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Abstract
A new three-step iterative algorithm for approximating the zero point of the sum of
an infinite family ofm-accretive mappings and an infinite family of μi-inversely
strongly accretive mappings in a real q-uniformly smooth and uniformly convex
Banach space is presented. The computational error in each step is being considered.
A strong convergence theorem is proved by means of some new techniques, which
extend the corresponding work by some authors. The relationship between the zero
point of the sum of an infinite family ofm-accretive mappings and an infinite family of
μi-inversely strongly accretive mappings and the solution of one kind variational
inequalities is investigated. As an application, an integro-differential system is
exemplified, from which we construct an infinite family ofm-accretive mappings and
an infinite family of μi-inversely strongly accretive mappings. Moreover, the iterative
sequence of the solution of the integro-differential systems is obtained.
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1 Introduction and preliminaries
Throughout this paper, we assume that E is a real Banach space with norm ‖·‖ and E∗ is the
dual space of E. We use ‘→’ and ‘⇀’ (or ‘w – lim’) to denote strong and weak convergence
either in E or in E∗, respectively. We denote the value of f ∈ E∗ at x ∈ E by 〈x, f 〉.

A Banach space E is said to be uniformly convex if, for each ε ∈ (, ], there exists δ > 
such that

‖x‖ = ‖y‖ = , ‖x – y‖ ≥ ε ⇒
∥
∥
∥
∥

x + y


∥
∥
∥
∥

≤  – δ.

A Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ {z ∈ E : ‖z‖ = }.
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In addition, we define a function ρE : [, +∞) → [, +∞) called the modulus of smooth-
ness of E as follows:

ρE(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ E,‖x‖ = ,‖y‖ ≤ t

}

.

It is well known that E is uniformly smooth if and only if ρE(t)
t → , as t → . Let q > 

be a real number. A Banach space E is said to be q-uniformly smooth if there exists a
positive constant C such that ρE(t) ≤ Ctq. It is obvious that q-uniformly smooth Banach
space must be uniformly smooth.

An operator B : E → E∗ is said to be monotone [] if 〈u – v, Bu – Bv〉 ≥ , for all u, v ∈
D(B). The monotone operator B is said to be maximal monotone if the graph of B, G(B), is
not contained properly in any other monotone subset of E × E∗. An operator B : E → E∗ is
said to be coercive if limn→∞ 〈xn ,Bxn〉

‖xn‖ = +∞ for {xn} ⊂ D(B) such that limn→∞ ‖xn‖ = +∞.
A single-valued mapping F : D(F) = E → E∗ is said to be hemi-continuous [] if w –

limt→ F(x + ty) = Fx, for any x, y ∈ E. A single-valued mapping F : D(F) = E → E∗ is said to
be demi-continuous [] if w – limn→∞ Fxn = Fx, for any sequence {xn} strongly convergent
to x in E.

Following from [] or [], the function h is said to be a proper convex function on E if
h is defined from E onto (–∞, +∞], h is not identically +∞ such that h(( – λ)x + λy) ≤
( – λ)h(x) + λh(y), whenever x, y ∈ E and  ≤ λ ≤ . h is said to be strictly convex if h(( –
λ)x + λy) < ( – λ)h(x) + λh(y), for all  < λ <  and x, y ∈ E with x = y, h(x) < +∞ and
h(y) < +∞. The function h : E → (–∞, +∞] is said to be lower-semi-continuous on E if
lim infy→x h(y) ≥ h(x), for any x ∈ E. Given a proper convex function h on E and a point
x ∈ E, we denote by ∂h(x) the set of x∗ ∈ E∗ such that h(x) ≤ h(y) + 〈x – y, x∗〉 for any y ∈ E.
Such elements x∗ are called subgradients of h at x, and ∂h(x) is called the subdifferential
of h at x.

For q > , the generalized duality mapping Jq : E → E∗ is defined by

Jqx :=
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖q,‖f ‖ = ‖x‖q–}, x ∈ E.

In particular, J := J is called the normalized duality mapping and Jq(x) = ‖x‖q–J(x) for x =
. It is well known that if E is smooth, then Jq is single-valued. If E is reduced to the Hilbert
space H , then Jq ≡ I is the identity mapping. It can be seen from [] that the normalized
duality mapping J has the following properties:

(i) if E is uniformly smooth, then J is norm-to-norm uniformly continuous on each
bounded subset in E;

(ii) the reflexivity of E and strict convexity of E∗ imply that J is single-valued,
monotone, and demi-continuous.

In the following, we still denote by J and Jq the single-valued normalized duality mapping
and the single-valued generalized duality mapping.

For a mapping T : D(T) � E → E, we use Fix(T) to denote the fixed point set of it; that
is, Fix(T) := {x ∈ D(T) : Tx = x}.

Let T : D(T) � E → E be a mapping. Then T is said to be
() non-expansive if

‖Tx – Ty‖ ≤ ‖x – y‖ for ∀x, y ∈ D(T);
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() k-Lipschitz if there exists k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖ for ∀x, y ∈ D(T);

in particular, if  < k < , then T is called a contraction and if k = , then T reduces
to a non-expansive mapping;

() accretive if, for all x, y ∈ D(T), there exists jq(x – y) ∈ Jq(x – y) such that

〈

Tx – Ty, jq(x – y)
〉≥ ;

() μ-inversely strongly accretive if, for all x, y ∈ D(T), there exists jq(x – y) ∈ Jq(x – y)
such that

〈

Tx – Ty, jq(x – y)
〉≥ μ‖Tx – Ty‖q

for some μ > ;
() m-accretive if T is accretive and R(I + λT) = E for ∀λ > ;
() strongly positive(see []) if D(T) = E where E is a real smooth Banach space and

there exists γ >  such that

〈Tx, Jx〉 ≥ γ ‖x‖ for ∀x ∈ E;

in this case,

‖aI – bT‖ = sup
‖x‖≤

∣
∣
〈

(aI – bT)x, J(x)
〉∣
∣,

where I is the identity mapping and a ∈ [, ], b ∈ [–, ];
() demiclosed at p if whenever {xn} is a sequence in D(T) such that xn ⇀ x ∈ D(T) and

Txn → p then Tx = p;
() strongly accretive if, for all x, y ∈ D(T), there exists j(x – y) ∈ J(x – y) such that

〈

Tx – Ty, j(x – y)
〉≥ ε‖x – y‖

for some ε > .
For the accretive mapping A, we use N(A) to denote the set of zero points of it; that is,

N(A) := {x ∈ D(A) : Ax = }. If A is accretive, then we can define, for each r > , a single-
valued mapping JA

r : R(I + rA) → D(A) by JA
r := (I + rA)–, which is called the resolvent of

A []. It is well known that JA
r is non-expansive and N(A) = Fix(JA

r ).
Let C be a nonempty, closed and convex subset of E and Q be a mapping of E onto C.

Then Q is said to be sunny [] if Q(Q(x) + t(x – Q(x))) = Q(x), for all x ∈ E and t ≥ .
A mapping Q of E into E is said to be a retraction [] if Q = Q. If a mapping Q is a

retraction, then Q(z) = z for every z ∈ R(Q), where R(Q) is the range of Q.
A subset C of E is said to be a sunny non-expansive retract of E [] if there exists a sunny

non-expansive retraction of E onto C and it is called a non-expansive retract of E if there
exists a non-expansive retraction of E onto C.
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Many practical problems can be reduced to finding zeros of the sum of two accretive op-
erators; that is,  ∈ (A + B)x. Forward-backward splitting algorithms, which have recently
received much attention to many mathematicians, were proposed by Lions and Mercier
[], by Passty [], and, in a dual form for convex programming, by Han and Lou [].

The classical forward-backward splitting algorithm is given in the following way:

xn+ = (I + rnB)–(I – rnA)xn, n ≥ . ()

Based on iterative algorithm (), much work has been done for finding x ∈ H such that
x ∈ N(A + B), where A and B are μ-inversely strongly accretive mapping and m-accretive
mapping defined in the Hilbert space H , respectively. In , Wei et al. extended the
related work from the Hilbert space to the real smooth and uniformly convex Banach
space and presented the following iterative algorithm with errors []:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = QC[( – αn)(xn + en)],

zn = ( – βn)xn + βn[ayn +
∑N

i= aiJ
Ai
rn,i (yn – rn,iBiyn)],

xn+ = γnηf (xn) + (I – γnT)zn, n ≥ ,

()

where C is a nonempty, closed, and convex sunny non-expansive retract of E, QC is the
sunny non-expansive retraction of E onto C, {en} ⊂ E is the error sequence, {Ai}N

i= is a
finite family of m-accretive mappings and {Bi}N

i= is a finite family of μ-inversely strongly
accretive mappings. T : E → E is a strongly positive linear bounded operator with coef-
ficient γ and f : E → E is a contraction with coefficient k ∈ (, ). JAi

rn,i = (I + rn,iAi)–, for
i = , , . . . , N ,

∑N
m= am = ,  < am < , for m = , , , . . . , N . Then {xn} is proved to con-

verge strongly to p ∈⋂N
i= N(Ai + Bi), which solves the variational inequality

〈

(T – ηf )p, J(p – z)
〉≤ ,

for ∀z ∈⋂N
i= N(Ai + Bi) under some conditions.

The implicit midpoint rule (IMR) is one of the powerful numerical methods for solving
ordinary differential equations, which is extensively studied recently by Alghamdi et al.
They presented the following implicit midpoint rule for approximating the fixed point of
a non-expansive mapping in a Hilbert space in []:

x ∈ H , xn+ = ( – αn)xn + αnT
(

xn + xn+



)

, n ≥ , ()

where T is non-expansive from H to H . If Fix(T) = ∅, then they proved that {xn} converges
weakly to p ∈ Fix(T), under some conditions.

Inspired by the work in [] and [], we shall present the following iterative algorithm
with errors in a real q-uniformly smooth and uniformly convex Banach space:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

yn = QC[( – αn)(xn + e′
n)],

zn = δnyn + βn
∑∞

i= aiJ
Ai
rn,i [

yn+zn
 – rn,iBi( yn+zn

 )] + ζne′′
n,

xn+ = γnηf (xn) + (I – γnT)zn + e′′′
n , n ≥ ,

(A)
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where C is a nonempty, closed, and convex sunny non-expansive retract of E, QC is
the sunny non-expansive retraction of E onto C, {e′

n}, {e′′
n}, and {e′′′

n } are three error se-
quences, Ai : C → E is m-accretive and Bi : C → E is μi-inversely strongly accretive,
where i ∈ N

+. T : E → E is a strongly positive linear bounded operator with coefficient
γ and f : E → E is a contraction with coefficient k ∈ (, ). JAi

rn,i = (I + rn,iAi)–, for i ∈ N
+.

∑∞
m= am = ,  < am < , for m ∈ N

+. δn + βn + ζn ≡ , for n ≥ . More details of it-
erative algorithm (A) will be presented in Section . Then {xn} is proved to converge
strongly to p ∈ ⋂∞

i= N(Ai + Bi), which is also a solution of one kind of variational in-
equality.

Our main contributions are:
(i) A new three-step iterative algorithm is designed by combining the ideas of famous

iterative algorithms such as proximal methods, Halpern methods, convex
combination methods, viscosity methods, and implicit midpoint methods.

(ii) The assumption that ‘the duality mapping J is weakly sequentially continuous’ or
‘J is weakly sequentially continuous at zero’ in most of the existing related work is
deleted.

(iii) ‘Bi is μ-inversely strongly accretive’ in most of the related work is replaced by ‘Bi is
μi-inversely strongly accretive’, which makes the discussion more general.
Moreover, the design of the iterative algorithm is extended from finite case of the
sum of m-accretive mappings and μ-inversely strongly accretive mappings to the
infinite case.

(iv) The discussion is undertaken in the frame of a real q-uniformly smooth and
uniformly convex Banach space, which is more general than that in a Hilbert space.

(v) In each step of the three-step iterative algorithm, computational error is being
considered - that is, we consider three error sequences {e′

n}, {e′′
n}, and {e′′′

n }.
(vi) All of the three sequences {yn}, {zn}, and {xn} constructed in the new iterative

algorithm are proved to be strongly convergent to the zero point of the sum of an
infinite family of m-accretive mappings and an infinite family of μi-inversely
strongly accretive mappings.

(vii) The connection between the zero point of the sum of m-accretive mappings and
μi-inversely strongly accretive mappings and the solution of one kind variational
inequalities is being set up.

(viii) In Section , the application of the main result in Section  to one kind
integro-differential systems is demonstrated, from which we can see the
connections between variational inequalities, integro-differential equations, and
iterative algorithms.

Next, we list some results we need in the sequel.

Lemma  (see []) Let E be a Banach space and C be a nonempty closed and convex subset
of E. Let f : C → C be a contraction. Then f has a unique fixed point u ∈ C.

Lemma  (see []) Let E be a real uniformly convex Banach space, C be a nonempty,
closed, and convex subset of E and T : C → E be a non-expansive mapping such that
Fix(T) = ∅, then I – T is demiclosed at zero.
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Lemma  (see []) In a real Banach space E, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈

y, j(x + y)
〉

, ∀x, y ∈ E,

where j(x + y) ∈ J(x + y).

Lemma  (see []) Let {an} and {cn} be two sequences of nonnegative real numbers satis-
fying

an+ ≤ ( – tn)an + bn + cn, ∀n ≥ ,

where {tn} ⊂ (, ) and {bn} is a number sequence. Assume that
∑∞

n= tn = +∞,
lim supn→∞

bn
tn

≤ , and
∑∞

n= cn < +∞. Then limn→∞ an = .

Lemma  (see []) Let E be a Banach space and let A be an m-accretive mapping. For
λ > , μ > , and x ∈ E, one has

JA
λ x = JA

μ

(
μ

λ
x +

(

 –
μ

λ

)

JA
λ x

)

,

where JA
λ = (I + λA)– and JA

μ = (I + μA)–.

Lemma  (see []) Let E be a real Banach space and let C be a nonempty, closed, and
convex subset of E. Suppose A : C → E is a single-valued mapping and B : E → E is m-
accretive. Then

Fix
(

(I + rB)–(I – rA)
)

= N(A + B) for ∀r > .

Lemma  (see []) Assume T is a strongly positive bounded operator with coefficient γ > 
on a real smooth Banach space E and  < ρ ≤ ‖T‖–. Then ‖I – ρT‖ ≤  – ργ .

Lemma  (see []) Let E be a real strictly convex Banach space and let C be a
nonempty closed and convex subset of E. Let Tm : C → C be a non-expansive mapping
for each m ≥ . Let {am} be a real number sequence in (,) such that

∑∞
m= am = .

Suppose that
⋂∞

m= Fix(Tm) = ∅. Then the mapping
∑∞

m= amTm is non-expansive with
Fix(

∑∞
m= amTm) =

⋂∞
m= Fix(Tm).

Lemma  (See []) Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth Banach space E with constant Kq. Let the mapping A : C → E be a μ-inversely
strongly accretive mapping. Then the following inequality holds:

∥
∥(I – rA)x – (I – rA)y

∥
∥

q ≤ ‖x – y‖q – r
(

qμ – Kqrq–)‖Ax – Ay‖q.

In particular, if  < r ≤ ( qμ

Kq
)


q– , then (I – rA) is non-expansive.
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2 Strong convergence theorems
Lemma  Let E be a real uniformly smooth and uniformly convex Banach space and C
be a nonempty, closed, and convex sunny non-expansive retract of E, and let QC be the
sunny non-expansive retraction of E onto C. Let f : E → E be a fixed contractive mapping
with coefficient k ∈ (, ), T : E → E be a strongly positive linear bounded operator with
coefficient γ and U : C → C be a non-expansive mapping. Suppose that  < η < γ

k and
Fix(U) = ∅. If for each t ∈ (, ), define Tt : E → E by

Ttx := tηf (x) + (I – tT)UQCx, ()

then Tt has a fixed point xt , for each  < t ≤ ‖T‖–, which is convergent strongly to the fixed
point of U , as t → . That is, limt→ xt = p ∈ Fix(U). Moreover, p satisfies the following
variational inequality: for ∀z ∈ Fix(U),

〈

(T – ηf )p, J(p – z)
〉≤ . ()

Proof Copying Steps  to  of Lemma  in [], we have the following results:
(a) Tt is a contraction, for  < t < ‖T‖–.
(b) Tt has a unique fixed point xt .
(c) {xt} is bounded, for  < t < ‖T‖–.
(d) xt – UQCxt → , as t → .
(e) If the inequality () has a solution, then the solution must be unique.
Finally, we are to show that xt → p ∈ Fix(U), as t → , which satisfies the variational

inequality ().
Assume tn → . Set xn := xtn and define μ : E →R by

μ(x) = LIM‖xn – x‖, x ∈ E,

where LIM is the Banach limit on l∞. Let

K =
{

x ∈ E : μ(x) = min
x∈E

LIM‖xn – x‖
}

.

It is easily seen that K is a nonempty, closed, convex, and bounded subset of E. Since
xn – UQCxn → , for x ∈ K ,

μ(UQCx) = LIM‖xn – UQCx‖ ≤ LIM‖xn – x‖ = μ(x),

it follows that UQC(K) ⊂ K ; that is, K is invariant under UQC . Since a uniformly smooth
Banach space has the fixed point property for non-expansive mappings, UQC has a fixed
point, say p, in K . That is, UQCp = p ∈ C, which ensures that p = Up from the defi-
nition of U and then p ∈ Fix(U). Since p is also a minimizer of μ over E, it follows that,
for t ∈ (, )

 ≤ μ(p + ηtf (p) – tTp) – μ(p)
t

= LIM
‖xn – p – ηtf (p) + tTp‖ – ‖xn – p‖

t
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= LIM
〈xn – p – ηtf (p) + tTp, J(xn – p – ηtf (p) + tTp)〉 – ‖xn – p‖

t

= LIM
(〈

xn – p, J
(

xn – p – ηtf (p) + tTp
)〉

+ t
〈

Tp – ηf (p), J
(

xn – p – ηtf (p) + tTp
)〉

– ‖xn – p‖)/t.

Since E is uniformly smooth, then by letting t → , we find the two limits above can be
interchanged and obtain

LIM
〈

ηf (p) – Tp, J(xn – p)
〉≤ . ()

Since xt – p = t(ηf (xt) – Tp) + (I – tT)(UQCxt – p), then

‖xt – p‖ = t
〈

ηf (xt) – Tp, J(xt – p)
〉

+
〈

(I – tT)(UQCxt – p), J(xt – p)
〉

≤ tη
〈

f (xt) – f (p), J(xt – p)
〉

+ t
〈

ηf (p) – Tp, J(xt – p)
〉

+ ‖I – tT‖‖xt – p‖

≤ [

 – t(γ – ηk)
]‖xt – p‖ + t

〈

ηf (p) – Tp, J(xt – p)
〉

.

Therefore,

‖xt – p‖ ≤ 
γ – ηk

〈

ηf (p) – Tp, J(xt – p)
〉

.

Hence by ()

LIM‖xn – p‖ ≤ 
γ – ηk

LIM
〈

ηf (p) – Tp, J(xn – p)
〉≤ ,

which implies that LIM‖xn – p‖ = , and then there exists a subsequence which is still
denoted by {xn} such that xn → p.

Next, we shall show that p solves the variational inequality ().
Since xt = tηf (xt) + (I – tT)UQCxt , (T – ηf )xt = – 

t (I – tT)(I – UQC)xt . For ∀z ∈ Fix(U),

〈

(T – ηf )xt , J(xt – z)
〉

= –

t
〈

(I – tT)(I – UQC)xt , J(xt – z)
〉

= –

t
〈

(I – UQC)xt – (I – UQC)z, J(xt – z)
〉

+
〈

T(I – UQC)xt , J(xt – z)
〉

= –

t

[‖xt – z‖ –
〈

UQCxt – UQCz, J(xt – z)
〉

+
〈

T(I – UQC)xt , J(xt – z)
〉

≤ 〈

T(I – UQC)xt , J(xt – z)
〉

.

Taking the limits on both sides of the above inequality, 〈(T – ηf )p, J(p – z)〉 ≤  since
xn → p and J is uniformly continuous on each bounded subsets of E.

Thus p satisfies the variational inequality ().
Now assume there exists another subsequence {xm} of {xt} satisfying xm → q. Then

result (d) implies that UQCxm → q. From Lemma , we know that I – UQC is demiclosed
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at zero, then q = UQCq, which ensures that q ∈ Fix(U). Repeating the above proof, we
can also know that q solves the variational inequality (). Thus p = q by using the result
of (e).

Hence xt → p, as t → , which is the unique solution of the variational inequality ().
This completes the proof. �

Theorem  Let E be a real q-uniformly smooth Banach space with constant Kq and also
be a uniformly convex Banach space. Let C be a nonempty, closed, and convex sunny non-
expansive retract of E, and QC be the sunny non-expansive retraction of E onto C. Let
f : E → E be a contraction with coefficient k ∈ (, ), T : E → E be a strongly positive linear
bounded operator with coefficient γ . Let Ai : C → E be m-accretive mappings, Bi : C → E be
μi-inversely strongly accretive mappings, for i ∈ N

+. Let D :=
⋂∞

i= N(Ai + Bi) = ∅. Suppose
 < η < γ

k . Suppose {αn}, {δn}, {βn}, {ζn}, {γn} ⊂ (, ), and {rn,i} ⊂ (, +∞) for i ∈ N
+. Sup-

pose {ai}∞i= ⊂ (, ) with
∑∞

i= ai = , {e′′
n} ⊂ C, and {e′

n}, {e′′′
n } ⊂ E are three error sequences.

Let {xn} be generated by the iterative algorithm (A). Further suppose that the following con-
ditions are satisfied:

(i)
∑∞

n= αn < +∞;
(ii)

∑∞
n= γn = ∞, γn → , as n → ∞ and

∑∞
n= |γn – γn–| < +∞;

(iii)
∑∞

n= |rn+,i – rn,i| < +∞,  < ε ≤ rn,i ≤ ( qμi
Kq

)


q– , for n ≥  and i ∈N
+;

(iv) δn + βn + ζn ≡ , for n ≥ ,
∑∞

n= |δn – δn–| < +∞,
∑∞

n= |βn – βn–| < +∞,
∑∞

n=
ζn
βn

< +∞, and βn → , as n → ∞;
(v)

∑∞
n= ‖e′

n‖ < +∞,
∑∞

n= ‖e′′
n‖ < +∞,

∑∞
n= ‖e′′′

n ‖ < +∞.

Then three sequences {xn}, {yn}, and {zn} converge strongly to the unique element p ∈
D, which satisfies the following variational inequality: for ∀y ∈ D,

〈

(T – ηf )p, J(p – y)
〉≤ . ()

Proof We shall split the proof into seven steps.
Step . {xn} is well defined.
In fact, it suffices to show that {zn} is well defined.
For t, s, r ∈ (, ) and t + s+r ≡ , define Ut,s,r : C → C by Ut,s,rx := tu+ sU( u+x

 )+rv, where
U : C → C is non-expansive for x, u, v ∈ C. Then

‖Ut,s,rx – Ut,s,ry‖ ≤ s
∥
∥
∥
∥

u + x


–
u + y



∥
∥
∥
∥

≤ s

‖x – y‖.

Thus Ut,s,r is a contraction, which ensures from Lemma  that there exists xt,s,r ∈ C such
that Ut,s,rxt,s,r = xt,s,r . That is, xt,s,r = tu + sU( u+xt,s,r

 ) + rv.
Since JAi

rn,i (I – rn,iBi) is non-expansive in view of Lemma  and
∑∞

i= ai = ,
∑∞

i= aiJ
Ai
rn,i (I –

rn,iBi) is non-expansive, which implies that {zn} is well defined, and then {xn} is well de-
fined.

Step . D :=
⋂∞

i= N(Ai + Bi) = Fix(
∑∞

i= aiJ
Ai
rn,i (I – rn,iBi)).

Lemma  implies that N(Ai + Bi) = Fix(JAi
rn,i (I – rn,iBi)), where i ∈ N

+. Then Lemma 
ensures that

⋂∞
i= N(Ai + Bi) =

⋂∞
i= Fix(JAi

rn,i (I – rn,iBi)) = Fix(
∑∞

i= aiJ
Ai
rn,i (I – rn,iBi)).

Step . {xn}, {yn}, and {zn} are all bounded.
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∀p ∈ D, we see that, for n ≥ ,

‖yn – p‖ ≤ ( – αn)‖xn – p‖ + ( – αn)
∥
∥e′

n
∥
∥ + αn‖p‖. ()

Therefore, for p ∈ D and n ≥ , we have

‖zn – p‖ ≤ δn‖yn – p‖ + βn

∥
∥
∥
∥
∥

∞
∑

i=

aiJAi
rn,i

[
yn + zn


– rn,iBi

(
yn + zn



)]

– p

∥
∥
∥
∥
∥

+ ζn
∥
∥e′′

n – p
∥
∥

≤
(

δn +
βn



)

‖yn – p‖ +
βn


‖zn – p‖ + ζn

∥
∥e′′

n – p
∥
∥

≤
(

 –
βn



)

‖yn – p‖ +
βn


‖zn – p‖ + ζn

∥
∥e′′

n – p
∥
∥,

which implies that

‖zn – p‖ ≤ ‖yn – p‖ +
ζn

 – βn

∥
∥e′′

n – p
∥
∥≤ ‖yn – p‖ + 

∥
∥e′′

n
∥
∥ +

ζn

 – βn
‖p‖. ()

Noticing () and (), using Lemma , we have, for n ≥ ,

‖xn+ – p‖ ≤ γnηk‖xn – p‖ + γn
∥
∥ηf (p) – Tp

∥
∥ + ( – γnγ )‖zn – p‖ +

∥
∥e′′′

n
∥
∥

≤ [

 – γn(γ – kη)
]‖xn – p‖ + γn

∥
∥ηf (p) – Tp

∥
∥

+
∥
∥e′

n
∥
∥ + 

∥
∥e′′

n
∥
∥ +

∥
∥e′′′

n
∥
∥ + αn‖p‖ +

ζn

 – βn
‖p‖. ()

By using the inductive method, we can easily get the following result from ():

‖xn+ – p‖ ≤ max

{

‖x – p‖,
‖ηf (p) – Tp‖

γ – kη

}

+
n
∑

k=

∥
∥e′

k
∥
∥ + 

n
∑

k=

∥
∥e′′

k
∥
∥

+
n
∑

k=

∥
∥e′′′

k
∥
∥ + ‖p‖

( n
∑

k=

αk +
n
∑

k=

ζk

 – βk

)

.

Therefore, from assumptions (i), (iv), and (v), we know that {xn} is bounded. Then {yn}
and {zn} are bounded in view of () and (), respectively.

Let un,i = (I – rn,iBi)( yn+zn
 ), then {un,i} is bounded in view of Lemma , for n ≥  and

i ∈ N
+.

Since ‖∑∞
i= aiJ

Ai
rn,i un,i‖ ≤ ‖∑∞

i= aiJ
Ai
rn,i un,i –

∑∞
i= aiJ

Ai
rn,i (I – rn,iBi)p‖ + ‖p‖ ≤ ‖ yn+zn

 – p‖ +
‖p‖ in view of Step , then {∑∞

i= aiJ
Ai
rn,i un,i} is bounded. Moreover, we can easily know that

{f (xn)}, {Tzn}, {Bi( yn+zn
 )}, and {JAi

rn,i un,i} are all bounded, for n ≥  and i ∈N
+.

Set M′ = sup{‖un,i‖,‖xn‖,‖Tzn‖,‖yn‖,‖f (xn)‖,‖JAi
rn,i un,i‖,‖∑∞

i= aiJ
Ai
rn,i un,i‖,‖Bi( yn+zn

 )‖ :
n ≥ , i ∈ N

+}. Then M′ is a positive constant.
Step . limn→∞ ‖xn+ – xn‖ = .
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In fact, if rn,i ≤ rn+,i, then, using Lemma ,

∥
∥JAi

rn+,i
un+,i – JAi

rn,i
un,i

∥
∥

≤ ‖un+,i – un,i‖ +
rn+,i – rn,i

ε

∥
∥JAi

rn+,i
un+,i – un,i

∥
∥

≤ ‖un+,i – un,i‖ + 
rn+,i – rn,i

ε
M′. ()

If rn+,i ≤ rn,i, then imitating the proof of (), we have

∥
∥JAi

rn+,i
un+,i – JAi

rn,i
un,i

∥
∥≤ ‖un+,i – un,i‖ + 

rn,i – rn+,i

ε
M′. ()

Combining () and (), we have, for n ≥  and i ∈N
+,

∥
∥JAi

rn+,i
un+,i – JAi

rn,i
un,i

∥
∥≤ ‖un+,i – un,i‖ + 

|rn,i – rn+,i|
ε

M′. ()

Then in view of Lemma 

‖un+,i – un,i‖ =
∥
∥
∥
∥

(I – rn+,iBi)
(

yn+ + zn+


–

yn + zn



)∥
∥
∥
∥

+ |rn,i – rn+,i|
∥
∥
∥
∥

Bi

(
yn + zn



)∥
∥
∥
∥

≤
∥
∥
∥
∥

yn+ – yn



∥
∥
∥
∥

+
∥
∥
∥
∥

zn+ – zn



∥
∥
∥
∥

+ |rn,i – rn+,i|M′. ()

In view of () and (), we have

‖zn+ – zn‖

≤ δn+‖yn+ – yn‖ + |δn+ – δn|‖yn‖ + |βn+ – βn|
∥
∥
∥
∥
∥

∞
∑

i=

aiJAi
rn,i

un,i

∥
∥
∥
∥
∥

+ βn+

∥
∥
∥
∥
∥

∞
∑

i=

aiJAi
rn+,i

un+,i –
∞
∑

i=

aiJAi
rn,i

un,i

∥
∥
∥
∥
∥

+
∥
∥ζn+e′′

n+ – ζne′′
n
∥
∥

≤
(

δn+ +
βn+



)

‖yn+ – yn‖ + |βn+ – βn|M′ + |δn+ – δn|M′ +
βn+


‖zn+ – zn‖

+
(

 +

ε

)

βn+|rn,i – rn+,i|M′ +
∥
∥ζn+e′′

n+ – ζne′′
n
∥
∥,

which implies that

‖zn+ – zn‖ ≤ δn+ + βn+


 – βn+


‖yn+ – yn‖ +
|βn+ – βn|M′

 – βn+

+
|δn+ – δn|M′

 – βn+
+

( + 
ε

)βn+|rn,i – rn+,i|M′

 – βn+
+

‖ζn+e′′
n+ – ζne′′

n‖
 – βn+

≤ ‖yn+ – yn‖ + |βn+ – βn|M′ + |δn+ – δn|M′

+ 
(

 +

ε

)

βn+|rn,i – rn+,i|M′ + 
∥
∥ζn+e′′

n+ – ζne′′
n
∥
∥. ()
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On the other hand,

‖yn+ – yn‖ ≤ ( – αn+)‖xn+ – xn‖ + |αn+ – αn|‖xn‖
+ ( – αn+)

∥
∥e′

n+ – e′
n
∥
∥ + |αn+ – αn|

∥
∥e′

n
∥
∥. ()

Thus in view of () and (), we have, for n ≥ ,

‖xn+ – xn‖
≤ γnη

∥
∥f (xn) – f (xn–)

∥
∥ + η|γn – γn–|

∥
∥f (xn–)

∥
∥

+ ‖I – γnT‖‖zn – zn–‖ + |γn – γn–|‖Tzn–‖ +
∥
∥e′′′

n – e′′′
n–

∥
∥

≤ γnηk‖xn – xn–‖ + η|γn – γn–|
∥
∥f (xn–)

∥
∥ + ( – γnγ )‖zn – zn–‖

+ |γn – γn–|‖Tzn–‖ +
∥
∥e′′′

n – e′′′
n–

∥
∥

≤ [

 – γn(γ – ηk)
]‖xn – xn–‖ + ( + η)M′|γn – γn–| +

∥
∥e′′′

n – e′′′
n–

∥
∥

+ ( – γnγ )
[

M′|αn – αn–| + M′|βn – βn–| + M′|δn – δn–|

+ M′
(

 +

ε

)

|rn,i – rn–,i| +
∥
∥e′

n
∥
∥ + 

∥
∥e′

n–
∥
∥ + 

∥
∥e′′

n
∥
∥ + 

∥
∥e′′

n–
∥
∥

]

. ()

Using Lemma , we have from () limn→∞ ‖xn+ – xn‖ = .
Step . limn→∞ ‖yn – zn‖ = , limn→∞ ‖∑∞

i= aiJ
Ai
rn,i (I – rn,iBi)( yn+zn

 ) – zn‖ =  and
limn→∞ ‖∑∞

i= aiJ
Ai
rn,i (I – rn,iBi)yn – yn‖ = .

Since both {xn} and {Tzn} are bounded and γn → , as n → +∞,

xn+ – zn = γn
(

ηf (xn) – Tzn
)

+ e′′′
n → , as n → +∞.

In view of Step , xn – zn → , as n → +∞. Since αn → , ‖yn – QCxn‖ ≤ αn‖xn‖ + ( –
αn)‖e′

n‖ → , as n → +∞. Therefore

yn – zn = yn – QCzn = yn – QCxn + QCxn – QCzn → , as n → +∞.

Since δn + βn + ζn ≡ , βn → , as n → ∞, and {∑∞
i= aiJ

Ai
rn,i (I – rn,iBi)( yn+zn

 )} is bounded,

∥
∥
∥
∥
∥

zn –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)
(

yn + zn



)
∥
∥
∥
∥
∥

≤ δn

∥
∥
∥
∥
∥

yn –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)
(

yn + zn



)
∥
∥
∥
∥
∥

+ ζn

∥
∥
∥
∥
∥

e′′
n –

∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)
(

yn + zn



)
∥
∥
∥
∥
∥

→ ,
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as n → +∞. Using the above facts, we have

∥
∥
∥
∥
∥

∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn – yn

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)
(

yn + zn



)
∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)
(

yn + zn



)

– zn

∥
∥
∥
∥
∥

+ ‖zn – yn‖ → , as n → ∞.

Step . lim supn→+∞〈ηf (p) – Tp, J(xn+ – p)〉 ≤ , where p ∈ D, which is the unique
solution of the variational inequality ().

Since
∑∞

i= aiJ
Ai
rn,i (I – rn,iBi) : C → C is non-expansive, using Lemma , we know that

there exists zt such that zt = tηf (zt) + (I – tT)
∑∞

i= aiJ
Ai
rn,i (I – rn,iBi)QCzt for t ∈ (,‖T‖–).

Moreover, zt → p ∈ D, as t → , which is the unique solution of the variational inequality
().

Since ‖zt‖ ≤ ‖zt – p‖ + ‖p‖, {zt} is bounded, as t → . Using Lemma , we have

‖zt – yn‖

=

∥
∥
∥
∥
∥

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn +
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn – yn

∥
∥
∥
∥
∥



≤
∥
∥
∥
∥
∥

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

∥
∥
∥
∥
∥



+ 

〈 ∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn – yn, J(zt – yn)

〉

=

∥
∥
∥
∥
∥

tηf (zt) + (I – tT)
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)QCzt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

∥
∥
∥
∥
∥



+ 

〈 ∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn – yn, J(zt – yn)

〉

≤
∥
∥
∥
∥
∥

∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)QCzt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

∥
∥
∥
∥
∥



+ t

〈

ηf (zt) – T
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)QCzt , J

(

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)〉

+ 

〈 ∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn – yn, J(zt – yn)

〉

≤ ‖zt – yn‖

+ t

〈

ηf (zt) – T
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)QCzt , J

(

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)〉

+ 

∥
∥
∥
∥
∥

∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn – yn

∥
∥
∥
∥
∥
‖zt – yn‖,
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which implies that

t

〈

T
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)QCzt – ηf (zt), J

(

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)〉

≤
∥
∥
∥
∥
∥

∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn – yn

∥
∥
∥
∥
∥
‖zt – yn‖.

So, limt→ lim supn→+∞〈T ∑∞
i= aiJ

Ai
rn,i (I – rn,iBi)QCzt – ηf (zt), J(zt –

∑∞
i= aiJ

Ai
rn,i (I –

rn,iBi)yn)〉 ≤  in view of Step .
Since zt → p,

∑∞
i= aiJ

Ai
rn,i (I – rn,iBi)QCzt → ∑∞

i= aiJ
Ai
rn,i (I – rn,iBi)QCp = p, as t → .

Noticing the following fact:

〈

Tp – ηf (p), J

(

p –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)〉

=

〈

Tp – ηf (p), J

(

p –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)

– J

(

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)〉

+

〈

Tp – ηf (p), J

(

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)〉

=

〈

Tp – ηf (p), J

(

p –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)

– J

(

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)〉

+

〈

Tp – ηf (p) – T
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)QCzt + ηf (zt),

J

(

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)〉

+

〈

T
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)QCzt – ηf (zt), J

(

zt –
∞
∑

i=

aiJAi
rn,i

(I – rn,iBi)yn

)〉

,

we have lim supn→+∞〈Tp – ηf (p), J(p –
∑∞

i= aiJ
Ai
rn,i (I – rn,iBi)yn)〉 ≤ .

Since 〈Tp – ηf (p), J(p – xn+)〉 = 〈Tp – ηf (p), J(p – xn+) – J(p –
∑∞

i= aiJ
Ai
rn,i (I –

rn,iBi)yn)〉 + 〈Tp – ηf (p), J(p –
∑∞

i= aiJ
Ai
rn,i (I – rn,iBi)yn)〉 and xn+ –

∑∞
i= aiJ

Ai
rn,i (I –

rn,iBi)yn →  in view of Step , then lim supn→∞〈ηf (p) – Tp, J(xn+ – p)〉 ≤ .
Step . xn → p, as n → +∞, where p ∈ D is the same as that in Step .
Let M′′ = sup{‖( – αn)(xn + en) – p‖,‖xn – p‖, M′‖p‖,‖e′′

n – p‖ : n ≥ }. By using
Lemma  again, we have

‖yn – p‖

≤ ( – αn)‖xn – p‖ + 
〈

( – αn)e′
n – αnp, J

[

( – αn)
(

xn + e′
n
)

– p
]〉

. ()
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Since

‖zn – p‖ ≤ δn‖yn – p‖ + βn

∥
∥
∥
∥

yn + zn


– p

∥
∥
∥
∥



+ ζn
∥
∥e′′

n – p
∥
∥



≤
(

δn +
βn



)

‖yn – p‖ +
βn


‖zn – p‖ + ζn

∥
∥e′′

n – p
∥
∥

,

combining (), we have

‖zn – p‖

≤ ‖yn – p‖ + ζn
∥
∥e′′

n – p
∥
∥



≤ ( – αn)‖xn – p‖ + 
〈

( – αn)e′
n – αnp, J

[

( – αn)
(

xn + e′
n
)

– p
]〉

+ ζn
∥
∥e′′

n – p
∥
∥

. ()

Using () and Lemma , we have, for n ≥ ,

‖xn+ – p‖

=
∥
∥γn

(

ηf (xn) – Tp
)

+ (I – γnT)(zn – p) + e′′′
n
∥
∥



≤ ( – γnγ )‖zn – p‖ + γn
〈

ηf (xn) – Tp, J(xn+ – p)
〉

+ 
〈

e′′′
n , J(xn+ – p)

〉

≤ ( – γnγ )( – αn)‖xn – p‖ + 
〈

e′′′
n , J(xn+ – p)

〉

+ γnη
〈

f (xn) – f (p), J(xn+ – p) – J(xn – p)
〉

+ γnη
〈

f (xn) – f (p), J(xn – p)
〉

+ γn
〈

ηf (p) – Tp, J(xn+ – p)
〉

+ ( – γnγ )( – αn)
〈

e′
n, J

[

( – αn)
(

xn + e′
n
)

– p
]〉

– αn( – γnγ )〈p, J
[

( – αn)
(

xn + e′
n
)

– p
]〉

+ ( – γnγ )ζn
∥
∥e′′

n – p
∥
∥



≤ [

 – γn(γ – ηk)
]‖xn – p‖ + M′′[∥∥e′

n
∥
∥ +

∥
∥e′′′

n
∥
∥ + ( – γnγ )(αn + ζn)

]

+ γn
[〈

ηf (p) – Tp, J(xn+ – p)
〉

+ η‖xn – p‖‖xn+ – xn‖
]

. ()

Let δ
()
n = γn(γ – ηk), δ

()
n = γn[〈ηf (p) – Tp, J(xn+ – p)〉 + η‖xn – p‖‖xn+ – xn‖],

δ
()
n = M′′[‖e′

n‖ + ‖e′′′
n ‖ + ( – γnγ )(αn + ζn)]. Then () can be simplified as ‖xn+ – p‖ ≤

( – δ
()
n )‖xn – p‖ + δ

()
n + δ

()
n .

From the assumptions (i), (ii), (iv), and (v), the results of Steps , , and  and Lemma ,
we know that xn → p, as n → +∞.

Combine the result of Step , yn → p and zn → p, as n → ∞.
This completes the proof. �

Remark  The assumptions imposed on the real number sequences in Theorem  are
reasonable if we take αn = 

n , γn = 
n , δn =  – 

n – n
n+ , βn = n

n+ , and ζn = 
n for n ≥ .

Remark  Three sequences {xn}, {yn}, and {zn} are proved to be strongly convergent to
the zero point of the sum of an infinite family of m-accretive mappings and an infinite
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family of μi-inversely strongly accretive mappings. The strongly convergent point p is
the unique solution of a variational inequality.

Remark  Compared to the previous work, the computational error is considered in
each step and the work on finding zero point of the sum of a finite family of m-accretive
mappings and an finite family of μ-inversely strongly accretive mapping is extended to the
infinite case. Compared to the work in [], the construction of zn in the iterative algorithm
(A) is implicit and a different Bi corresponds to a different μi, which makes the iterative
algorithm (A) more general. Moreover, the assumption that ‘the normalized duality map-
ping J is weakly sequentially continuous at zero’ is deleted.

Remark  If e′
n = e′′

n = e′′′
n ≡ , then iterative algorithm (A) becomes an accurate one.

Remark  If C ≡ E, then the iterative algorithm (A) becomes the following one:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ E,

yn = ( – αn)(xn + e′
n),

zn = δnyn + βn
∑∞

i= aiJ
Ai
rn,i [

yn+zn
 – rn,iBi( yn+zn

 )] + ζne′′
n,

xn+ = γnηf (xn) + (I – γnT)zn + e′′′
n , n ≥ .

3 Integro-differential systems and iterative algorithms
In this section, we have five purposes: () based on one kind nonlinear integro-differential
system, construct an infinite family of m-accretive mappings and an infinite family of μi-
inversely strongly accretive mappings; () prove that under some conditions, the nonlinear
integro-differential systems discussed exist solutions; () show the connections between
the solution of the integro-differential systems and the zero point of the sum of an infinite
family of m-accretive mappings and an infinite family of μi-inversely strongly accretive
mappings; () construct the iterative approximate sequence of the solution of the integro-
differential systems; () demonstrate the relationship between the solution of the nonlin-
ear integro-differential systems and the solution of one kind variational inequalities.

3.1 Discussion of integro-differential systems
We shall study the following nonlinear integro-differential systems involving the general-
ized pi-Laplacian:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(i)(x,t)
∂t – div[(C(x, t) + |Du(i)|)

pi–
 Du(i)] + ε|u(i)|ri–u(i)

+ g(x, u(i), Du(i)) + a ∂
∂t
∫

�
u(i) dx = f (x, t), (x, t) ∈ � × (, T),

–〈ϑ , (C(x, t) + |Du(i)|)
pi–

 Du(i)〉 ∈ βx(u(i)), (x, t) ∈ � × (, T),

u(i)(x, ) = u(i)(x, T), x ∈ �, i ∈ N
+,

()

where � is a bounded conical domain of a Euclidean space RN (N ≥ ), � is the boundary
of � with � ∈ C [] and ϑ denotes the exterior normal derivative to �. 〈·, ·〉 and | · | de-
note the Euclidean inner-product and Euclidean norm in RN , respectively. T is a positive
constant. Du(i) = ( ∂u(i)

∂x
, ∂u(i)

∂x
, . . . , ∂u(i)

∂xN
) and x = (x, x, . . . , xN ) ∈ �. βx is the subdifferential of

ϕx, where ϕx = ϕ(x, ·) : R → R for x ∈ �. a and ε are non-expansive constants,  ≤ C(x, t) ∈
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⋂∞
i= Vi :=

⋂∞
i= Lpi (, T ; W ,pi (�)), f (x, t) ∈ ⋂∞

i= Wi :=
⋂∞

i= Lmax{pi ,p′
i}(, T ; Lmax{pi ,p′

i}(�))
and g : � × RN+ → R are given functions.

Our discussion of () is based on the following assumptions, some of which can be
found in [–].

Assumption  {pi}∞i= is a real number sequence with N
N+ < pi < +∞, {μi}∞i= is any real

number sequence in (, ] and {ri}∞i= is a real number sequence satisfying N
N+ < ri ≤

min{pi, p′
i} < +∞. 

pi
+ 

p′
i

=  and 
ri

+ 
r′i

=  for i ∈N
+.

Assumption  Green’s formula is available.

Assumption  For each x ∈ �,ϕx = ϕ(x, ·) : R → R is a proper, convex and lower- semi-
continuous function and ϕx() = .

Assumption   ∈ βx() and for each t ∈ R, the function x ∈ � → (I + λβx)–(t) ∈ R is
measurable for λ > .

Assumption  Suppose that g : � × RN+ → R satisfies the following conditions:
(a) Carathéodory’s conditions;
(b) growth condition:

∣
∣g(x, r, . . . , rN+)

∣
∣
max{pi ,p′

i} ≤ ∣
∣hi(x, t)

∣
∣
pi + bi|r|pi ,

where (r, r, . . . , rN+) ∈ RN+, hi(x, t) ∈ Wi, and bi is a positive constant, for i ∈N
+;

(c) monotone condition: g is monotone in the following sense:

(

g(x, r, . . . , rN+) – g(x, t, . . . , tN+)
)≥ (r – t),

for all x ∈ � and (r, . . . , rN+), (t, . . . , tN+) ∈ RN+.

Assumption  For i ∈ N
+, let V ∗

i denote the dual space of Vi. The norm in Vi, ‖ · ‖Vi , is
defined by

∥
∥u(x, t)

∥
∥

Vi
=
(∫ T



∥
∥u(x, t)

∥
∥

pi
W ,pi (�) dt

) 
pi

, u(x, t) ∈ Vi.

Lemma  (see []) For i ∈ N
+, define the operator Bi : Vi → V ∗

i by

〈w, Biu〉 =
∫ T



∫

�

〈(

C(x, t) + |Du|)
pi–

 Du, Dw
〉

dx dt + ε

∫ T



∫

�

|u|ri–uw dx dt,

for u, w ∈ Vi. Then Bi is maximal monotone and coercive, where i ∈N
+.

Lemma  (see []) For i ∈N
+, define the function �i : Vi → R by

�i(u) =
∫ T



∫

�

ϕx
(

u|�(x, t)
)

d�(x) dt,

for u(x, t) ∈ Vi. Then �i is a proper, convex and lower-semi-continuous mapping on Vi.
Therefore, the subdifferential ∂�i : Vi → V ∗

i is maximal monotone.
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Lemma  (see []) For i ∈ N
+, define Si : D(Si) = {u(x, t) ∈ Vi : ∂u

∂t ∈ V ∗
i , u(x, ) =

u(x, T)} → V ∗
i by

Siu =
∂u
∂t

+ a
∂

∂t

∫

�

u dx.

Then Si is linear maximal monotone operator possessing a dense domain in Vi, where
i ∈N

+.

Definition  For i ∈N
+, define a mapping Ai : Wi → Wi as follows:

D(Ai) =
{

u ∈ Wi| there exists an f ∈ Wi such that f ∈ Biu + ∂�i(u) + Siu
}

.

For u ∈ D(Ai), we set Aiu = {f ∈ Wi|f ∈ Biu + ∂�i(u) + Siu}.

Proposition  The mapping Ai : Wi → Wi is m-accretive, where i ∈N
+.

Proof Similar to the proof of Lemmas . and . in [] or the proof of Proposition . in
[], we have R(I + λAi) = Wi, for ∀λ > .

Let Ji : Wi → W ∗
i denote the generalized duality mapping. Then, for u(x, t) ∈ Wi,

Jiu =

⎧

⎨

⎩

|u|pi– sgn u, pi ≥ ,

|u|p′
i– sgn u,  < pi < .

In fact, if pi ≥ , then 〈u, Jiu〉 =
∫ T


∫

�
|u|pi dx dt = ‖u‖pi

Wi
and ‖Jiu‖W∗

i
=

(
∫ T


∫

�
|u|(pi–)p′

i dx dt)


p′
i = ‖u‖

pi
p′

i
Wi

= ‖u‖pi–
Wi

. Thus Jiu = |u|pi– sgn u, if pi ≥ . Similarly,
Jiu = |u|p′

i– sgn u, if  < pi < .
By using a similar method as that of Proposition . in [], we can prove that for any

u, v ∈ D(Ai), 〈Aiu – Aiv, Ji(u – v)〉 ≥ . Thus Ai is accretive. The result follows. This com-
pletes the proof. �

Remark  Noticing Proposition , an infinite family of m-accretive mappings {Ai}∞i= is
constructed.

Definition  Define Ci : D(Ci) = Lmax{pi ,p′
i}(, T ; W ,max{pi ,p′

i}(�)) ⊂ Wi → Wi by

(Ciu)(x, t) = g(x, u, Du) – f (x, t)

for ∀u(x, t) ∈ D(Ci) and f (x, t) is the same as that in (), where i ∈N
+.

Lemma  The mapping Ci : D(Ci) ⊂ Wi → Wi is continuous and strongly accretive. If,
further assume that g(x, r, . . . , rN+) ≡ r, then Ci is μi-inversely strongly accretive, where
i ∈ N

+.

Proof Similar to Proposition . in [], we know that for u ∈ D(Ci), x → g(x, u, Du) is
measurable on �, and then Ci is everywhere defined and continuous.

Our next discussion is divided into two cases.
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Case . pi ≥ . From assumption , we know that

〈

Ciu – Civ, J̃i(u – v)
〉

=
∫ T



∫

�

(

g(x, u, Du) – g(x, v, Dv)
)‖u – v‖–pi

Wi
|u – v|pi– sgn(u – v) dx dt

≥ ‖u – v‖–pi
Wi

∫ T



∫

�

|u – v|pi dx dt = ‖u – v‖
Wi

,

where J̃i : Wi → W ∗
i is the normalized duality mapping, which implies that Ci is strongly

accretive.
If, furthermore, g(x, r, . . . , rN+) ≡ r, since {μi} ⊂ (, ], then we have

〈

Ciu – Civ, Ji(u – v)
〉

=
∫ T



∫

�

|u – v|pi dx dt = ‖Ciu – Civ‖pi
Wi

≥ μi‖Ciu – Civ‖pi
Wi

,

where Ji : Wi → W ∗
i is the generalized duality mapping in Proposition , which implies

that Ci is μi-inversely strongly accretive.
Case .  < pi < . Similar to Case , the result follows.
This completes the proof. �

Remark  Noticing Lemma , we have constructed an infinite family of μi-inversely
strongly accretive mappings.

Lemma  ([, ]) () If w(x, t) ∈ ∂�i(u), then w(x, t) ∈ ∂βx(u), a.e. on � × (, T). ()
〈ϕ, ∂�i(u)〉 ≡ , ∀ϕ ∈ C∞

 (, T ;�).

Lemma  ([]) Let E be a smooth Banach space, let A : D(A) ⊂ E → E be an m-accretive
mapping, and S : D(S) ⊂ E → E be a continuous and strongly accretive mapping with
D(A) ⊂ D(S). Then, for any z ∈ E, the equation z ∈ Sx + λAx has a unique solution xλ,
λ > .

Theorem  For f (x, t) ∈⋂∞
i= Wi, there exists unique u(i) ∈ Wi satisfying the following:

(a) ∂u(i)(x,t)
∂t – div[(C(x, t) + |Du(i)|)

pi–
 Du(i)] + ε|u(i)|ri–u(i) + g(x, u(i), Du(i)) +

a ∂
∂t
∫

�
u(i) dx = f (x, t), (x, t) ∈ � × (, T);

(b) –〈ϑ , (C(x, t) + |Du(i)|)
pi–

 Du(i)〉 ∈ βx(u(i)(x, t)), (x, t) ∈ � × (, T);
(c) u(i)(x, ) = u(i)(x, T), x ∈ �, where i ∈N

+.

Proof Using Proposition , Lemmas  and , we know that for θ ∈ Wi, there exists
unique u(i)(x, t) ∈ D(Ai) ⊂ Wi such that

θ = Ciu(i) + Aiu(i). ()

Then, for ϕ ∈ C∞
 (, T ;�), we have

〈ϕ, θ〉 =
〈

ϕ, Ciu(i)〉 +
〈

ϕ, Biu(i)〉 +
〈

ϕ, ∂�i
(

u(i))〉 +
〈

ϕ, Siu(i)〉,
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which implies that

∫ T



∫

�

f ϕ dx dt

=
∫ T



∫

�

∂u(i)

∂t
ϕ dx dt + a

∫ T



∫

�

(
∂

∂t

∫

�

u(i) dx
)

ϕ dx dt

+
∫ T



∫

�

〈(

C(x, t) +
∣
∣Du(i)∣∣

) pi–
 Du(i), Dϕ

〉

dx dt + ε

∫ T



∫

�

∣
∣u(i)∣∣ri–u(i)ϕ dx dt

+
∫ T



∫

�

g
(

x, u(i), Du(i))ϕ dx dt

=
∫ T



∫

�

∂u(i)

∂t
ϕ dx dt + a

∫ T



∫

�

(
∂

∂t

∫

�

u(i) dx
)

ϕ dx dt

+
∫ T



∫

�

– div
[(

C(x, t) +
∣
∣Du(i)∣∣

) pi–
 Du(i)]ϕ dx dt + ε

∫ T



∫

�

∣
∣u(i)∣∣ri–u(i)ϕ dx dt

+
∫ T



∫

�

g
(

x, u(i), Du(i))ϕ dx dt.

Therefore, from the property of the generalized function, we know that (a) is true.
From the definition of Si, we know that (c) is trivial.
By using the results of (a), the Green’s formula and (), we have, for w ∈ Wi,

∫ T



∫

�

〈

ϑ ,
(

C(x, t) +
∣
∣Du(i)∣∣

) pi–
 Du(i)〉wd�(x) dt

=
∫ T



∫

�

div
[(

C(x, t) +
∣
∣Du(i)∣∣

) pi–
 Du(i)]w dx dt

+
∫ T



∫

�

〈(

C(x, t) +
∣
∣Du(i)∣∣

) pi–
 Du(i), Dw

〉

dx dt

=
∫ T



∫

�

g
(

x, u(i), Du(i))w dx dt +
∫ T



∫

�

∂u(i)

∂t
w dx dt

+
∫ T



∫

�

(

a
∂

∂t

∫

�

u(i) dx
)

w dx dt + ε

∫ T



∫

�

∣
∣u(i)∣∣ri–u(i)w dx dt

+
∫ T



∫

�

〈(

C(x, t) +
∣
∣Du(i)∣∣

) pi–
 Du(i), Dw

〉

dx dt –
∫ T



∫

�

f (x, t)w dx dt

=
∫ T



∫

�

–∂�i
(

u(i))w dx dt.

Thus –〈ϑ , (C(x, t) + |Du(i)|)
pi–

 Du(i)〉 ∈ ∂�i(u(i)). In view of Lemma , (b) follows.
This completes the proof. �

3.2 Applications of iterative algorithms to integro-differential systems
Theorem  If ε ≡ , g(x, r, . . . , rN+) ≡ r and f (x, t) ≡ k, were k is a constant, then
u(x, t) ≡ k is the unique solution of the integro-differential system (). Moreover, {u(x, t) ∈
⋂∞

i= Wi|u(x, t) ≡ k satisfying ()} =
⋂∞

i= N(Ai + Ci).
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Proof From Theorem , we know that () has a unique solution for this special case. It
is easy to check that u(x, t) ≡ k satisfies (), which implies that u(x, t) ≡ k is the unique
solution of () for this special case.

Next, we show that
⋂∞

i= N(Ai + Ci) is a singleton in this special case.
In fact, if Aiu + Ciu ≡  and Aiv + Civ ≡ , then Aiu + u ≡ Aiv + v, which implies that  ≤

〈Aiu – Aiv, Ji(u – v)〉 = 〈v – u, Ji(u – v)〉 ≤ , and then u(x, t) ≡ v(x, t). That is,
⋂∞

i= N(Ai + Ci)
is a singleton.

The result u(x, t) ≡ k ∈⋂∞
i= N(Ai + Ci) follows from the definitions of Ai and Ci, which

implies that {u(x, t) ∈⋂∞
i= Wi|u(x, t) ≡ k satisfying ()} =

⋂∞
i= N(Ai + Ci).

This completes the proof. �

Remark  Combining the results of Proposition , Lemma , and Theorem , we set
up the relationship between the solution of one kind integro-differential systems and the
zero point of the sum of infinite m-accretive mappings and infinite μi-inversely strongly
accretive mappings.

Remark  Set p := infi∈N+ (min{pi, p′
i}) and q := supi∈N+ (max{pi, p′

i}).
Let E := Lmin{p,p′}(, T ; Lmin{p,p′}(�)), where 

p + 
p′ = .

Let X := Lmax{q,q′}(, T ; W ,max{q,q′}(�)), where 
q + 

q′ = .
Then E = Lp(, T ; Lp(�)), X = Lq(, T ; W ,q(�)) and X ⊂ Wi ⊂ E, ∀i ∈ N

+. Our next dis-
cussion of Theorem  will be based on X and E.

Theorem  Suppose Ai and Ci are the same as those in Proposition  and Lemma ,
respectively. Let f : E → E be a fixed contractive mapping with coefficient k ∈ (, ) and
T : E → E be any strongly positive linear bounded operator with coefficient γ . Suppose
that  < η < γ

k , {αn}, {δn}, {βn}, {ζn}, {γn} ⊂ (, ) and {rn,i} ⊂ (, +∞) for i ∈ N
+. Suppose

{ai}∞i= ⊂ (, ) with
∑∞

i= ai = , {e′′
n} ⊂ X, and {e′

n}, {e′′′
n } ⊂ E. Furthermore, suppose that the

following conditions are satisfied:
(i)

∑∞
n= αn < +∞;

(ii)
∑∞

n= γn = ∞, γn → , as n → ∞, and
∑∞

n= |γn – γn–| < +∞;
(iii)

∑∞
n= |rn+,i – rn,i| < +∞ and  < ε ≤ rn,i ≤ ( pμi

Kp
)


p– , for n ≥  and i ∈ N

+;
(iv) δn + βn + ζn ≡ , for n ≥ ,

∑∞
n= |δn – δn–| < +∞,

∑∞
n= |βn – βn–| < +∞,

∑∞
n=

ζn
βn

< +∞, and βn → , as n → ∞;
(v)

∑∞
n= ‖e′

n‖ < +∞,
∑∞

n= ‖e′′
n‖ < +∞,

∑∞
n= ‖e′′′

n ‖ < +∞.

Let {un} be generated by the iterative algorithm (C)

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(x, t) ∈ X, chosen arbitrarily,

vn(x, t) = QX[( – αn)(un(x, t) + e′
n)],

wn(x, t) = δnvn(x, t) + βn
∑∞

i= aiJ
Ai
rn,i [

wn+vn
 – rn,iCi( wn+vn

 )] + ζne′′
n,

un+(x, t) = γnηf (un) + (I – γnT)wn(x, t) + e′′′
n , n ≥ .

(C)

If, in the integro-differential systems (), ε ≡ , g(x, r, . . . , rN+) ≡ r, and f (x, t) ≡ k,
then three sequences {un(x, t)}, {vn(x, t)}, and {wn(x, t)} converge strongly to the unique
solution u(x, t) of (), which is also the unique element in

⋂∞
i= N(Ai + Ci) and satisfies the
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following variational inequality: for ∀y ∈⋂∞
i= N(Ai + Ci),

〈

(T – ηf )u(x, t), J
(

u(x, t) – y
)〉≤ .

Remark  From the work done in this section, we can find the connection between
integro-differential systems, variational inequalities, and iterative algorithms. This may
emphasize the significance of the work in this paper.
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