . . , d(xN , yN )
}

,  < h < ,

where

x = (x, x, . . . , xN ) ∈ XN , y = (y, y, . . . , yN ) ∈ XN .

Then T has a unique multivariate fixed point p ∈ X and, for any p ∈ XN , the iterative
sequence {pn} ⊂ XN defined by

p = (Tp, Tp, . . . , Tp),

p = (Tp, Tp, . . . , Tp),

· · ·
pn+ = (Tpn, Tpn, . . . , Tpn),

· · ·

converges, in the multiply metric, to (p, p, . . . , p) ∈ XN and the iterative sequence {Tpn} ⊂ X
converges, with respect to d, to p ∈ X.

Notice also here that the above corollary is related to a multivariate fixed point theorem
of Ćirić and Prešić (see []), which reads as follows.

Ćirić-Prešić’s theorem Let (X, d) be a complete metric space, N be a given natural num-
ber, and T : XN → X be an operator, such that, for all x, . . . , xN , xN+ ∈ X, we have

d
(
T(x, x, . . . xN ), T(x, . . . , xN , xN+)

) ≤ h max
{

d(x, x), d(x, x), . . . , d(xN , xN+)
}

,

where  < h < .
Then there exists a multivariate fixed point p ∈ X and p is the limit of the sequence (xn)

given by

xn+k := T(xn, . . . , xn+k–), for n ≥ ,

independently of the initial N values.
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If in addition, we suppose that on the diagonal Diag ⊂ XN we have

d
(
T(u, . . . , u), T(v, . . . , v)

)
< d(u, v), for all u, v ∈ X with u = v,

then the multivariate fixed point is unique.

Choosing � := �, h ∈ (, ), and x = (x, x, . . . , xN ), y = (x, x, . . . , xN+) ∈ XN , the con-
traction condition given in Theorem . leads to the above Ćirić-Prešić’s contraction type
condition.

It is worth to mention that the above results are in connection with a very interesting
multivariate fixed point principle proved by Tasković in []. More precisely, Tasković’s
result is as follows.

Tasković’s theorem Let (X, d) be a complete metric space, N be a given natural number,
f : RN →R be a continuous, increasing, and semi-homogeneous function (in the sense that
f (λa, . . . ,λaN ) ≤ λf (a, . . . , aN ), for any λ, a, . . . aN ∈R) and let T : Xk → X be an operator,
such that, for all x = (x, . . . , xN ), y = (y, . . . , yN ) ∈ Xk , we have

d
(
T(x), T(y)

) ≤ ∣
∣f

(
ad(x, y), . . . , aN d(xN , yN )

)∣∣,

where a, . . . , aN ∈R+ with |f (a, . . . , aN )| < .
Then there exists a unique multivariate fixed point p ∈ X and p is the limit of the sequence

(xn) given by

xn+k := T(xn, . . . , xn+k–), for n ≥ ,

independently of the initial N values.

Notice here that 	(a, . . . , an) := f (a, . . . , an) satisfies part of the axioms of the multiply
metric. More connections with the above mentioned results will be given in a forthcoming
paper.

The following result is another multivariate fixed point theorem for a class of general-
ized contraction mappings related to the SY theorem. The proof of it can be obtained by
Theorem SY, in the same way as was used in the proof of Theorem ..

Theorem . Let (X, d) be a complete metric space and T : XN → X be a N variable
mapping which satisfies the following condition:

ψ
(
d(Tx, Ty)

) ≤ φ
(	(

d(x, y), d(x, y), . . . , d(xN , yN )
))

,

where 	 is a multiply metric function,

x = (x, x, . . . , xN ) ∈ XN , y = (y, y, . . . , yN ) ∈ XN ,

and ψ ,φ : [, +∞) → [, +∞) are two functions satisfying the conditions:

() ψ(a) ≤ φ(b) ⇒ a ≤ b;
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()

⎧
⎨

⎩
ψ(an) ≤ φ(bn)

an → ε, bn → ε
⇒ ε = .

Then T has a unique multivariate fixed point p ∈ X and, for any p ∈ XN , the iterative
sequence {pn} ⊂ XN defined by

p = (Tp, Tp, . . . , Tp),

p = (Tp, Tp, . . . , Tp),

· · ·
pn+ = (Tpn, Tpn, . . . , Tpn),

· · ·

converges, in the multiply metric, to (p, p, . . . , p) ∈ XN and the iterative sequence {Tpn} ⊂ X
converges, with respect to d, to p ∈ X.

In [], Su and Yao also gave some examples of functions ψ(t), φ(t). Here we recall some
of them.

Example . ([]) The following functions satisfy the conditions () and () of Theo-
rem ..

(a)

⎧
⎨

⎩
ψ(t) = t,

φ(t) = αt,

where  < α <  is a constant.

(b)

⎧
⎨

⎩
ψ(t) = t,

φ(t) = ln(t + ),

(c)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ(t) = t,

φ(t) =

⎧
⎨

⎩
t,  ≤ t ≤ 

 ,

t – 
 , 

 < t < +∞,

(d)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ(t) =

⎧
⎨

⎩
t,  ≤ t ≤ ,

t – 
 ,  < t < +∞,

φ(t) =

⎧
⎨

⎩

t
 ,  ≤ t ≤ ,

t – 
 ,  < t < +∞,

(e)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ(t) =

⎧
⎨

⎩
t,  ≤ t ≤ ,

αt,  ≤ t < +∞,

φ(t) =

⎧
⎨

⎩
t,  ≤ t < ,

βt,  < t < +∞,

where  < β < α are constants.
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For example, if we choose ψ(t), φ(t) in Theorem ., then we can get the following
result.

Theorem . Let (X, d) be a complete metric space. Let T : XN → X be a N variables
mapping such that

 ≤ d(Tx, Ty) <  ⇒ d(Tx, Ty) ≤ (	(
d(x, y), d(x, y), . . . , d(xN , yN )

)),

d(Tx, Ty) ≥  ⇒ α
(
d(Tx, Ty)

) ≤ β	(
d(x, y), d(x, y), . . . , d(xN , yN )

)
,

for any x = (x, x, x, . . . , xN ), y = (y, y, y, . . . , yN ) ∈ XN .
Then T has a unique multivariate fixed point p ∈ X and, for any p ∈ XN , the iterative

sequence {pn} ⊂ XN defined by

p = (Tp, Tp, . . . , Tp),

p = (Tp, Tp, . . . , Tp),

· · ·
pn+ = (Tpn, Tpn, . . . , Tpn),

· · ·

converges, in the multiply metric, to (p, p, . . . , p) ∈ XN and the iterative sequence {Tpn} ⊂ X
converges, with respect to d, to p ∈ X.

Using the following notions it is easy to prove another consequence of our main results.

Remark . Let ψ ,φ : [, +∞) → [, +∞) be two functions satisfying the conditions:
(i) ψ() = φ();

(ii) ψ(t) > φ(t), ∀t > ;
(iii) ψ is lower semi-continuous and φ is upper semi-continuous.
Then ψ(t), φ(t) satisfy the above mentioned conditions () and ().

Corollary . Let (X, d) be a complete metric space. Let T : XN → X be a N variable
mapping such that, for any x = (x, x, x, . . . , xN ), y = (y, y, y, . . . , yN ) ∈ XN , we have

ψ
(
d(Tx, Ty)

) ≤ φ
(	(

d(x, y), d(x, y), . . . , d(xN , yN )
))

,

where ψ ,φ : [, +∞) → [, +∞) are two functions with the conditions (i), (ii), and (iii).
Then T has a unique multivariate fixed point p ∈ X and, for any p ∈ XN , the iterative

sequence {pn} ⊂ XN defined by

p = (Tp, Tp, . . . , Tp),

p = (Tp, Tp, . . . , Tp),

· · ·
pn+ = (Tpn, Tpn, . . . , Tpn),

· · ·
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converges, in the multiply metric, to (p, p, . . . , p) ∈ XN and the iterative sequence {Tpn} ⊂ X
converges, with respect to d, to p ∈ X.

3 An application to an initial-value problem related to a first order differential
equation

We will give now an application of the above results to an initial-value problem related to
a first order differential equation of the following form:

{
dx
dt = f (x(t), x(t), . . . , x(t), t), t ∈ I := [t – δ, t + δ],
x(t) = x (x ∈R),

where t, δ >  are given real numbers and f : RN × I →R is a continuous (N + )-variables
function satisfying the following Lipschitz type condition:

∣∣f (x, x, . . . , xN , t) – f (y, y, . . . , yN , t)
∣∣ ≤ k(t)

N∑

i=

|xi – yi|,

with k ∈ L(I,R+).
For this purpose, we will consider first the following integral equation:

x(t) =
∫ t

t

f
(
x(τ ), x(τ ), . . . , x(τ ), τ

)
dτ + g(t), t ∈ [t – δ, t + δ],

where g ∈ C(I) is a given function and f is as before.
Let X := C[t – δ, t + δ], the linear space of continuous real functions defined on the

closed interval I := [t – δ, t + δ], where t, δ >  are real numbers. It is well known that
C[t – δ, t + δ] is a complete metric space with respect to the Chebyshev metric

d(x, y) := max
t–δ≤t≤t+δ

∣∣x(t) – y(t)
∣∣,

for x, y ∈ X.
We can also introduce on X a Bielecki type metric (which is known to be Lipschitz

(strongly) equivalent to d), by the relation

dB(x, y) := max
t–δ≤t≤t+δ

∣
∣x(t) – y(t)

∣
∣e–LK (t),

where K(t) :=
∫ t

t
k(s) ds and L is a constant greater than N .

Let T : X × X × · · · × X → X with XN � x = (x, . . . , xN ) �−→ Tx be a N variable mapping
defined by

Tx(t) :=
∫ t

t

f
(
x(τ ), x(τ ), . . . , xN (τ ), τ

)
dτ + g(t),

for all x, x, . . . , xN ∈ X, where g ∈ X and f (x, x, . . . xN , t) is a continuous (N + ) variable
function satisfying the following condition:
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∣
∣f (x, x, . . . , xN , t) – f (y, y, . . . , yN , t)

∣
∣ ≤ k(t)

N∑

i=

|xi – yi|,

with k ∈ L(I,R+).
For any x = (x, x, . . . , xN ), y = (y, y, . . . , yN ) ∈ XN , and t ∈ I we have

∣
∣Tx(t) – Ty(t)

∣
∣ ≤

∣∣
∣∣

∫ t

t

∣
∣f

(
x(τ ), τ

)
– f

(
y(τ ), τ

)∣∣dτ

∣∣
∣∣

≤
∣∣
∣∣

∫ t

t

N∑

i=

k(τ )
∣
∣xi(τ ) – yi(τ )

∣
∣dτ

∣∣
∣∣

=

∣∣
∣∣
∣

∫ t

t

N∑

i=

k(τ )
∣∣xi(τ ) – yi(τ )

∣∣e–LK (τ )eLK (τ ) dτ

∣∣
∣∣
∣

≤
∣∣∣
∣∣

∫ t

t

N∑

i=

max
τ∈I

[∣∣xi(τ ) – yi(τ )
∣∣e–LK (τ )]k(τ )eLK (τ ) dτ

∣∣∣
∣∣

= N
∣
∣∣∣

∫ t

t

(

N

N∑

i=

dB(xi, yi)

)

k(τ )eLK (τ ) dτ

∣
∣∣∣

= N	
(
dB(x, y), . . . , dB(xN , yN )

)
∣
∣∣
∣

∫ t

t

k(τ )eLK (τ ) dτ

∣
∣∣
∣

≤ N
L

· 	
(
dB(x, y), . . . , dB(xN , yN )

)
eLK (t).

Thus,

∣∣Tx(t) – Ty(t)
∣∣e–LK (t) ≤ N

L
· 	

(
dB(x, y), . . . , dB(xN , yN )

)
, for all t ∈ I.

Hence we get

dB(Tx, Ty) ≤ N
L

· 	
(
dB(x, y), . . . , dB(xN , yN )

)
, for all x, y ∈ X.

Since h := N
L < , we conclude, by using Theorem ., that the N variable mapping T has

a unique multivariate fixed point x∗ ∈ X = C[t – δ, t + δ], i.e., such that

x∗(t) =
∫ t

t

f
(
x∗(τ ), x∗(τ ), . . . , x∗(τ ), τ

)
dτ + g(t), t ∈ I,

and, for any x ∈ X, the iterative sequence {xn(t)} defined by

x(t) =
∫ t

t

f
(
x(τ ), x(τ ), . . . , x(τ ), τ

)
dτ + x,

x(t) =
∫ t

t

f
(
x(τ ), x(τ ), . . . , x(τ ), τ

)
dτ + x,

· · ·

xn+(t) =
∫ t

t

f
(
xn(τ ), xn(τ ), . . . , xn(τ ), τ

)
dτ + x,
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converges to x∗ ∈ X = C[t – δ, t + δ]. The function x∗ = x∗(t) is the unique solution of the
integral equation

x(t) =
∫ t

t

f
(
x(τ ), x(τ ), . . . , x(τ ), τ

)
dτ + g(t), t ∈ [t – δ, t + δ].

In particular, if g(t) := x (where x ∈ R) is a constant function, it is well known that the
above integral equation is equivalent to the initial-value problem associated to a first order
differential equation of the form

dx(t)
dt

= f
(
x(t), x(t), . . . , x(t), t

)
, x(t) = x.

Thus, by our approach an existence and uniqueness result for the initial-value problem
follows.

4 N variable nonexpansive mappings in normed spaces
We will introduce first the concept of N variable nonexpansive mapping.

Definition . Let (X,‖ · ‖) be a normed space. Then a N variable mapping T : XN → X
is said to be nonexpansive, if

‖Tx – Ty‖ ≤ 	(‖x – y‖,‖x – y‖, . . . ,‖xN – yN‖),

for all x = (x, x, x, . . . , xN ), x = (y, y, y, . . . , yN ) ∈ XN , where 	 is a multiply metric func-
tion.

Some useful results are the following.

Lemma . Let X be a Hilbert space with the inner product 〈·, ·〉. We consider on the Carte-
sian product space XN = X × X × · · · × X the following functional:

〈x, y〉∗ =

N

N∑

i=

〈xi, yi〉, ∀x = (x, x, . . . , xN ), y = (y, y, . . . , yN ) ∈ XN .

Then (XN , 〈·, ·〉∗) is a Hilbert space.

Proof It is easy to prove that the XN is a linear space with the following linear operations:

(x, x, . . . , xN ) + (y, y, . . . , yN ) = (x + y, x + y, . . . , xN + yN ),

λ(x, x, . . . , xN ) = (λx,λx, . . . ,λxN ),

for all x = (x, x, . . . , xN ), y = (y, y, . . . , yN ) ∈ XN , and λ ∈ (–∞, +∞). Next we prove that
(XN , 〈·, ·〉∗) is an inner product space. It is easy to see that the following relations hold:

() 〈x, x〉∗ = 
N

∑N
i=〈xi, xi〉 ≥  and 〈x, x〉∗ =  ⇔ x = , ∀x = (x, x, . . . , xN ) ∈ XN ;

() 〈x, y〉∗ = 〈y, x〉∗, ∀x, y ∈ XN ;
() 〈λx, y〉∗ = 

N
∑N

i=〈λxi, yi〉 = λ 
N

∑N
i=〈xi, yi〉 = λ〈x, y〉∗, ∀x, y ∈ XN ;
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() 〈x + y, z〉∗ = 〈x, z〉∗ + 〈y, z〉∗, ∀x, y, z ∈ XN .
Hence (XN , 〈·, ·〉∗) is an inner product space.
The inner product 〈x, y〉∗ generates the following norm:

‖x‖∗ =
√〈x, x〉∗ =

√√
√√ 

N

N∑

i=

‖xi‖, ∀x = (x, x, . . . , xN ) ∈ XN ,

where ‖xi‖ =
√〈xi, xi〉, ∀xi ∈ X, i = , , , . . . , N . Since X is complete, we know that (XN ,

‖ · ‖∗) is also complete. So (XN ,‖ · ‖∗) is a Hilbert space. �

Lemma . Let X be a Hilbert space with the inner product 〈·, ·〉 and let

〈x, y〉∗ =

N

N∑

i=

〈xi, yi〉, ∀x = (x, x, . . . , xN ), y = (y, y, . . . , yN ) ∈ XN

be the inner product on the Cartesian product space XN . Then the following conclusions
hold:

() (XN )∗ = X∗ × X∗ × · · · × X∗;
() f ∈ (XN )∗ if and only if there exist fi ∈ X∗, i ∈ {, , , . . . , N} such that

f (x) =

N

N∑

i=

fi(xi), ∀x = (x, x, . . . , xN ) ∈ XN .

(Here (XN )∗ and X∗ denote the conjugate spaces of XN and X, respectively.)

Proof By Lemma ., we obtain the conclusion (). Next we prove the conclusion ().
Assume that f ∈ (XN )∗. By Riesz’s theorem and by Lemma ., there exists an element
y = (y, y, . . . , yN ) ∈ XN such that

f (x) = 〈x, y〉∗ =

N

N∑

i=

〈xi, yi〉, ∀x = (x, x, . . . , xN ) ∈ XN .

Therefore there exist fi ∈ X∗, i ∈ {, , , . . . , N} such that

f (x) =

N

N∑

i=

fi(xi), ∀x = (x, x, . . . , xN ) ∈ XN .

Assume there exist fi ∈ X∗, i ∈ {, , , . . . , N} such that

f (x) =

N

N∑

i=

fi(xi), ∀x = (x, x, . . . , xN ) ∈ XN .

It is easy to see that f ∈ (XN )∗. This completes the proof. �
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Theorem . Let X be a Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖.
Consider on XN the norm

‖x‖∗ =

√√
√√ 

N

N∑

i=

‖xi‖, ∀x = (x, x, . . . , xN ) ∈ XN .

Let T : XN → X be a N-variables nonexpansive mapping such that the multivariate fixed
point set F(T) is nonempty. Then, for any given x = (x

 , x
, . . . , x

N ) ∈ XN , the iterative se-
quences

xn+
i = αnui + ( – αn)T

(
xn

 , xn
, . . . , xn

N
)
, i = , , , . . . , N , (.)

converge strongly to a multivariate fixed point p of T , where u = (u, u, . . . , un) ∈ XN is a
fixed element and the sequence {αn} ⊂ [, ] satisfies the conditions (C), (C), and (C) as
follows:

(C) limn→∞ αn = ;
(C)

∑∞
n= αn = +∞;

(C)
∑∞

n= |αn+ – αn| < +∞.

Proof We define a mapping T∗ : XN → XN , x �→ T∗(x) by the following relation:

T∗(x, x, . . . , xN ) :=
(
T(x, x, . . . , xN ), T(x, x, . . . , xN ), . . . , T(x, x, . . . , xN )

)
,

for all (x, x, . . . , xN ) ∈ XN . Next we prove that T∗ is a nonexpansive mapping from (XN ,
‖ · ‖∗) into itself. Observe that, for any

x = (x, x, . . . , xN ), y = (y, y, . . . , yN ) ∈ XN ,

we have

∥
∥T∗x – T∗y

∥
∥∗ =

√√
√√ 

N

N∑

i=

‖Tx – Ty‖ ≤
√√
√√ 

N

N∑

i=

( N∑

i=

‖xi – yi‖
)

=

√√
√√ 

N

N∑

i=

(‖x – y‖∗) = ‖x – y‖∗.

Hence T∗ is a nonexpansive mapping from (XN ,‖ · ‖∗) into itself. For any p ∈ F(T) = {x ∈
X : x = T(x, x, . . . , x)}, we have

T∗(p, p, . . . , p) =
(
T(p, p, . . . , p), T(p, p, . . . , p), . . . , T(p, p, . . . , p)

)
= (p, p, . . . , p),

hence p∗ = (p, p, . . . , p) ∈ XN is a fixed point of T∗. Therefore, the mapping T∗ : XN → XN

is a nonexpansive mapping with a nonempty fixed point set

F
(
T∗) =

{
(p, p, . . . , p) ∈ XN : p ∈ F(T)

}
.
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By using the result of Wittmann [], we know that, for any given x ∈ XN , Halpern’s
iterative sequence

xn+ = αnu + ( – αn)T∗xn (.)

converges in the norm ‖ · ‖∗ to a fixed point p∗ = (p, p, . . . , p) of T∗, where u = (u, u, . . . ,
uN ) ∈ XN . Let

xn =
(
xn

 , xn
, . . . , xn

N
)
, n = , , , , . . . .

Then the iterative scheme (.) can be rewritten as (.). From xn → p∗ (in the norm ‖·‖∗),
we have xn

i → p in norm ‖ · ‖ for all i = , , , . . . , N . This completes the proof. �

If the condition (C) can be replaced by the condition (C) [] or the condition (C)
[], then Theorem . still holds.

The construction of fixed points of nonexpansive mappings via Mann’s algorithm has ex-
tensively been investigated recently in the literature (see, e.g., [] and references therein).
Related work can also be found in [–]. Mann’s algorithm generates, initializing an
arbitrary x ∈ C, a sequence according to the following recursive procedure:

xn+ = αnxn + ( – αn)Txn, n ≥ , (.)

where {αn} is a real control sequence in the interval (, ).
If T is a nonexpansive mapping with at least one fixed point and if the control sequence

{αn} is chosen so that
∑∞

n= αn( – αn) = +∞, then the sequence {xn} generated by Mann’s
algorithm (.) converges weakly, in a uniformly convex Banach space with a Fréchet dif-
ferentiable norm (see []), to a fixed point of T .

Next we prove a weak convergence theorem for a N-variables nonexpansive mapping in
Hilbert spaces.

Theorem . Let X be a Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖.
Consider on the Cartesian product space XN the norm

‖x‖∗ =

√√
√√ 

N

N∑

i=

‖xi‖, ∀x = (x, x, . . . , xN ) ∈ XN .

Let T : XN → X be a N-variables nonexpansive mapping such that the multivariate fixed
point set F(T) is nonempty. Consider, for any given x = (x

 , x
, . . . , x

N ) ∈ XN , the following
iterative sequences:

xn+
i = αnxn

i + ( – αn)T
(
xn

 , xn
, . . . , xn

N
)
, i = , , , . . . , N , (.)

where the sequence {αn} ⊂ [, ] satisfies the condition
∑∞

n= αn( – αn) = +∞.
Then the sequence {xn

i } converges weakly to a multivariate fixed point p of T .
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Proof We define a mapping T∗ : XN → XN by the following relation:

T∗(x, x, . . . , xN ) :=
(
T(x, x, . . . , xN ), T(x, x, . . . , xN ), . . . , T(x, x, . . . , xN )

)
.

By Theorem . we know that T∗ : XN → XN is a nonexpansive mapping with a nonempty
fixed point set

F
(
T∗) =

{
(p, p, . . . , p) ∈ XN : p ∈ F(T)

}
.

By Reich’s result [], we obtain, for any given x ∈ XN , Mann’s iterative sequence

xn+ = αnxn + ( – αn)T∗xn, n ≥ , (.)

converging weakly to a fixed point p∗ = (p, p, . . . , p) ∈ F(T∗), where p ∈ F(T). Since XN is a
Hilbert space, for any y = (y, y, . . . , yN ) ∈ XN , we have

〈
xn – p∗, y

〉∗ =

N

N∑

i=

〈
xn

i – p, yi
〉 → , as n → ∞.

Therefore, for any i ∈ {, , , . . . , N}, let us chose y = (, . . . , , yi, , . . . , ) and we get

〈
xn

i – p, yi
〉 →  as n → ∞.

Hence 〈xn
i , yi〉 → 〈p, yi〉 as n → ∞, for any i ∈ {, , , . . . , N}. This shows that the iterative

sequences {xn
i }, i ∈ {, , , . . . , N}, defined by (.) converge weakly to a multivariate fixed

point p of T . This completes the proof. �

Remark The above presented method can successfully be applied for several other itera-
tive schemes in order to prove weak and strong convergence theorems for the multivariate
fixed points of N-variables nonexpansive type mappings.
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