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Abstract
In this paper, we introduce and study iterative schemes for solving split equilibrium
problems and fixed point problems of nonspreading multi-valued mappings in
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1 Introduction
In the following, let H and H be real Hilbert spaces with the inner product 〈·, ·〉 and the
norm ‖ · ‖. Let C be a nonempty subset of H. The equilibrium problem is to find a point
x̂ ∈ C such that

F(x̂, y) ≥  (.)

for all y ∈ C. Since its inception by Blum and Oettli [] in , the equilibrium problem
(.) has received much attention due to its applications in a large variety of problems
arising in numerous problems in physics, optimizations, and economics. Some methods
have been rapidly established for solving this problem (see [–]).

Very recently, Kazmi and Rizvi [] introduced and studied the following split equilib-
rium problem:

Let C ⊆ H and Q ⊆ H. Let F : C × C → R and F : Q × Q → R be two bifunctions. Let
A : H → H be a bounded linear operator. The split equilibrium problem is to find x̂ ∈ C
such that

F(x̂, x) ≥  for all x ∈ C (.)

and such that

ŷ = Ax̂ ∈ Q solves F(ŷ, y) ≥  for all y ∈ Q. (.)
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Note that the problem (.) is the classical equilibrium problem and we denote its solu-
tion set by EP(F). The inequalities (.) and (.) constitute a pair of equilibrium problems
which have to find the image ŷ = Ax̂, under a given bounded linear operator A, of the so-
lution x̂ of (.) in H is the solution of (.) in H. We denote the solution set of (.)
by EP(F). The solution set of the split equilibrium problem (.) and (.) is denoted by
� = {z ∈ EP(F) : Az ∈ EP(F)}.

A subset C ⊂ H is said to be proximinal if, for each x ∈ H,

‖x – y‖ = d(x, C) = inf
{‖x – z‖ : z ∈ C

}
.

Let CB(C), K(C), and P(C) denote the families of nonempty closed bounded subsets,
nonempty compact subsets and nonempty proximinal bounded subset of C, respectively.
The Hausdorff metric on CB(C) is defined by

H(A, B) = max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

for all A, B ∈ CB(C) where d(x, B) = infb∈B ‖x – b‖. An element p ∈ C is called a fixed point
of T : C → CB(C) if p ∈ Tp. The set of fixed points of T is denoted by F(T). We say that
T : C → CB(C) is:

() nonexpansive if

H(Tx, Ty) ≤ ‖x – y‖

for all x, y ∈ C;
() quasi-nonexpansive if

H(Tx, Tp) ≤ ‖x – p‖

for all x ∈ C and p ∈ F(T).
Recently, the existence of fixed points and the convergence theorems of multi-valued

mappings have been studied by many authors (see [–]).
Hussain and Khan [] presented the fixed point theorems of a *-nonexpansive multi-

valued mapping and the strong convergence of its iterates to a fixed point defined on a
closed and convex subset of a Hilbert space by using the best approximation operator
PT x, which is defined by PT x = {y ∈ Tx : ‖y – x‖ = d(x, Tx)}. The convergence theorems
and its applications in this direction have been established by many authors (for instance,
see [, , ]).

In , Song and Cho [] gave the example of a multi-valued mapping T which is not
necessary nonexpansive, but PT is nonexpansive. This is an important tool for studying
the fixed point theory for multi-valued mappings.

Kohsaka and Takahashi [] introduced a class of mappings which is called nonspread-
ing mapping. Let C be a subset of Hilbert spaces H. A mapping T : C → C is said to be
nonspreading if

‖Tx – Ty‖ ≤ ‖Tx – y‖ + ‖Ty – x‖
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for all x, y ∈ C. Subsequently, Iemoto and Takahashi [] showed that T : C → C is non-
spreading if and only if

‖Tx – Ty‖ ≤ ‖x – y‖ + 〈x – Tx, y – Ty〉

for all x, y ∈ C.
Very recently, Liu [] introduced the following class of multi-valued mappings: a multi-

valued mapping T : C → CB(C) is said to be nonspreading if

‖ux – uy‖ ≤ ‖ux – y‖ + ‖uy – x‖

for some ux ∈ Tx and uy ∈ Ty for all x, y ∈ C. He proved a weak convergence theorem for
finding a common element of the set of solutions of an equilibrium problem and the set
of common fixed points.

In this paper, we introduce, by using Hausdorff metric, the class of nonspreading multi-
valued mappings. We say that a mapping T : C → CB(C) is a k-nonspreading multi-valued
mapping if there exists k >  such that

H(Tx, Ty) ≤ k
(
d(Tx, y) + d(x, Ty)) (.)

for all x, y ∈ C.
It is easy to see that, if T is 

 -nonspreading, then T is nonspreading in the case of single-
valued mappings (see [, ]). Moreover, if T is a 

 -nonspreading and F(T) �= ∅, then T
is quasi-nonexpansive. Indeed, for all x ∈ C and p ∈ F(T), we have

H(Tx, Tp) ≤ d(Tx, p) + d(x, Tp)

≤ H(Tx, Tp) + ‖x – p‖.

It follows that

H(Tx, Tp) ≤ ‖x – p‖. (.)

We now give an example of a 
 -nonspreading multi-valued mapping which is not non-

expansive.

Example . Consider C = [–, ] with the usual norm. Define T : C → CB(C) by

Tx =

{
{}, x ∈ [–, ];
[– |x|

|x|+ , ], x ∈ [–, –).

Now, we show that T is 
 -nonspreading. In fact, we have the following cases:

Case : If x, y ∈ [–, ], then H(Tx, Tx) = .
Case : If x ∈ [–, ] and y ∈ [–, –), then Tx = {} and Ty = [– |y|

|y|+ , ]. This implies that

H(Tx, Ty) = 
( |y|

|y| + 

)

<  < y ≤ d(Tx, y) + d(x, Ty).
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Case : If x, y ∈ [–, –), then Tx = [– |x|
|x|+ , ] and Ty = [– |y|

|y|+ , ]. This implies that

H(Tx, Ty) = 
( |x|

|x| + 
–

|y|
|y| + 

)

<  < d(Tx, y) + d(x, Ty).

On the other hand, T is not nonexpansive since for x = – and y = – 
 , we have Tx = {}

and Ty = [– 
 , ]. This shows that H(Tx, Ty) = 

 > 
 = | –  – (– 

 )| = ‖x – y‖.

In , Mann [] introduced the following iterative procedure to approximate a fixed
point of a nonexpansive mapping T in a Hilbert space H :

xn+ = αnxn + ( – αn)Txn (.)

for each n ∈N, where the initial point x is taken in C arbitrarily and {αn} is a sequence in
[, ].

Motivated by the previous results, in this paper, we introduce and study the Mann-type
iteration to approximate a common solution of the split equilibrium problem and the fixed
point problem for a 

 -nonspreading multi-valued mapping and prove some weak conver-
gence theorems in Hilbert spaces. Finally, we give some examples and numerical results
to illustrate our main results.

2 Preliminaries
We now provide some results for the main results. In a Hilbert space H, let C be a
nonempty closed convex subset of H. For every point x ∈ H, there exists a unique nearest
point of C, denoted by PCx, such that ‖x – PCx‖ ≤ ‖x – y‖ for all y ∈ C. Such a PC is called
the metric projection from H onto C. We know that PC is a firmly nonexpansive mapping
from H onto C, i.e.,

‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉, ∀x, y ∈ H.

Further, for any x ∈ H and z ∈ C, z = PCx if and only if

〈x – z, z – y〉 ≥ , ∀y ∈ C.

A mapping A : C → H is called α-inverse strongly monotone if there exists α >  such that

〈x – y, Ax – Ay〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C.

Lemma . Let H be a real Hilbert space. Then the following equations hold:
() ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈ H;
() ‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉 for all x, y ∈ H;
() ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ for all t ∈ [, ] and x, y ∈ H;
() If {xn}∞n= is a sequence in H which converges weakly to z ∈ H, then

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – z‖ + ‖z – y‖

for all y ∈ H.
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A space X is said to satisfy Opial’s condition if, for any sequence xn with xn ⇀ x, then

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

for all y ∈ X with y �= x. It is well known that every Hilbert space satisfies Opial’s condition.

Lemma . [] Let X be a Banach space which satisfies Opial’s condition and {xn} be a
sequence in X. Let u, v ∈ X be such that limn→∞ ‖xn – u‖ and limn→∞ ‖xn – v‖ exist. If {xnk }
and {xmk } are subsequences of {xn} which converge weakly to u and v, respectively, then
u = v.

Assumption . [] Let F : C × C →R be a bifunction satisfying the following assump-
tions:

() F(x, x) =  for all x ∈ C;
() F is monotone, i.e., F(x, y) + F(y, x) ≤  for all x ∈ C;
() for each x, y, z ∈ C, lim supt→+ F(tz + ( – t)x, y) ≤ F(x, y);
() for each x ∈ C, y → F(x, y) is convex and lower semi-continuous.

Lemma . [] Assume that F : C × C → R satisfies Assumption .. For any r >  and
x ∈ H, define a mapping TF

r : H → C as follows:

TF
r (x) =

{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

Then the following hold:
() TF

r is nonempty and single-valued;
() TF

r is firmly nonexpansive, i.e., for any x, y ∈ H,

∥∥TF
r x – TF

r y
∥∥ ≤ 〈

TF
r x – TF

r y, x – y
〉
;

() F(TF
r ) = EP(F);

() EP(F) is closed and convex.

Further, assume that F : Q × Q → R satisfying Assumption .. For each s >  and w ∈
H, define a mapping TF

s : H → Q as follows:

TF
s (w) =

{
d ∈ Q : F(d, e) +


s
〈e – d, d – w〉 ≥ ,∀e ∈ Q

}
.

Then we have the following:
() TF

s is nonempty and single-valued;
() TF

s is firmly nonexpansive;
() F(TF

s ) = EP(F, Q);
() EP(F, Q) is closed and convex.

Condition (A) Let H be a Hilbert space and C be a subset of H. A multi-valued mapping
T : C → CB(C) is said to satisfy Condition (A) if ‖x – p‖ = d(x, Tp) for all x ∈ H and p ∈
F(T).
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Remark . We see that T satisfies Condition (A) if and only if Tp = {p} for all p ∈ F(T).
It is well known that the best approximation operator PT , which is defined by PT x = {y ∈
Tx : ‖y – x‖ = d(x, Tx)}, also satisfies Condition (A).

3 Main results
Now, we are ready to prove some weak convergence theorem for 

 -nonspreading multi-
valued mappings in Hilbert spaces. To this end, we need the following crucial results.

Lemma . Let C be a closed and convex subset of a real Hilbert space H and T : C →
K(C) be a k-nonspreading multi-valued mapping such that k ∈ (, 

 ]. If x, y ∈ C and a ∈ Tx,
then there exists b ∈ Ty such that

‖a – b‖ ≤ H(Tx, Ty) ≤ k
 – k

(‖x – y‖ + 〈x – a, y – b〉).

Proof Let x, y ∈ C and a ∈ Tx. By Nadler’s theorem (see []), there exists b ∈ Ty such that

‖a – b‖ ≤ H(Tx, Ty).

It follows that


k

H(Tx, Ty)

≤ d(Tx, y) + d(x, Ty)

≤ ‖a – y‖ + ‖x – b‖

≤ ‖a – x‖ + 〈a – x, x – y〉 + ‖x – y‖ + ‖x – a‖ + 〈x – a, a – b〉 + ‖a – b‖

= ‖a – x‖ + ‖x – y‖ + ‖a – b‖ + 
〈
a – x, x – a – (y – b)

〉

≤ ‖a – x‖ + ‖x – y‖ + H(Tx, Ty) + 
〈
a – x, x – a – (y – b)

〉
.

This implies that

H(Tx, Ty) ≤ k
 – k

(‖x – y‖ + 〈x – a, y – b〉).

This completes the proof. �

Lemma . Let C be a closed and convex subset of a real Hilbert space H and T : C →
K(C) be a k-nonspreading multi-valued mapping such that k ∈ (, 

 ]. Let {xn} be a sequence
in C such that xn ⇀ p and limn→∞ ‖xn – yn‖ =  for some yn ∈ Txn. Then p ∈ Tp.

Proof Let {xn} be a sequence in C which converges weakly to p and let yn ∈ Txn be such
that ‖xn – yn‖ → .

Now, we show that p ∈ F(T). By Lemma ., there exists zn ∈ Tp such that

‖yn – zn‖ ≤ k
 – k

(‖xn – p‖ + 〈xn – yn, p – zn〉
)
.
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Since Tp is compact and zn ∈ Tp, there exists {zni} ⊂ {zn} such that zni → z ∈ Tp. Since
{xn} converges weakly, it is bounded. For each x ∈ H, define a function f : H → [,∞) by

f (x) := lim sup
i→∞

k
 – k

‖xni – x‖.

Then, by Lemma .(), we obtain

f (x) = lim sup
i→∞

k
 – k

(‖xni – p‖ + ‖p – x‖)

for all x ∈ H. Thus f (x) = f (p) + k
–k ‖p – x‖ for all x ∈ H. It follows that

f (z) = f (p) +
k

 – k
‖p – z‖. (.)

We observe that

f (z) = lim sup
i→∞

k
 – k

‖xni – z‖ = lim sup
i→∞

k
 – k

‖xni – yni + yni – z‖

≤ lim sup
i→∞

k
 – k

‖yni – z‖.

This implies that

f (z) ≤ lim sup
i→∞

k
 – k

‖yni – z‖

= lim sup
i→∞

k
 – k

(‖yni – zni + zni – z‖)

≤ lim sup
i→∞

k
 – k

(‖xni – p‖ + 〈xni – yni , p – zni〉
)

≤ lim sup
i→∞

k
 – k

‖xni – p‖

= f (p). (.)

Hence it follows from (.) and (.) that ‖p – z‖ = . This completes the proof. �

Theorem . Let H, H be two real Hilbert space and C ⊂ H, Q ⊂ H be nonempty closed
convex subsets of Hilbert spaces H and H, respectively. Let A : H → H be a bounded
linear operator and T : C → K(C) a 

 -nonspreading multi-valued mapping. Let F : C ×
C → R, F : Q × Q → R be bifunctions satisfying Assumption . and F is upper semi-
continuous in the first argument. Assume that T satisfies Condition (A) and � = F(T)∩� �=
∅, where � = {z ∈ C : z ∈ EP(F) and Az ∈ EP(F)}. Let {xn} be a sequence defined by

⎧
⎪⎨

⎪⎩

x ∈ C arbitrarily,
un = TF

rn (I – γ A∗(I – TF
rn )A)xn,

xn+ ∈ αnxn + ( – αn)Tun,
(.)

for all n ≥ , where {αn} ⊂ (, ), rn ⊂ (,∞), and γ ∈ (, /L) such that L is the spectral
radius of A∗A and A∗ is the adjoint of A. Assume that the following conditions hold:
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()  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
() lim infn→∞ rn > .
Then the sequence {xn} defined by (.) converges weakly to p ∈ �.

Proof We first show that A∗(I – TF
rn )A is a 

L -inverse strongly monotone mapping. Since
TF

rn is firmly nonexpansive and I – TF
rn is -inverse strongly monotone, we see that

∥∥A∗(I – TF
rn

)
Ax – A∗(I – TF

rn

)
Ay

∥∥ =
〈
A∗(I – TF

rn

)
(Ax – Ay), A∗(I – TF

rn

)
(Ax – Ay)

〉

=
〈(

I – TF
rn

)
(Ax – Ay), AA∗(I – TF

rn

)
(Ax – Ay)

〉

≤ L
〈(

I – TF
rn

)
(Ax – Ay),

(
I – TF

rn

)
(Ax – Ay)

〉

= L
∥∥(

I – TF
rn

)
(Ax – Ay)

∥∥

≤ L
〈
Ax – Ay,

(
I – TF

rn

)
(Ax – Ay)

〉

= L
〈
x – y, A∗(I – TF

rn

)
Ax – A∗(I – TF

rn

)
Ay

〉

for all x, y ∈ H. This implies that A∗(I – TF
rn )A is a 

L -inverse strongly monotone mapping.
Since γ ∈ (, 

L ), it follows that I – γ A∗(I – TF
rn )A is nonexpansive.

Now, we divide the proof into six steps as follows:
Step . Show that {xn} is bounded.
Let p ∈ �. Then p = TF

rn p and (I – γ A∗(I – TF
rn )A)p = p. Thus we have

‖un – p‖ =
∥∥TF

rn

(
I – γ A∗(I – TF

rn

)
A

)
xn – TF

rn

(
I – γ A∗(I – TF

rn

)
A

)
p
∥∥

≤ ∥∥(
I – γ A∗(I – TF

rn

)
A

)
xn –

(
I – γ A∗(I – TF

rn

)
A

)
p
∥∥

≤ ‖xn – p‖. (.)

It follows that

‖xn+ – p‖ ≤ αn‖xn – p‖ + ( – αn)‖zn – p‖ for some zn ∈ Tun

≤ αn‖xn – p‖ + ( – αn)d(zn, Tp)

≤ αn‖xn – p‖ + ( – αn)H(Tun, Tp)

≤ ‖xn – p‖.

Hence limn→∞ ‖xn – p‖ exists.
Step . Show that ‖zn – xn‖ →  as n → ∞ for all zn ∈ Tun. From Lemma . and T

satisfying Condition (A), we have

‖xn+ – p‖ ≤ αn‖xn – p‖ + ( – αn)‖zn – p‖ – αn( – αn)‖xn – zn‖

= αn‖xn – p‖ + ( – αn)d(zn, Tp) – αn( – αn)‖xn – zn‖

≤ αn‖xn – p‖ + ( – αn)H(Tun, Tp) – αn( – αn)‖xn – zn‖

≤ αn‖xn – p‖ + ( – αn)‖un – p‖ – αn( – αn)‖xn – zn‖
≤ ‖xn – p‖ – αn( – αn)‖xn – zn‖.
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This implies that

αn( – αn)‖xn – zn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖.

From Condition () and the existence of limn→∞ ‖xn – p‖, we have

lim
n→∞‖xn – zn‖ = . (.)

Step . Show that ‖un – zn‖ →  as n → ∞ for all zn ∈ Tun. For any p ∈ �, we estimate

‖un – p‖ =
∥∥TF

rn

(
I – γ A∗(I – TF

rn

)
A

)
xn – p

∥∥

=
∥∥TF

rn

(
I – γ A∗(I – TF

rn

)
A

)
xn – TF

rn p
∥∥

≤ ∥∥xn – γ A∗(I – TF
rn

)
Axn – p

∥∥

≤ ‖xn – p‖ + γ ∥∥A∗(I – TF
rn

)
Axn

∥∥ + γ
〈
p – xn, A∗(I – TF

rn

)
Axn

〉
.

Thus we have

‖un – p‖ ≤ ‖xn – p‖ + γ 〈Axn – TF
rn Axn, AA∗(I – TF

rn

)
Axn

〉

+ γ
〈
p – xn, A∗(I – TF

rn

)
Axn

〉
. (.)

On the other hand, we have

γ 〈Axn – TF
rn Axn, AA∗(I – TF

rn

)
Axn

〉 ≤ Lγ 〈Axn – TF
rn Axn, Axn – TF

rn Axn
〉

= Lγ ∥∥Axn – TF
rn Axn

∥∥ (.)

and

γ
〈
p – xn, A∗(I – TF

rn

)
Axn

〉

= γ
〈
A(p – xn), Axn – TF

rn Axn
〉

= γ
〈
A(p – xn) +

(
Axn – TF

rn Axn
)

–
(
Axn – TF

rn Axn
)
, Axn – TF

rn Axn
〉

= γ
{〈

Ap – TF
rn Axn, Axn – TF

rn Axn
〉
–

∥∥Axn – TF
rn Axn

∥∥}

≤ γ

{


∥∥Axn – TF

rn Axn
∥∥ –

∥∥Axn – TF
rn Axn

∥∥
}

= –γ
∥∥Axn – TF

rn Axn
∥∥. (.)

Using (.), (.), and (.), we have

‖un – p‖ ≤ ‖xn – p‖ + Lγ ∥∥Axn – TF
rn Axn

∥∥ – γ
∥
∥Axn – TF

rn Axn
∥∥

= ‖xn – p‖ + γ (Lγ – )
∥∥Axn – TF

rn Axn
∥∥. (.)
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It follows that, for all zn ∈ Tun,

‖xn+ – p‖ =
∥∥αnxn + ( – αn)zn – p

∥∥

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖

= αn‖xn – p‖ + ( – αn)d(zn, Tp)

≤ αn‖xn – p‖ + ( – αn)H(Tun, Tp)

≤ αn‖xn – p‖ + ( – αn)‖un – p‖

≤ αn‖xn – p‖ + ( – αn)
(‖xn – p‖ + γ (Lγ – )

∥∥Axn – TF
rn Axn

∥∥)

≤ ‖xn – p‖ + γ (Lγ – )
∥∥Axn – TF

rn Axn
∥∥.

Therefore, we have

–γ (Lγ – )
∥∥Axn – TF

rn Axn
∥∥ ≤ ‖xn – p‖ – ‖xn+ – p‖.

Since γ (Lγ – ) <  and limn→∞ ‖xn – p‖ exists, by (.), we obtain

lim
n→∞

∥∥Axn – TF
rn Axn

∥∥ = . (.)

Since TF
rn is firmly nonexpansive and I – γ A∗(TF

rn – I)A is nonexpansive, it follows that

‖un – p‖

=
∥∥TF

rn

(
xn – γ A∗(I – TF

rn

)
Axn

)
– TF

rn p
∥∥

≤ 〈
TF

rn

(
xn – γ A∗(I – TF

rn

)
Axn

)
– TF

rn p, xn – γ A∗(I – TF
rn

)
Axn – p

〉

=
〈
un – p, xn – γ A∗(I – TF

rn

)
Axn – p

〉

=


{‖un – p‖ +

∥∥xn – γ A∗(I – TF
rn

)
Axn – p

∥∥ –
∥∥un – xn – γ A∗(I – TF

rn

)
Axn

∥∥}

≤ 

{‖un – p‖ + ‖xn – p‖ –

∥∥un – xn – γ A∗(I – TF
rn

)
Axn

∥∥}

=


{‖un – p‖ + ‖xn – p‖ –

(‖un – xn‖ + γ ∥∥A∗(I – TF
rn

)
Axn

∥∥

– γ
〈
un – xn, A∗(I – TF

rn – I
)
Axn

〉)}
,

which implies that

‖un – p‖ ≤ ‖xn – p‖ – ‖un – xn‖ + γ
〈
un – xn, A∗(I – TF

rn

)
Axn

〉

≤ ‖xn – p‖ – ‖un – xn‖ + γ ‖un – xn‖
∥∥A∗(I – TF

rn

)
Axn

∥∥. (.)

It follows from (.) that

‖xn+ – p‖

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖ for all zn ∈ Tun
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≤ αn‖xn – p‖ + ( – αn)d(zn, Tp)

≤ αn‖xn – p‖ + ( – αn)H(Tun, Tp)

≤ αn‖xn – p‖ + ( – αn)‖un – p‖

≤ αn‖xn – p‖ + ( – αn)
(‖xn – p‖ – ‖un – xn‖ + γ ‖un – xn‖

∥∥A∗(I – TF
rn

)
Axn

∥∥)
.

Therefore, we have

( – αn)‖un – xn‖ ≤ γ ‖un – xn‖
∥∥A∗(I – TF

rn

)
Axn

∥∥ + ‖xn – p‖ – ‖xn+ – p‖.

From Condition () and (.), we have

lim
n→∞‖un – xn‖ = . (.)

From (.) and (.), we have

‖un – zn‖ ≤ ‖un – xn‖ + ‖xn – zn‖ →  (.)

as n → ∞.
Step . Show that ‖xn+ – xn‖ →  as n → ∞. From (.) and (.), we have

‖xn+ – un‖ =
∥∥αnxn + ( – αn)zn – un

∥∥

≤ αn‖xn – un‖ + ( – αn)‖zn – un‖ →  (.)

as n → ∞. From (.) and (.), we also have

‖un – un+‖ ≤ ‖un – xn+‖ + ‖xn+ – un+‖ →  (.)

as n → ∞. It follows from (.) and (.) that

‖xn+ – xn‖ ≤ ‖xn+ – un‖ + ‖un – xn‖ →  (.)

as n → ∞.
Step . Show that ωw(xn) ⊂ �, where ωw(xn) = {x ∈ H : xni ⇀ x, {xni} ⊂ {xn}}. Since {xn}

is bounded and H is reflexive, ωw(xn) is nonempty. Let q ∈ ωw(xn) be an arbitrary element.
Then there exists a subsequence {xni} ⊂ {xn} converging weakly to q. From (.), it follows
that uni ⇀ q as i → ∞. By Lemma . and (.), we obtain q ∈ F(T).

Next, we show that q ∈ EP(F). From un = TF
rn (I + γ A∗(I – TF

rn )A)xn, we have

F(un, y) +

rn

〈
y – un, un – xn – γ A∗(I – TF

rn

)
Axn

〉 ≥ 

for all y ∈ C, which implies that

F(un, y) +

rn

〈y – un, un – xn〉 –

rn

〈
y – un,γ A∗(I – TF

rn

)
Axn

〉 ≥ 
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for all y ∈ C. By Assumption .(), we have


rni

〈y – uni , uni – xni〉 –


rni

〈
y – uni ,γ A∗(I – TF

rni

)
Axni

〉 ≥ F(y, uni )

for all y ∈ C. From lim infn→∞ rn > , from (.), (.), and Assumption .(), we obtain

F(y, q) ≤ 

for all y ∈ C. For any  < t ≤  and y ∈ C, let yt = ty + ( – t)q. Since y ∈ C and q ∈ C, yt ∈ C,
and hence F(yt , q) ≤ . So, by Assumption .() and (), we have

 = F(yt , yt) ≤ tF(yt , y) + ( – t)F(yt , q) ≤ tF(yt , y)

and hence F(yt , y) ≥ . So F(q, y) ≥  for all y ∈ C by (.) and hence q ∈ EP(F). Since
A is a bounded linear operator, Axni ⇀ Aq. Then it follows from (.) that

TF
rni

Axni ⇀ Aq (.)

as i → ∞. By the definition of TF
rni

Axni , we have

F
(
TF

rni
Axni , y

)
+


rni

〈
y – TF

rni
Axni , TF

rni
Axni – Axni

〉 ≥ 

for all y ∈ C. Since F is upper semi-continuous in the first argument and (.), it follows
that

F(Aq, y) ≥ 

for all y ∈ C. This shows that Aq ∈ EP(F). Hence q ∈ �.
Step . Show that {xn} and {un} converge weakly to an element of �. It is sufficient to

show that ωw(xn) is single point set. Let p, q ∈ ωw(xn) and {xnk }, {xnm} ⊂ {xn} be such that
xnk ⇀ p and xnm ⇀ q. From (.), we also have unk ⇀ p and unm ⇀ q. By Lemma . and
(.), it follows that p, q ∈ F(T). Applying Lemma ., we obtain p = q. This completes
the proof. �

If Tp = {p} for all p ∈ F(T), then T satisfies Condition (A) and so we can obtain the
following result.

Theorem . Let H, H be two real Hilbert spaces and C ⊂ H, Q ⊂ H be nonempty
closed convex subsets of Hilbert spaces H and H, respectively. Let A : H → H be a
bounded linear operator and T : C → K(C) a 

 -nonspreading multi-valued mapping. Let
F : C × C → R, F : Q × Q → R be bifunctions satisfying Assumption . and F is upper
semi-continuous in the first argument. Assume that � = F(T) ∩ � �= ∅ and Tp = {p} for all
p ∈ F(T), where � = {z ∈ C : z ∈ EP(F) and Az ∈ EP(F)}. Let {xn} be a sequence defined
by

⎧
⎪⎨

⎪⎩

x ∈ C arbitrarily,
un = TF

rn (I – γ A∗(I – TF
rn )A)xn,

xn+ ∈ αnxn + ( – αn)Tun,
(.)
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for all n ≥ , where {αn} ⊂ (, ), rn ⊂ (,∞), and γ ∈ (, /L) such that L is the spectral
radius of A∗A and A∗ is the adjoint of A. Assume that the following conditions hold:

()  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
() lim infn→∞ rn > .
Then the sequence {xn} defined by (.) converges weakly to p ∈ �.

Since PT satisfies Condition (A), we also obtain the following results.

Theorem . Let H, H be two real Hilbert spaces and C ⊂ H, Q ⊂ H be nonempty
closed convex subsets of Hilbert spaces H and H, respectively. Let A : H → H be a
bounded linear operator and T : C → P(C) a multi-valued mapping. Let F : C × C → R,
F : Q × Q →R be bifunctions satisfying Assumption . and F is upper semi-continuous
in the first argument. Assume that PT is 

 -nonspreading multi-valued mapping and I – T
is demiclosed at  with � = F(T) ∩ � �= ∅, where � = {z ∈ C : z ∈ EP(F) and Az ∈ EP(F)}.
Let {xn} be a sequence defined by

⎧
⎪⎨

⎪⎩

x ∈ C arbitrarily,
un = TF

rn (I – γ A∗(I – TF
rn )A)xn,

xn+ ∈ αnxn + ( – αn)PT un,
(.)

for all n ≥ , where {αn} ⊂ (, ), rn ⊂ (,∞), and γ ∈ (, /L) such that L is the spectral
radius of A∗A and A∗ is the adjoint of A. Assume that the following conditions hold:

()  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
() lim infn→∞ rn > .
Then the sequence {xn} defined by (.) converges weakly to p ∈ �.

Proof By the same proof as in Theorem ., we have un → zn ∈ PT un. This implies that

d(un, Tun) ≤ d(un, PT un) ≤ ‖un – zn‖ →  (.)

as n → ∞. Since I – T is demiclosed at , we obtain this result. �

4 Examples and numerical results
In this section, we give examples and numerical results for supporting our main theorem.

Example . Let H = H = R, C = [–, ], and Q = (–∞, ]. Let F(u, v) = (u – )(v – u)
for all u, v ∈ C and F(x, y) = (x + )(y – x) for all x, y ∈ Q. Define two mappings A : R →R

and T : C → K(C) by Ax = x for all x ∈ R and

Tx =

{
{}, x ∈ [–, ];
[– |x|

|x|+ , ], x ∈ [–, –).

Choose αn = n
n+ , rn = n

n+ , and γ = 
 . It is easy to check that F and F satisfy all conditions

in Theorem . and T satisfies Condition (A) such that F(T) = {}. For each r >  and
x ∈ C, we divide the process of our iteration into five steps as follows:
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Table 1 Numerical results of Example 1.1 being randomized in the first time

n zn xn |xn+1 – xn|
1 –5.74683E–01 –3.00000E+00 1.61688E+00
2 0 –1.38312E+00 8.29873E–01
3 0 –5.53249E–01 3.16142E–01
4 0 –2.37107E–01 1.31726E–01
5 0 –1.05381E–01 5.74804E–02
6 0 –4.79003E–02 2.57925E–02
7 0 –2.21078E–02 1.17909E–02
8 0 –1.03170E–02 5.46194E–03
9 0 –4.85506E–03 2.55529E–03
10 0 –2.29976E–03 1.20464E–03
...

...
...

...
50 0 –9.26099E–16 4.67634E–16

Step . Find z ∈ Q such that F(z, y)+ 
r 〈y–z, z –Ax〉 ≥  for all y ∈ Q. Noting that Ax = x,

we have

F(z, y) +

r
〈y – z, z – Ax〉 ≥  ⇐⇒ (z + )(y – z) +


r
〈y – z, z – x〉 ≥ 

⇐⇒ r(z + )(y – z) + (y – z)(z – x) ≥ 

⇐⇒ (y – z)
(
( + r)z – (x – r)

) ≥ .

By Lemma ., we know that TF
r Ax is single-valued. Hence z = x–r

+r .
Step . Find s ∈ C such that s = x – γ A∗(I – TF

r )Ax. From Step , we have

s = x – γ A∗(I – TF
r

)
Ax = x – γ A∗(Ax – TF

r Ax
)

= x – γ

(
x –

(x – r)
 + r

)

= ( – γ )x +
γ

 + r
(x – r).

Step . Find u ∈ C such that F(u, v) + 
r 〈v – u, u – s〉 ≥  for all v ∈ C. From Step , we

have

F(u, v) +

r
〈v – u, u – s〉 ≥  ⇐⇒ (u – )(v – u) +


r
〈v – u, u – s〉 ≥ 

⇐⇒ r(u – )(v – u) + (v – u)(u – s) ≥ 

⇐⇒ (v – u)
(
( + r)u – (s + r)

) ≥ .

Similarly, by Lemma ., we obtain u = s+r
+r = (–γ )x+r

+r + γ (x–r)
(+r) .

Step . Find xn+ ∈ αnxn + ( – αn)Tun, where un = (–γ )xn+rn
+rn

+ γ (xn–rn)
(+rn) . From

Tx =

{
{}, x ∈ [–, ];
[– |x|

|x|+ , ], x ∈ [–, –),

and αn = n
n+ , rn = n

n+ , and γ = 
 , we have

xn+ =
(

n
n + 

)
xn +

(
 –

n
n + 

)
zn, (.)
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Table 2 Numerical results of Example 1.1 being randomized in the second time

n zn xn |xn+1 – xn|
1 –1.26779E–00 –3.00000E+00 1.91548E+00
2 0 –1.08452E+00 6.50711E–01
3 0 –4.33808E–01 2.47890E–01
4 0 –1.85918E–01 1.03288E–01
5 0 –8.26300E–02 4.50709E–02
6 0 –3.75591E–02 2.02241E–02
7 0 –1.73350E–02 9.24532E–03
8 0 –8.08965E–03 4.28276E–03
9 0 –3.80690E–03 2.00363E–03
10 0 –1.80327E–03 9.44568E–04
...

...
...

...
50 0 –7.26163E–16 3.66677E–16

where

zn ∈
{

{}, un ∈ [–, ];
[– |un|

|un|+ , ], un ∈ [–, –).

Step . Compute the numerical results. Choosing x = – and taking randomly zn in the
above interval, we obtain Tables  and .

From Table  and Table , we see that  is the solution in Example ..
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