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Abstract
In this paper, we introduce the notion of generalized Meir-Keeler contraction
mappings in the setup of b-metric-like spaces. Then we establish some fixed point
results for this class of contractions. We also provide some examples to verify the
effectiveness and applicability of our main results.
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1 Introduction and preliminaries
In , Meir and Keeler [] proved the following very attractive fixed point theorem,
which is a generalization of the Banach contraction principle [].

Definition . [] Let (X, d) be a metric space. Then a mapping T on X is said to be a
Meir-Keeler contraction (MKC, for short) if for any ε > , there exists δ >  such that

ε ≤ d(x, y) < ε + δ(ε) ⇒ d(Tx, Ty) < ε,

for all x, y ∈ X.

Theorem . [] Let (X, d) be a complete metric space. If T : X → X is a Meir-Keeler con-
traction, then T has a unique fixed point.

Alsulami et al. [] defined two types of generalized α-admissible [] Meir-Keeler con-
tractions and proved some fixed point theorems for these kinds of mappings. Meir-Keeler
contraction has many generalizations in the area studied by some scholars (cf. e.g. [–]).

On the other hand, Amini-Harandi [] presented a new extension of the concept of the
partial metric space [], called a metric-like space. The concept of b-metric-like space
which generalizes the notions of partial metric space, metric-like space and b-metric space
[] was introduced by Alghamdi et al. in []. They established some fixed point theorems
in partial metric spaces, b-metric spaces and b-metric-like spaces. It is well known that all
these spaces are generalization of the usual metric spaces. There are several types of gen-
eralized metric spaces [, ], introduced by modifying and improving metric axioms.
These generalized metric spaces often appear to be metrizable and the contraction con-
ditions may be preserved under special transforms. Hence the fixed point theory in such
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spaces may be a consequence of the fixed point theory in certain metric spaces. How-
ever, it is not true that all generalized fixed point results become evident in this way. More
precisely, these results are based on some contractive conditions, and some of these con-
ditions do not remain authentic when one considers the problem in the associated metric
space [].

In the present work, using the concepts of Meir-Keeler contractions and b-metric-like
spaces, we define a new concept of generalized Meir-Keeler contraction on a b-metric-like
space. Then we investigate some fixed point results for this class of contractions. We give
an example that shows that our results in b-metric-like spaces may not be deduced from
certain ones in b-metric spaces. We also provide some examples to support the usability
of our results.

It is convenient and, more importantly helpful to recall some basic definitions and facts
which will be used further on. Throughout this paper, we denote by R+ the set of nonneg-
ative real numbers.

Definition . [] Let X be a nonempty set, and let the function d : X ×X → R
+ satisfies:

(b) d(x, y) =  if and only if x = y,
(b) d(x, y) = d(y, x) for all x, y ∈ X ,
(b) there exists a real number s ≥  such that d(x, z) ≤ s[d(x, y) + d(y, z)] for all x, y, z ∈ X .

Then d is called a b-metric on X. In this case the pair (X, d) is called a b-metric space with
coefficient s.

Definition . [] A partial b-metric on a nonempty set X is a mapping pb : X ×X →R
+

such that for some real number s ≥  and all x, y, z ∈ X:

(pb) x = y if and only if pb(x, x) = pb(x, y) = pb(y, y),
(pb) pb(x, x) ≤ pb(x, y),
(pb) pb(x, y) = pb(y, x),
(pb) pb(x, y) ≤ s[pb(x, z) + pb(z, y)] – pb(z, z).

A pair (X, pb) is called a partial b-metric space, if X is a nonempty set and pb is a partial
b-metric on X. The number s is called the coefficient of (X, pb).

It is clear that if in Definitions . and . s = , then they are the usual metric and partial
metric space, respectively.

Definition . [] A metric-like on a nonempty set X is a mapping σ : X × X →R
+ such

that for all x, y, z ∈ X:

(σ ) σ (x, y) =  implies x = y,
(σ) σ (x, y) = σ (y, x),
(σ) σ (x, y) ≤ σ (x, z) + σ (z, y).

The pair (X,σ ) is called a metric-like space.

Example . [] Let X = [, ]. Then the mapping σ : X × X → R
+ defined by σ(x, y) =

x + y – xy is a metric-like on X.
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Example . [] Let X = R, then the mappings σi : X × X → R
+ (i ∈ {, , }) defined by

σ(x, y) = |x| + |y| + a,

σ(x, y) = |x – b| + |y – b|,
σ(x, y) = x + y,

are metrics-like on X, where a ≥  and b ∈R.

Definition . [] Let X be a nonempty set and s ≥  be a given real number. A func-
tion σb : X × X → R

+ is a b-metric-like if, for all x, y, z ∈ X, the following conditions are
satisfied:

(σb) σb(x, y) =  implies x = y,
(σb) σb(x, y) = σb(y, x),
(σb) σb(x, y) ≤ s[σb(x, z) + σb(z, y)].

A b-metric-like space is a pair (X,σb) such that X is a nonempty set and σb is a b-metric-
like on X. The number s is called the coefficient of (X,σb).

Some examples of b-metric-like spaces can be constructed with the help of the following
proposition.

Proposition . [] Let (X,σ ) be a metric-like space and σb(x, y) = [σ (x, y)]p, where p > .
Then σb is a b-metric-like with coefficient s = p–.

Every partial b-metric space is a b-metric-like space with the same coefficient s and
every b-metric space is also a b-metric-like space with the same coefficient s. However,
the converses of these facts need not hold. For instance, assume that p > , then σ

p
 and σ

p


are b-metrics-like, but σ
p
 is not b-metric and σ

p
 is not partial b-metric.

Each b-metric-like σb on a nonempty set X generates a topology τσb on X whose base
is the family of open σb-balls {Bσb (x, ε) : x ∈ X, ε > } where Bσb (x, ε) = {y ∈ X : |σb(x, y) –
σb(x, x)| < ε} for all x ∈ X and ε > .

Now, we recall the concepts of Cauchy sequence and convergent sequence in the frame-
work of b-metric-like spaces.

Definition . [] Let (X,σb) be a b-metric-like space with coefficient s, {xn} be any
sequence in X and x ∈ X. Then:

(i) The sequence {xn} is said to be convergent to x with respect to τσb if
limn→∞ σb(xn, x) = σb(x, x).

(ii) The sequence {xn} is said to be a Cauchy sequence in (X,σb), if limn,m→∞ σb(xn, xm)
exists and is finite.

(iii) (X,σb) is said to be a complete b-metric-like space if for every Cauchy sequence
{xn} in X there exists x ∈ X such that

lim
n,m→∞σb(xn, xm) = lim

n→∞σb(xn, x) = σb(x, x).

Note that in a b-metric-like space the limit of a convergent sequence may not be unique
(since already partial metric spaces share this property).
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Definition . [] Suppose that (X,σb) is a b-metric-like space. A mapping T : X → X
is said to be continuous at a point x ∈ X, if for every ε >  there exists a δ >  such that
T(Bσb (x, δ)) ⊆ Bσb (Tx, ε). The mapping T is continuous on X if it is continuous at each
point x in X.

Note that if T : X → X is a continuous mapping and {xn} is a sequence in X with
limn→∞ σb(xn, x) = σb(x, x), then limn→∞ σb(Txn, Tx) = σb(Tx, Tx).

Samet et al. in [] introduced the concept of α-admissible mappings and established
some new fixed point theorems for these mappings. Thereafter, many researchers im-
proved and generalized fixed point results by using this notion for single valued and multi-
valued mappings (cf. e.g. [, , ] for details).

Definition . [] Let X be a nonempty set, T : X → X be a mapping and α : X × X →
[,∞) be a function. Then f is said to be α-admissible if for all x, y ∈ X we have

α(x, y) ≥  ⇒ α(Tx, Ty) ≥ .

Definition . [] A mapping T : X → X is called triangular α-admissible if it is
α-admissible and, moreover, it satisfies the following implication:

α(x, y) ≥ , α(y, z) ≥  ⇒ α(x, z) ≥ ,

where x, y, z ∈ X.

The following lemma is useful in proving our main results, stated and proved according
to [], Lemma .

Lemma . Let (X,σb) be a b-metric-like space and T : X → X be a triangular α-admis-
sible mapping. Assume that there exists x ∈ X such that α(x, Tx) ≥  and α(Tx, x) ≥ .
If xn = Tnx, then α(xm, xn) ≥  for all m, n ∈N.

2 Main results
In this section, first we describe the concept of generalized Meir-Keeler contraction on a
b-metric-like space which can be regarded as an extension of the Meir-Keeler contractions
defined in []. Then we demonstrate some fixed point results for this class of contractions.

Definition . Suppose that (X,σb) is a b-metric-like space with coefficient s. A triangular
α-admissible mapping T : X → X is said to be generalized Meir-Keeler contraction if for
every ε >  there exists δ >  such that

ε ≤ β
(
σb(x, y)

)
σb(x, y) < ε + δ implies α(x, y)σb(Tx, Ty) < ε, ()

for all x, y ∈ X where β : [,∞) → (, 
s ) is a given function.

Remark . Let T be a generalized Meir-Keeler contractive mapping. Then it is intu-
itively clear that

α(x, y)σb(Tx, Ty) < β
(
σb(x, y)

)
σb(x, y),

for all x, y ∈ X when x 	= y.
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We are now in a position to define two types of generalized Meir-Keeler contractions
on b-metric-like spaces, say type (I) and type (II).

Definition . Let (X,σb) be a b-metric-like space with coefficient s. A triangular
α-admissible mapping T : X → X is said to be generalized Meir-Keeler contraction of
type (I) if for every ε >  there exists δ >  such that

ε ≤ β
(
σb(x, y)

)
M(x, y) < ε + δ implies α(x, y)σb(Tx, Ty) < ε, ()

where

M(x, y) = max
{
σb(x, y),σb(Tx, x),σb(Ty, y)

}
, ()

for all x, y ∈ X.

Definition . Let (X,σb) be a b-metric-like space with coefficient s. A triangular
α-admissible mapping T : X → X is said to be generalized Meir-Keeler contraction of
type (II) if for every ε >  there exists δ >  such that

ε ≤ β
(
σb(x, y)

)
N(x, y) < ε + δ implies α(x, y)σb(Tx, Ty) < ε, ()

where

N(x, y) = max

{
σb(x, y),



[
σb(Tx, x) + σb(Ty, y)

]}
, ()

for all x, y ∈ X.

In the following, we illustrate two important properties concerned with these new gen-
eralized Meir-Keeler contractions, which we will require in our subsequent arguments.

Remark . Suppose that T : X → X is a generalized Meir-Keeler contraction of type (I)
(respectively, type (II)). Then

α(x, y)σb(Tx, Ty) < β
(
σb(x, y)

)
M(x, y)

(
respectively,β

(
σb(x, y)

)
N(x, y)

)
,

for all x, y ∈ X when M(x, y) >  (respectively, N(x, y) > ).

Remark . It is readily verified that N(x, y) ≤ M(x, y) for all x, y ∈ X, where M(x, y) and
N(x, y) are defined in () and (), respectively.

Next, we establish a fixed point theorem for generalized Meir-Keeler type contractions
via a rational expression. The presented theorem is a generalization of the result of Samet
et al. [].

Theorem . Let (X,σb) be a complete b-metric-like space and T : X → X be a triangular
α-admissible mapping. Suppose that the following conditions hold:

(a) there exists x ∈ X such that α(x, Tx) ≥ , α(Tx, x) ≥ ,
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(b) if {xn} is a sequence in X such that xn → z as n → ∞ and α(xn, xm) ≥  for all
n, m ∈N, then α(xn, z) ≥  for all n ∈N,

(c) for each ε > , there exists δ >  satisfying the following condition:

sε ≤ σb(y, Ty)
 + σb(x, Tx)
 + M(x, y)

+ N(x, y) < s(ε + δ) implies

α(x, y)σb(Tx, Ty) < ε.
()

Then T has a fixed point in X.

Proof It is easy to observe that condition () implies that x 	= y or y 	= Ty and also

α(x, y)σb(Tx, Ty) <

s

σb(y, Ty)
 + σb(x, Tx)
 + M(x, y)

+

s

N(x, y). ()

Let x ∈ X be such that condition (a) holds and define a sequence {xn} in X such that x =
Tx, xn+ = Txn for all n ∈ N. We may suppose that xn+ 	= xn for all n ∈ N∪ {}, otherwise
T has obviously a fixed point. Now, since T is α-admissible, then

α(x, x) = α(x, Tx) ≥  ⇒ α(Tx, Tx) = α(x, x) ≥ , ()

and repeatedly using () we obtain

α(xn, xn+) ≥ , ∀n ∈N. ()

Replace x by xn and y by xn+ in () and taking into account equation (), we deduce

σb(xn+, xn+) = σb(Txn, Txn+)

≤ α(xn, xn+)σb(Txn, Txn+)

<

s

σb(xn+, xn+)
 + σb(xn, xn+)
 + M(xn, xn+)

+

s

N(xn, xn+),

where

M(xn, xn+) = max
{
σb(xn, xn+),σb(xn+, xn+)

}
.

We distinguish two following cases:
Case . Assume that M(xn, xn+) = σb(xn+, xn+). By virtue of Remark . and also () we

observe that

σb(xn+, xn+) = σb(Txn, Txn+)

≤ α(xn, xn+)σb(Txn, Txn+)

<

s

σb(xn+, xn+)
 + σb(xn, xn+)

 + σb(xn+, xn+)
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+

s

σb(xn+, xn+)

≤ σb(xn+, xn+),

which gives a contradiction.
Case . Assume that M(xn, xn+) = σb(xn, xn+). Then N(xn, xn+) = σb(xn, xn+), too. Ap-

plying Remark ., we get

σb(xn+, xn+) <

s

σb(xn+, xn+)
 + σb(xn, xn+)
 + σb(xn, xn+)

+

s

σb(xn, xn+)

≤ 
s
σb(xn, xn+).

Therefore

σb(xn+, xn+) < σb(xn, xn+),

for all n. That is, {σb(xn, xn+)} is a strictly decreasing positive sequence in R
+ and it con-

verges to some r ≥ . We claim that r = . To support the claim, let it be untrue. Then we
have r > . We assert that

 < r ≤ σb(xn, xn+), for all n ∈N. ()

Since the condition () holds for every ε > , we may choose ε = r
s and let δ be such that

satisfying condition (). We know that limn→∞[σb(xn+, xn+) + σb(xn, xn+)] = r. Hence
there exists N ∈N such that r < σb(xN+, xN+) + σb(xN , xN+) < r + δ. Consequently,

sε < σb(xN+, xN+) + σb(xN , xN+)

= σb(xN+, TxN+)
 + σb(xN , TxN )
 + M(xN , xN+)

+ N(xN , xN+)

< sε + δ

≤ s(ε + δ),

and using () and ()

σb(xN+, xN+) ≤ α(xN , xN+)σb(TxN , TxN+) <
r
s

≤ r,

which leads to a contradiction with the condition (). Thus, r = , that is,

lim
n→∞σb(xn, xn+) = . ()

We claim that the sequence {xn} is a Cauchy sequence. Let ε > . Let δ′ = min{δ, ε, }.
From () there exists k ∈N such that

σb(xm, xm+) <
δ′


, ∀m ≥ k. ()
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Now, we define the set � ⊂ X by

� :=
{

xp|p ≥ k,σb(xp, xk) < s
(

ε +
δ′



)}
.

We will show that T(�) ⊂ �. Let λ ∈ �. There exists p ≥ k such that λ = xp and σb(xp, xk) <
s(ε + δ′

 ).
If p = k, then T(λ) = xk+ ∈ � by (). We will assume that p > k. First, we suppose that

sε ≤ σb(xp, xk), so

sε ≤ σb(xp, xk) < s
(

ε +
δ′



)
. ()

Let us prove that

ε ≤ 
s

σb(xk , xk+)
 + σb(xp, xp+)
 + M(xp, xk)

+

s

N(xp, xk) < ε +
δ′


. ()

We know σb(xp, xk) ≤ N(xp, xk), then from () we get

ε ≤ 
s

σb(xp, xk) ≤ 
s

σb(xk , xk+)
 + σb(xp, xp+)
 + M(xp, xk)

+

s

N(xp, xk). ()

Regarding () and since sε ≤ σb(xp, xk), then M(xp, xk) = N(xp, xk) = σb(xp, xk). So


s

σb(xk , xk+)
 + σb(xp, xp+)
 + M(xp, xk)

+

s

N(xp, xk)

≤ 
s

σb(xk , xk+) +

s

σb(xk , xk+)
σb(xp, xp+)

 + σb(xp, xk)
+


s

σb(xp, xk)

<
δ′

s
+


s

σb(xk , xk+)
σb(xp, xk)

σb(xp, xp+) +

s

σb(xp, xk)

<
δ′

s
+


s

σb(xp, xp+) +

s

σb(xp, xk)

<
δ′

s
+

δ′

s
+


s

σb(xp, xk)

<
δ′

s
+


s

s
(

ε +
δ′



)

≤ ε +
δ′


.

Therefore


s

σb(xk , xk+)
 + σb(xp, xp+)
 + M(xp, xk)

+

s

N(xp, xk) < ε +
δ′


. ()

It follows from () and () that () holds. Then

sε ≤ σb(xk , Txk)
 + σb(xp, Txp)
 + M(xp, xk)

+ N(xp, xk) < s
(
ε + δ′), ()
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and from (), () we conclude that

σb(Txp, Txk) ≤ α(xp, xk)σb(Txp, Txk) < ε. ()

Now, using (σb) together with () and () we obtain

σb(Txp, xk) ≤ sσb(Txp, Txk) + sσb(Txk , xk) < s
(

ε +
δ′



)
.

This implies that Tλ = Txp = xp+ ∈ �.
Next, we suppose that σb(xp, xk) < sε. From () we derive

σb(Txp, xk) ≤ sσb(Txp, Txk) + sσb(Txk , xk)

≤ sα(xp, xk)σb(Txp, Txk) + sσb(Txk , xk)

< s
[


s

σb(xk , xk+)
 + σb(xp, xp+)
 + M(xp, xk)

+

s

N(xp, xk)
]

+ sσb(xk+, xk)

≤ 

σb(xk , xk+) +

σb(xk , xk+)σb(xp, xp+)
( + σb(xp, xk))

+



N(xp, xk) + sσb(xk+, xk)

≤ δ′


+

σb(xk , xk+)σb(xp, xp+)
( + σb(xp, xk))

+



N(xp, xk) + s
δ′


.

On the other hand, applying (), we have

σb(xk , xk+)
 + σb(xp, xk)

≤ σb(xk , xk+) <
δ′


< .

Then

σb(Txp, xk) ≤ δ′


+



σb(xp, xp+) +




N(xp, xk) + s
δ′



<
[

δ′


+

δ′


+ sε

]
+ s

δ′



≤ s
(

δ′


+ ε

)
.

In turn this proves Tλ = Txp = xp+ ∈ �. Hence T(�) ⊂ � so

σb(xm, xk) < s
(

δ′


+ ε

)
, ∀m > k. ()

Now, for all m, n ∈N such that m > n > k, by () we get

σb(xm, xn) ≤ sσb(xm, xk) + sσb(xk , xn) < s(ε + δ′) ≤ sε.

It follows that limm,n→∞ σb(xm, xn) = . Hence {xn} is a Cauchy sequence in X and since X
is complete there exists z ∈ X such that

lim
n,m→∞σb(xn, xm) = lim

n→∞σb(xn, z) = σb(z, z) = .
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Finally, from () we observe that

σb(Tz, z) ≤ sσb(Tz, Txn) + sσb(xn+, z)

≤ sα(z, xn)σb(Tz, Txn) + sσb(xn+, z)

< s
[


s

σb(xn, xn+)
 + σb(z, Tz)
 + M(z, xn)

+

s

N(z, xn)
]

+ sσb(xn+, z).

Applying the definition of N(z, xn), the right-hand side of the above inequality tends to

σb(Tz, z) when n tends to infinity. It implies that σb(Tz, z) =  and Tz = z. �

The following example reveals the usefulness of Theorem ..

Example . Let X = {, , , }. Define σb : X × X →R
+ as follows:

σb(x, y) =

⎧
⎪⎨

⎪⎩

, x = y =  or  or ,
, x = y = ,
, x 	= y.

Clearly, (X,σb) is a complete b-metric-like space with s = . Consider T : X → X defined
by T = , T = , T = , and T = . Also, define α : X × X →R

+ as follows:

α(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


 , x + y =  or ,
, x = y = ,
, x = y = ,


x+y+ , otherwise.

It easily can be shown that T is triangular α-admissible. In order to check the condi-
tion (), we choose δ = ε so that ε ≤ σb(y, Ty) +σb(x,Tx)

+M(x,y) + N(x, y) < ε which implies
α(x, y)σb(Tx, Ty) < ε.

Note that α(, T) ≥ , α(T, ) ≥ . Now, all conditions of Theorem . are satisfied and
so T has a fixed point.

On the other hand, let dσb be the b-metric associated to b-metric-like σb defined by
dσb (x, y) =  if x = y and dσb (x, y) = σb(x, y), elsewhere. Then condition () does not hold
in b-metric space (X, dσb ). Let ε = 

 , x = , and y = . Then  = ε ≤ dσb (, T) +dσb (,T)
+M(,) +

N(, ) =  < ε + δ =  + δ, for each δ > . But α(, )dσb (T, T) = 
 ≮


 .

Theorem . Let (X,σb) be a complete b-metric-like space and T : X → X be an α-
admissible mapping. Assume that there exists a function θ : R+ → R

+ satisfying the fol-
lowing conditions:

(a) θ () =  and θ (t) >  for every t > ,
(b) θ is nondecreasing and right continuous,
(c) for every ε > , there exists δ >  such that

ε ≤ θ

(

s
σb(y, Ty)

 + σb(x, Tx)
 + M(x, y)

+

s

N(x, y)
)

< ε + δ implies

θ
(
α(x, y)σb(Tx, Ty)

)
< ε,

for all x, y ∈ X , then () is satisfied.
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Proof Fix ε > . Since θ (ε) >  by (c), there exists δ >  such that

θ (ε) ≤ θ

(

s
σb(y, Ty)

 + σb(x, Tx)
 + M(x, y)

+

s

N(x, y)
)

< θ (ε) + δ

⇒ θ
(
α(x, y)σb(Tx, Ty)

)
< θ (ε). ()

In view of the fact that θ is right continuous, then there exists δ′ >  such that θ (ε + δ′) <
θ (ε) + δ. Fix x, y ∈ X such that

ε ≤ 
s
σb(y, Ty)

 + σb(x, Tx)
 + M(x, y)

+

s

N(x, y) < ε + δ′.

Since θ is nondecreasing we get

θ (ε) ≤ θ

(

s
σb(y, Ty)

 + σb(x, Tx)
 + M(x, y)

+

s

N(x, y)
)

< θ
(
ε + δ′) < θ (ε) + δ.

In the light of (), we conclude that

θ
(
α(x, y)σb(Tx, Ty)

)
< θ (ε).

It enforces that α(x, y)σb(Tx, Ty) < ε, i.e., () is satisfied. �

Corollary . Let (X,σb) be a complete b-metric-like space and T : X → X be a mapping.
Let ϕ be a locally integrable function from R

+ into itself such that
∫ t

 ϕ(s) ds >  for all t > .
Assume that conditions (a) and (b) of Theorem . hold and also T fulfills the following
condition for all x, y ∈ X:

∫ α(x,y)σb(Tx,Ty)


ϕ(t) dt ≤ c

∫ 
s σb(y,Ty) +σb(x,Tx)

+M(x,y) + 
s N(x,y)


ϕ(t) dt,

where c ∈ (, 
s ) is a constant. Then T has a fixed point.

Proof As a result of Theorem . if for each ε > , there exists δ >  such that

ε ≤
∫ 

s σb(y,Ty) +σb(x,Tx)
+M(x,y) + 

s N(x,y)


ϕ(t) dt < ε + δ ⇒

∫ α(x,y)σb(Tx,Ty)


ϕ(t) dt < ε,

then () is satisfied.
Fix ε > . Take δ = ε( 

c – ), then

∫ α(x,y)σb(Tx,Ty)


ϕ(t) dt ≤ c

∫ 
s σb(y,Ty) +σb(x,Tx)

+M(x,y) + 
s N(x,y)


ϕ(t) dt < c(ε + δ) = ε < ε. �

Now, we establish an existence of fixed point of mapping satisfying generalized Meir-
Keeler contractions of type (I) in the setup of b-metric-like spaces. For this purpose, we
need the following definition.
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Definition . Let (X,σb) be a b-metric-like space, and let T be a self-mapping on X.
T is called orbitally continuous whenever

lim
n→∞σb

(
Tnx, z

)
= σb(z, z) ⇒ lim

n→∞σb
(
TTnx, Tz

)
= σb(Tz, Tz),

for each x, z ∈ X.

It is clear that continuous mappings are orbitally continuous. But the converse may not
be true. To show this, let ([, ],σb) be the b-metric-like space, where σb(x, y) = [max{x, y}]q

(q ≥ ). Consider T : X → X defined by

T(x) =

{
x
 ,  ≤ x < ,
, x = .

Clearly T is not continuous but it is orbitally continuous.

Theorem . Let (X,σb) be a complete b-metric-like space with coefficient s and T : X →
X be a mapping. Suppose that the following conditions hold:

(a) T is an orbitally continuous generalized Meir-Keeler contraction of type (I),
(b) there exists x ∈ X such that α(x, Tx) ≥ , α(Tx, x) ≥ ,
(c) if {xn} is a sequence in X such that xn → z as n → ∞ and α(xn, xm) ≥  for all

n, m ∈N, then α(z, z) ≥ ,
(d) s >  or β is a continuous function.

Then T has a fixed point in X.

Proof Let x ∈ X be such that condition (b) holds and define a sequence {xn} in X so that
x = Tx, xn+ = Txn for all n ∈N. Without loss of generality, we may suppose that xn+ 	= xn

for all n ∈N∪ {}. Since T is α-admissible, then

α(xn, xn+) ≥ , ∀n ∈N. ()

Replace x by xn and y by xn+ in (); we observe that for every ε >  there exists δ >  such
that

ε ≤ β
(
σb(xn, xn+)

)
M(xn, xn+) < ε + δ ⇒ α(xn, xn+)σb(Txn, Txn+) < ε, ()

where

M(xn, xn+) = max
{
σb(xn, xn+),σb(xn+, xn+)

}
.

Next, we distinguish two following cases:
Case . Assume that M(xn, xn+) = σb(xn+, xn+). In this case equation () becomes

ε ≤ β
(
σb(xn, xn+)

)
σb(xn+, xn+) < ε + δ ⇒ α(xn, xn+)σb(Txn, Txn+) < ε,

and using () we have

σb(xn+, xn+) ≤ α(xn, xn+)σb(Txn, Txn+) < ε

≤ β
(
σb(xn, xn+)

)
σb(xn+, xn+) < σb(xn+, xn+).
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Hence, we deduce

σb(xn+, xn+) < σb(xn+, xn+),

for all n ∈N, which gives a contradiction.
Case . Assume that M(xn, xn+) = σb(xn, xn+). Since M(xn, xn+) > , for all n, due to

Remark ., we get

σb(xn+, xn+) ≤ α(xn, xn+)σb(Txn, Txn+)

< β
(
σb(xn, xn+)

)
σb(xn, xn+)

<

s
σb(xn, xn+) ≤ σb(xn, xn+), ()

for all n. That is, {σb(xn, xn+)} is a strictly decreasing positive sequence in R
+ and it con-

verges to some r ≥ . We declare that r = . To support the claim, let it be untrue. Then
we have r > . We assert that

 < r ≤ σb(xn, xn+), for all n ∈N. ()

First, suppose that s > . Applying (), we have

σb(xn+, xn+) <

s
σb(xn, xn+).

By taking the limit as n tends to infinity we get r ≤ 
s r < r, which is a contradiction and

so r = . Next, assume that β is a continuous function. It is an easy verification that
{β(σb(xn, xn+))σb(xn, xn+)} is a strictly decreasing positive sequence in R

+ and it converges
to some r′ ≥ . We consider the two following cases:

(I) r′ = .
Since limn→∞ σb(xn, xn+) 	= , so we have

∃ε > ,∀k ∈N,∃nk ≥ k; σb(xnk , xnk +) ≥ ε. ()

Now, let ε′ >  be given. Since limk→∞ β(σb(xnk , xnk +))σb(xnk , xnk +) = , therefore using
() we derive

∃k′ ∈ N,∀k ≥ k′; εβ
(
σb(xnk , xnk +)

) ≤ β
(
σb(xnk , xnk +)

)
σb(xnk , xnk +) < ε′.

It enforces that limk→∞ β(σb(xnk , xnk +)) = . Now, continuity of β implies that β(r) = ,
which is a contradiction.

(II) r′ > .
If r < r′, then β(σb(xn, xn+))σb(xn, xn+) < 

s σb(xn, xn+), and by taking the limit as n tends
to infinity we get r′ ≤ r

s ≤ r, which is in contradiction with our assumption. Now, we sup-
pose that r ≥ r′. Let δ >  be such that satisfying () whenever ε = r′. We know that there
exists N ∈N such that

r′ ≤ β
(
σb(xN , xN+)

)
σb(xN , xN+) < r′ + δ.
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Thus, σb(xN+, xN+) ≤ α(xN , xN+)σb(TxN , TxN+) < r′ ≤ r, which leads to a contradic-
tion with the condition (). Thus, r =  and so

lim
n→∞σb(xn, xn+) = .

Next, we intend to show that the sequence {xn} is a Cauchy sequence in (X,σb). For this
purpose, we will prove that for every ε >  there exists N ∈N such that

σb(xl, xl+k) < ε, ()

for all l ≥ N and k ∈ N. Since the sequence {σb(xn, xn+)} converges to  as n → ∞, for
every δ >  there exists N ∈ N such that

σb(xn, xn+) < δ, for all n ≥ N .

Choose δ such that δ < ε. We will prove () by using induction on k. For k = , () be-
comes

σb(xl, xl+) < ε,

and it clearly holds for all l ≥ N (due to the choice of δ). Assume that the inequality ()
holds for some k = m, that is,

σb(xl, xl+m) < ε, for all l ≥ N .

For k = m +  we have to show that σb(xl, xl+m+) < ε for all l ≥ N . Employing the condition
(σb), we get

σb(xl–, xl+m) ≤ s
[
σb(xl–, xl) + σb(xl, xl+m)

]
< s(δ + ε),

for all l ≥ N . If β(σb(xl–, xl+m))σb(xl–, xl+m) ≥ ε, then we deduce

ε ≤ β
(
σb(xl–, xl+m)

)
σb(xl–, xl+m)

≤ β
(
σb(xl–, xl+m)

)
M(xl–, xl+m)

= β
(
σb(xl–, xl+m)

)
max

{
σb(xl–, xl+m),σb(xl, xl–),σb(xl+m+, xl+m)

}

< β
(
σb(xl–, xl+m)

)
max

{
s(ε + δ), δ, δ

}

< ε + δ,

and according to Lemma ., on using the contractive condition () with x = xl–, y = xl+m

we find

ε ≤ β
(
σb(xl–, xl+m)

)
M(xl–, xl+m) < δ + ε,

which in turn implies that

σb(xl, xl+m+) ≤ α(xl–, xl+m)σb(xl, xl+m+) = α(xl–, xl+m)σb(Txl–, Txl+m) < ε,
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and hence () holds for k = m + . If β(σb(xl–, xl+m))σb(xl–, xl+m) < ε, then

β
(
σb(xl–, xl+m)

)
M(xl–, xl+m)

= β
(
σb(xl–, xl+m)

)
max

{
σb(xl–, xl+m),σb(xl, xl–),σb(xl+m+, xl+m)

}

< β
(
σb(xl–, xl+m)

)
max

{
σb(xl–, xl+m), δ, δ

}
< ε.

Regarding Remark ., we get

σb(xl, xl+m+) ≤ α(xl–, xl+m)σb(Txl–, Txl+m) < β
(
σb(xl–, xl+m)

)
M(xl–, xl+m) < ε,

that is, () holds for k = m + . Note that M(xl–, xl+m) > , otherwise σb(xl, xl–) = , and
hence xl = xl–, which is in contradiction with our assumption. Thus σb(xl, xl+k) < ε for all
l ≥ N and k ≥ , it means

σb(xn, xm) < ε, for all m ≥ n ≥ N .

Therefore limn,m→∞ σb(xn, xm) =  and since X is a complete b-metric-like space, there
exists z ∈ X such that

lim
n,m→∞σb(xn, xm) = lim

n→∞σb(xn, z) = σb(z, z) = .

Next, we will show that z is a fixed point of T . We aim to show that σb(Tz, z) = . Assume
that σb(Tz, z) > . Thus we have M(z, z) ≥ σb(Tz, z) >  and applying orbitally continuity of
T it follows that

lim
n→∞σb

(
TTnx, Tz

)
= lim

n→∞σb(xn+, Tz) = σb(Tz, Tz).

So {xn+} converges to Tz. Using (σb), we have

σb(Tz, z) ≤ sσb(Tz, xn+) + sσb(xn+, z)

≤ sσb(Tz, Tz) (as n → ∞).

Therefore we deduce

σb(Tz, Tz) ≤ α(z, z)σb(Tz, Tz)

< β
(
σb(z, z)

)
M(z, z)

<

s

max
{
σb(z, z),σb(Tz, z)

}

=

s
σb(Tz, z)

≤ σb(Tz, Tz),

which is a contradiction. Consequently, Tz = z. �

By Remark . we know N(x, y) ≤ M(x, y), so a slight change in the proof of Theorem .
shows actually the following theorem holds.
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Theorem . Let (X,σb) be a complete b-metric-like space, T : X → X be a mapping.
Suppose that the following conditions hold:

(a) T is an orbitally continuous generalized Meir-Keeler contraction of type (II),
(b) there exists x ∈ X such that α(x, Tx) ≥ , α(Tx, x) ≥ ,
(c) if {xn} is a sequence in X such that xn → z as n → ∞ and α(xn, xm) ≥  for all

n, m ∈N, then α(z, z) ≥ ,
(d) s >  or β is a continuous function.

Then T has a fixed point in X.

There is an analogous result for the generalized Meir-Keeler contraction. The proof is
an easy adaptation of the one given in Theorem ..

Proposition . Under the hypotheses of Theorem . consider a particular case, T is
a generalized Meir-Keeler contraction, then T has a fixed point in X.

It is useful to seek a suitable replacement for the orbitally continuity of the contraction T .
The next theorem indicates how this can be achieved. In fact with the aid of α-admissibility
of the contraction we will show that orbitally continuity assumption is not required when-
ever the following condition is satisfied.

(A) If {xn} is a sequence in X which converges to z with respect to τσb and satisfies
α(xn+, xn) ≥  and α(xn, xn+) ≥  for all n, then there exists a subsequence {xnk } of
{xn} such that α(z, xnk ) ≥  and α(xnk , z) ≥  for all k.

Theorem . Let (X,σb) be a complete b-metric-like space with coefficient s and satisfies
the condition (A). Also, let T : X → X be a mapping. Suppose that the following conditions
hold:

(a) T : X → X is a generalized Meir-Keeler contraction of type (II),
(b) there exists x ∈ X such that α(x, Tx) ≥ , α(Tx, x) ≥ ,
(c) s >  or β is a continuous function.

Then T has a fixed point in X.

Proof Following the proof of Theorem ., we observe that the sequence {xn} defined by
x = Tx and xn+ = Txn (n ∈N), converges to some z ∈ X with σb(z, z) = . By condition (A),
there exists a subsequence {xnk } of {xn} such that α(z, xnk ) ≥  and α(xnk , z) ≥  for all k.
Note that if N(z, xnk ) = , then Tz = z and the proof is done. Regarding Remark ., for all
k ∈N we have

σb(Tz, xnk+ ) = σb(Tz, Txnk ) ≤ α(z, xnk )σb(Tz, Txnk ) < β
(
σb(z, xnk )

)
N(z, xnk ),

where

N(z, xnk ) = max

{
σb(z, xnk ),



[
σb(Tz, z) + σb(Txnk , xnk )

]}
.

Now on taking the limit k → ∞ and applying (σb) we obtain

lim
k→∞

N(z, xnk ) = max

{
,



σb(Tz, z)

}
=



σb(Tz, z).
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Thus, we conclude that

lim
k→∞

σb(Tz, xnk+ ) ≤ 
s

σb(Tz, z).

Applying again (σb), we have

σb(Tz, z) ≤ sσb(Tz, xnk+ ) + sσb(xnk+ , z),

and passing to the limit k → ∞ in the above relation we obtain

σb(Tz, z) ≤ 

σb(Tz, z).

This inequality implies σb(Tz, z) =  and hence Tz = z, which completes the proof. �

Proposition . Let (X,σb) be a complete b-metric-like space with coefficient s and sat-
isfies the condition (A). Let T : X → X be a generalized Meir-Keeler contraction. Also, sup-
pose that the following conditions hold:

(a) there exists x ∈ X such that α(x, Tx) ≥ , α(Tx, x) ≥ ,
(b) s >  or β is a continuous function.

Then T has a fixed point in X.

The usability of these results is demonstrated by the two following examples.

Example . Let (X,σb) and α be as in Example .. Consider T : X → X defined by
T = T =  and T = . Also, define β : [, +∞) → (, 

s ) as follows:

β(x) =

{

x , x = , , ,


(x+) , otherwise.

In order to check the condition (), we choose δ = ε so that ε ≤ β(σb(x, y))M(x, y) < ε+δ =
ε, which implies α(x, y)σb(Tx, Ty) < ε.

Therefore, the map T is a generalized Meir-Keeler contraction of type (I). Note that T
is continuous with respect to τσb and α(, T) ≥ , α(T, ) ≥ . Now, all conditions of
Theorem . are satisfied and so T has a fixed point.

Example . Let X = R
+ equipped with the b-metric-like σb : X × X →R

+ defined by

σb(x, y) =
(
x + y).

It is easy to see that (X,σb) is a complete b-metric-like space, with s = . Define the self-
mapping T : X → X and the functions α : X×X → [, +∞), β : [, +∞) → (, 

s ) as follows:

T(x) =

{
x
 , x ∈ [, ],
log(x + x + x + ), x ∈ (, +∞),

α(x, y) =

{
, x, y ∈ [, ],
, otherwise,

β(x) =

{

 , x ∈ [, ],

x
x+ , otherwise.
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Then the mapping T is triangular α-admissible. On the other hand, the condition (A)
holds on X. More precisely, if the sequence {xn} ⊂ X satisfies α(xn, xn+) ≥ , α(xn+, xn) ≥ ,
and limn→∞xn = x with respect to τσb , for some x ∈ X, then {xn} ⊂ [, ] and, moreover,
limn→∞(x

n + x) = x, which gives us x = . Hence α(xn, x) ≥  and α(x, xn) ≥ .
Next we prove that T is a generalized Meir-Keeler contraction. We show this in the three

following steps.
Step . If x /∈ [, ] or y /∈ [, ].
In this case, α(x, y) =  and evidently () holds.
Step . Let x, y ∈ [, ] with σb(x, y) ∈ [, ].
Let ε >  be given and choose δ = ε. Now if ε ≤ β(σb(x, y))σb(x, y) = 

 (x + y) < ε + δ =
ε, then

α(x, y)σb(Tx, Ty) =
(

x


+

y



)

=



(
x + y) < ε.

Step . Let x, y ∈ [, ] with σb(x, y) /∈ [, ].
Take δ = ε. Then the inequality ε ≤ β(σb(x, y))σb(x, y) = (x+y)

(x+y)+ < ε, implies that
α(x, y)σb(Tx, Ty) = 

 (x + y) < ε.
Also, notice that α(, T) ≥  and α(T, ) ≥ . We conclude that all of the assumptions

of Proposition . are satisfied. Moreover, T has fixed points x =  and x = .

A remarkable fact concerning Example . is that the restriction of T to the interval
[, ] is orbitally continuous and so by the definition of α that example fulfills all conditions
of Theorem ., too.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements
The authors gratefully acknowledge the anonymous reviewers for their carefully reading of the paper and helpful
suggestions.

Received: 17 November 2015 Accepted: 27 February 2016

References
1. Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969)
2. Banach, S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam.

Math. 3, 133-181 (1922)
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