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Abstract
We prove the existence of a g-best proximity point for a pair of mappings, by using
suitable hypotheses on a metric space. Moreover, we establish some convergence
results for a variational inequality problem, by using the variational characterization of
metric projections in a real Hilbert space. Our results are applicable to classical
problems of optimization theory.
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1 Introduction
Let A and B be two nonempty subsets of a metric space (X, d) and T : A → B be a non-self-
mapping. The equation Tx = x is known as a general fixed point equation and its solution
is related to the solution of many practical situations arising in pure and applied sciences.
For instance, it is well known that many problems involving differential equations may
be solved by searching for the existence of a fixed point of an integral operator. But for
the existence of a fixed point of T , we need that T(A) ∩ A �= ∅, otherwise d(x, Tx) >  for
all x ∈ A. In such a situation, it is natural to search a point x ∈ A such that x is closest
to Tx in some sense. To clarify and support this assertion, we recall the following best
approximation theorem due to Ky Fan [], in a metric version.

Theorem . ([]) Let A be a nonempty compact convex subset of a normed linear space
X and T : A → X be a continuous mapping. Then there exists x ∈ A such that ‖x – Tx‖ =
d(Tx, A).

This result is related to the existence of an approximate solution to the equation Tx = x.
Theoretical and practical aspects of this theorem have been discussed by various mathe-
maticians; we refer the reader to [–].

On the other hand, very recently Khojasteh et al. [] introduced the concept of
Z-contraction, by using a notion of simulation function. Consequently, fixed point re-
sults involving a Z-contraction are established in []. This approach has been of great
importance to discuss various fixed point problems from an unifying point of view; see
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for instance [–] and the references therein. For more contributions on the develop-
ment of fixed point theorems see [–].

We generalize and extend many results in the existing literature, by establishing some
best proximity point theorems involving Z-proximal contractions; see [, ]. In partic-
ular, we prove the existence of a unique g-best proximity point, which is a point x ∈ A
such that d(gx, Tx) = d(A, B), where g : A → A is a self-mapping. As an application, we give
sufficient conditions to ensure the existence of a unique solution for a variational inequal-
ity problem and propose a convergent iterative algorithm to approximate this solution, by
using metric projections. Our results are applicable to some classical problems of opti-
mization theory.

2 Preliminaries
Let R, N, and Q denote the sets of all real numbers, positive integers and rational numbers,
respectively. Let A and B be two nonempty subsets of a metric space (X, d). By using the
usual notation in nonlinear analysis, we recall the following notions:

A =
{

x ∈ A : d(x, y) = d(A, B), for some y ∈ B
}

,

B =
{

y ∈ B : d(x, y) = d(A, B), for some x ∈ A
}

.

Kirk et al. gave sufficient conditions to ensure that A and B are nonempty sets; see
[]. On the other hand, Sadiq Basha and Veeramani proved that A is contained in the
boundary of A; see [].

In the sequel, we are interested in establishing results involving new types of proximal
contraction and hence we recall the fundamental definitions in this direction; see [, ].

Definition . Let A and B be two nonempty subsets of a metric space (X, d). A non-self-
mapping T : A → B is said to be a contraction if

d(Tx, Ty) ≤ kd(x, y),

for all x, y ∈ X, where k ∈ [, [.

Definition . Let A and B be two nonempty subsets of a metric space (X, d). A non-self-
mapping T : A → B is said to be a proximal contraction of the first kind if

d(u, Tx) = d(A, B),
d(v, Ty) = d(A, B)

}

	⇒ d(u, v) ≤ kd(x, y),

for all u, v, x, y ∈ A, where k ∈ [, [.

Definition . Let A and B be two nonempty subsets of a metric space (X, d). A non-self-
mapping T : A → B is said to be a proximal contraction of the second kind if

d(u, Tx) = d(A, B),
d(v, Ty) = d(A, B)

}

	⇒ d(Tu, Tv) ≤ kd(Tx, Ty),

for all u, v, x, y ∈ A, where k ∈ [, [.
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Many authors generalized these concepts and proved their best approximation theo-
rems; see for instance [–].

In , Sankar Raj [] introduced the notion of P-property as follows.

Definition . ([], Definition ) Let A and B be two nonempty subsets of a metric space
(X, d) with A �= ∅. Then the pair (A, B) is said to have the P-property if and only if d(x, y) =
d(A, B) = d(x, y) implies d(x, x) = d(y, y) where x, x ∈ A and y, y ∈ B.

By using Definition ., Sankar Raj in [] gave an extended version of the contraction
mapping principle in []. Of course, for every nonempty subset A of X, the pair (A, A) has
the P-property. We shall consider this property in a remark of the next section.

Definition . Let A and B be two nonempty subsets of a metric space (X, d). Let g : A →
A be a self-mapping and T : A → B a non-self-mapping. Then

(i) g ∈ GA if g is continuous and d(x, y) ≤ d(gx, gy) for all x, y ∈ A;
(ii) T ∈ Tg if d(Tx, Ty) ≤ d(Tgx, Tgy) for all x, y ∈ A.

Finally, Khojasteh et al. in [] defined a simulation function as follows.

Definition . A simulation function is a mapping ζ : [, +∞[×[, +∞[→ R satisfying
the following conditions:

(ζ) ζ (, ) = ;
(ζ) ζ (t, s) < s – t, for all t, s > ;
(ζ) if {tn}, {sn} are sequences in ], +∞[ such that limn→∞ tn = limn→+∞ sn = � ∈ ], +∞[,

then lim supn→+∞ ζ (tn, sn) < .

Consequently, they established the existence and uniqueness of fixed point for a self-
mapping defined in a complete metric space.

Theorem . ([]) Let (X, d) be a complete metric space and f : X → X be a Z-
contraction with respect to a certain simulation function ζ , that is,

ζ
(
d(fx, fy), d(x, y)

) ≥ , for all x, y ∈ X. ()

Then f has a unique fixed point. Moreover, for every x ∈ X, the Picard sequence {f nx}
converges to this fixed point.

Successively, Argoubi et al. [] point out the fact that condition (ζ) is not mentioned
in the proof of Theorem .. Moreover, by putting x = y in (), it follows that ζ (, ) ≥ 
and hence, if ζ (, ) < , the set of mappings f : X → X satisfying condition () is an empty
set.

Consequently, Argoubi et al. proposed a slight modification of Definition ., by remov-
ing the condition (ζ) and retaining the rest.

Remark . Every simulation function of Khojasteh et al. is also a simulation function of
Argoubi et al. However, the converse is not true.
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Example . ([], Example .) Let ζλ : [, +∞[×[, +∞[→ R be the function defined
by

ζλ(t, s) =

{
 if (s, t) = (, ),
λs – t otherwise,

where λ ∈ ], [. Then ζλ satisfies (ζ) and (ζ) with ζλ(, ) > .

In order to avoid confusion, we refer to the following definition.

Definition . A simulation function is a mapping ζ : [, +∞[×[, +∞[→ R satisfying
the conditions (ζ) and (ζ).

3 Best proximity point theorems
In view of Definition ., we consider the following notions of proximal contractions.

Definition . Let A and B be two nonempty subsets of a metric space (X, d). A non-self-
mapping T : A → B is said to be a Z-proximal contraction of the first kind if there exists
a simulation function ζ : [, +∞[×[, +∞[→R such that

d(u, Tx) = d(A, B),
d(v, Ty) = d(A, B)

}

	⇒ ζ
(
d(u, v), d(x, y)

) ≥ ,

for all u, v, x, y ∈ A.

Remark . If T : A → B is a Z-proximal contraction of the first kind and (A, B) has the
P-property, then T is a Z-contraction.

Example . Let X = R be endowed with the usual metric d(x, y) = |x – y| for all x, y ∈ X.
Consider A = [, 

 ] and B = [, ] so that d(A, B) = . Define a mapping T : A → B by

Tx =
x

 + x
, for all x ∈ A,

and the simulation function ζ : [, +∞[×[, +∞[→R by

ζ (t, s) =

{
s – t

–t if t ∈ [, 
 ],

s – t otherwise.

It is easy to show that T is a Z-proximal contraction of the first kind, but not a proximal
contraction of the first kind.

Indeed, from d(u, Tx) = d(v, Ty) =  = d(A, B), we get (x, y) = ( u
–u , v

–v ), with u, v ∈ [, 
 ],

and hence

ζ
(
d(u, v), d(x, y)

)

= ζ

(
d(u, v), d

(
u

 – u
,

v
 – v

))

=
∣∣∣∣

u
 – u

–
v

 – v

∣∣∣∣ –
|u – v|

 – |u – v| ≥ ,

since u + v ≥ |u – v| + uv. Thus, T is a Z-proximal contraction of the first kind.
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On the other hand, there does not exist k ∈ [, [ such that

d(u, v) = |u – v|� k
|u – v|

 – u – v + uv
= kd

(
u

 – u
,

v
 – v

)
= kd(x, y),

for all u, v ∈ [, 
 ], and hence T is not a proximal contraction of the first kind.

Definition . Let A and B be two nonempty subsets of a metric space (X, d). A non-
self-mapping T : A → B is said to be a Z-proximal contraction of the second kind if there
exists a simulation function ζ : [, +∞[×[, +∞[→R such that

d(u, Tx) = d(A, B),
d(v, Ty) = d(A, B)

}

	⇒ ζ
(
d(Tu, Tv), d(Tx, Ty)

) ≥ ,

for all u, v, x, y ∈ A.

Example . Let X = R be endowed with the usual metric d(x, y) = |x – y| for all x, y ∈ X,
and A = B = [, ]. Define a mapping T : [, ] → [, ] by

Tx =

{
 if x ∈Q∩ [, ],
 otherwise.

Now, consider the function ζλ : [, +∞[×[, +∞[→ R given in Example .. It is easy
to show that T is a Z-proximal contraction of the second kind, but not a Z-proximal
contraction of the first kind.

The following lemma is useful to show that a given sequence is Cauchy; see Lemma ..
in []; see also Lemma .. in [].

Lemma . Let (X, d) be a metric space and {xn} a given sequence in X. Suppose that

lim
n→+∞ d(xn, xn+) = .

If {xn} is not a Cauchy sequence, then there exists an ε >  for which we can find subse-
quences {xnk } and {xmk } of {xn} such that

(i) nk > mk ≥ k, k ∈N;
(ii) d(xnk , xmk ) ≥ ε, d(xnk –, xmk ) < ε, k ∈N;

(iii) limk→+∞ d(xnk , xmk ) = ε = limk→+∞ d(xnk +, xmk +).

On this basis, we construct our results. Precisely, we establish some theorems of g-best
proximity point for Z-proximal contractions and deduce some corollaries.

Theorem . Let A and B be two nonempty subsets of a complete metric space (X, d).
Suppose that A is nonempty and closed. Assume also that the mappings T : A → B and
g : A → A satisfy the following conditions:

(a) T is a Z-proximal contraction of the first kind;
(b) g ∈ GA;
(c) T(A) ⊆ B;
(d) A ⊆ g(A).
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Then there exists a unique point x ∈ A such that d(gx, Tx) = d(A, B). Moreover, for every x ∈
A there exists a sequence {xn} ⊆ A such that d(gxn+, Txn) = d(A, B) for every n ∈ N ∪ {}
and xn → x.

Proof Let x ∈ A. Since T(A) ⊆ B and A ⊆ g(A), there exists x ∈ A such that

d(gx, Tx) = d(A, B).

Clearly, for x ∈ A, there exists x ∈ A such that

d(gx, Tx) = d(A, B).

By repeating this process, for xn ∈ A, we can find xn+ ∈ A such that

d(gxn+, Txn) = d(A, B), for all n ∈N.

In the constructive process of {xn}, if for some m > n, we have Txm = Txn, then we choose
xm+ = xn+. Also, if there exists m ∈ N such that d(gxm+, gxm) = , then xm+ = xm, and
hence Txm+ = Txm and xm+ = xm+. It follows that xn = xm for all n ∈N with n ≥ m and so
the sequence {xn} converges to xm ∈ A. We also have d(gxm, Txm) = d(A, B).

Then we suppose that  < d(xn+, xn) ≤ d(gxn+, gxn) �=  for all n ∈ N. Since T is a
Z-proximal contraction of the first kind and g ∈ GA, we write

 ≤ ζ
(
d(gxn+, gxn), d(xn, xn–)

)

< d(xn, xn–) – d(gxn+, gxn)

≤ d(xn, xn–) – d(xn+, xn), ()

for every n ∈N. This implies that the sequence {d(xn, xn–)} is decreasing and hence there
exists r ≥  such that d(xn, xn–) → r. Suppose r > . From (), we deduce also that

d(gxn+, gxn) ≤ d(xn, xn–), for all n ∈N.

On the other hand g ∈ GA and hence

d(xn+, xn) ≤ d(gxn+, gxn) ≤ d(xn, xn–), for all n ∈N.

Consequently,

lim
n→+∞ d(gxn+, gxn) = r.

Now, using the property (ζ) of a simulation function, we write

 ≤ lim sup
n→+∞

ζ
(
d(gxn+, gxn), d(xn, xn–)

)
< ,

which is a contradiction and hence r = .
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The next step is to show that the sequence {xn} is Cauchy. By contradiction, assume
that {xn} is not a Cauchy sequence. Then, by Lemma ., there exist an ε >  and two
subsequences {xnk } and {xmk } of {xn} such that nk > mk ≥ k and d(xnk , xmk ) ≥ ε for all
k ∈N and

lim
k→+∞

d(xnk , xmk ) = ε = lim
k→+∞

d(xnk +, xmk +).

Then we can assume that d(xnk +, xmk +) >  for all k ∈ N. Since T is a Z-proximal con-
traction of the first kind and d(gxnk +, Txnk ) = d(A, B) = d(gxmk+, Txmk ), we obtain

 ≤ ζ
(
d(gxnk +, gxmk +), d(xnk , xmk )

)

< d(xnk , xmk ) – d(gxnk +, gxmk +),

for all k ∈N. Thus, the previous inequality and g ∈ GA ensure that

lim
k→+∞

d(gxnk +, gxmk +) = ε.

By using the property (ζ) of a simulation function, with tk = d(gxnk +, gxmk +) and sk =
d(xnk , xmk ), we obtain

 ≤ lim sup
k→+∞

ζ
(
d(gxnk +, gxmk +), d(xnk , xmk )

)
< ,

which is a contradiction. We conclude that the sequence {xn} is Cauchy. Since (X, d) is
complete and A is closed, then A is complete and hence there exists x ∈ A such that
xn → x. Moreover, by the continuity of g , we have gxn → gx and thus gx ∈ A, since gxn ∈
A for all n ∈ N and A is closed. On the other hand, since x ∈ A and T(A) ⊆ B, there
exists z ∈ A such that d(z, Tx) = d(A, B).

Now, if z = gxn for infinite n ∈ N, then z = gx. Hence we assume that z �= gxn for all n ∈N.
Also there exists a subsequence {xnk } of {xn} such that xnk �= x for all k ∈N. Again, since T
is a Z-proximal contraction of the first kind, we get

ζ
(
d(z, gxnk +), d(x, xnk )

)
< d(x, xnk ) – d(z, gxnk +),

and hence

d(z, gxnk +) < d(x, xnk ), for all k ∈N.

Letting k → +∞, we obtain d(z, gxnk +) →  and then z = gx. This implies that

d(gx, Tx) = d(A, B).

To prove the uniqueness, let x∗ �= x be another point in A such that

d
(
gx∗, Tx∗) = d(A, B).
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Since g ∈ GA and T is a Z-proximal contraction of the first kind, we write

 ≤ ζ
(
d
(
gx, gx∗), d

(
x, x∗))

< d
(
x, x∗) – d

(
gx, gx∗)

≤ d
(
x, x∗) – d

(
x, x∗) = ,

which leads to x = x∗, a contradiction. �

We get the following corollary, by setting g as the identity mapping on A in Theorem ..

Corollary . Let A and B be two nonempty subsets of a complete metric space (X, d).
Suppose that A is nonempty and closed. Assume also that the mapping T : A → B satisfies
the following conditions:

(a) T is a Z-proximal contraction of the first kind;
(b) T(A) ⊆ B.

Then there exists a unique point x ∈ A such that d(x, Tx) = d(A, B). Moreover, for every
x ∈ A there exists a sequence {xn} ⊆ A such that d(xn+, Txn) = d(A, B) for every n ∈N∪{}
and xn → x.

Example . Let X, A, B, d, T , and ζ be as in Example .. Notice that A = A = B is
closed and T(A) ⊆ B. Thus, by an application of Corollary ., the mapping T : A → B
has a unique point x ∈ A such that d(x, Tx) =  = d(A, B); here x = .

From Theorem ., we obtain the following corollary which is a generalization of The-
orem . of [].

Corollary . Let A and B be two nonempty subsets of a complete metric space (X, d).
Suppose that A is nonempty and closed. Assume also that the mappings T : A → B and
g : A → A satisfy the following conditions:

(a) T is a proximal contraction of the first kind;
(b) g ∈ GA;
(c) T(A) ⊆ B;
(d) A ⊆ g(A).

Then there exists a unique point x ∈ A such that d(gx, Tx) = d(A, B). Moreover, for every x ∈
A there exists a sequence {xn} ⊆ A such that d(gxn+, Txn) = d(A, B) for every n ∈ N ∪ {}
and xn → x.

Proof Note that a proximal contraction of the first kind is a Z-proximal contraction of
the first kind with respect to the simulation function ζ : [, +∞[×[, +∞[→R defined by
ζ (t, s) = ks – t for all t, s ∈ [, +∞[, where k ∈ [, ). �

The following theorem establishes a result of existence of a g-best proximity point for a
Z-proximal contraction of the second kind.

Theorem . Let A and B be two nonempty subsets of a complete metric space (X, d).
Suppose that T(A) is nonempty and closed. Assume also that the mappings T : A → B
and g : A → A satisfy the following conditions:
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(a) T is a Z-proximal contraction of the second kind;
(b) T is injective on A;
(c) T ∈ Tg ;
(d) T(A) ⊆ B;
(e) A ⊆ g(A).

Then there exists a unique point x ∈ A such that d(gx, Tx) = d(A, B). Moreover, for every x ∈
A there exists a sequence {xn} ⊆ A such that d(gxn+, Txn) = d(A, B) for every n ∈ N ∪ {}
and xn → x.

Proof By following a similar reasoning to that in the proof of Theorem ., one can con-
struct a sequence {xn} ⊆ A such that d(gxn+, Txn) = d(A, B) for all n ∈ N. Moreover, in
the constructive process of {xn} if Txm = Txn for some m > n, then we choose xm+ = xn+.
This condition ensures that if, for some m ∈ N, we have xm = xm+, then xn = xm for all
n ≥ m. So the sequence {xn} converges to xm and also d(gxm, Txm) = d(A, B). Thus, we can
suppose that d(xn+, xn) �=  for all n ∈N∪ {}. Since T is a Z-proximal contraction of the
second kind, we have

ζ
(
d(Tgxn+, Tgxn), d(Txn, Txn–)

) ≥ , for all n ∈N.

From T ∈ Tg and T being injective on A, we deduce that d(Tgxn+, Tgxn) >  and
d(Txn, Txn–) >  for all n ∈ N. By using the property (ζ) of a simulation function, we
get

 ≤ ζ
(
d(Tgxn+, Tgxn), d(Txn, Txn–)

)

< d(Txn, Txn–) – d(Tgxn+, Tgxn)

≤ d(Txn, Txn–) – d(Txn+, Txn), ()

for every n ∈ N. This implies that the sequence {d(Txn, Txn–)} is decreasing and hence
there exists r ≥  such that d(Txn, Txn–) → r. Suppose r > . From () we deduce also that

d(Tgxn+, Tgxn) < d(Txn, Txn–), for all n ∈N.

On the other hand T ∈ Tg and hence

d(Txn+, Txn) ≤ d(Tgxn+, Tgxn) < d(Txn, Txn–), for all n ∈N.

Consequently,

lim
n→+∞ d(Tgxn+, Tgxn) = r.

Now, using the property (ζ) of a simulation function, we write

 ≤ lim sup
n→+∞

ζ
(
d(Tgxn+, Tgxn), d(Txn, Txn–)

)
< ,

which is a contradiction and hence r = .
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Next step is to show that the sequence {Txn} is Cauchy. By contradiction, assume that
{Txn} is not a Cauchy sequence. Then, by Lemma ., there exist an ε >  and two sub-
sequences {Txnk } and {Txmk } of {Txn} such that nk > mk ≥ k and d(Txnk , Txmk ) ≥ ε for all
k ∈N and

lim
k→+∞

d(Txnk , Txmk ) = ε = lim
k→+∞

d(Txnk +, Txmk +).

Then we can assume that d(Txnk +, Txmk +) >  for all k ∈N. Since T is a Z-proximal con-
traction of the second kind and d(gxnk+, Txnk ) = d(A, B) = d(gxmk+, Txmk ), we obtain

 ≤ ζ
(
d(Tgxnk +, Tgxmk +), d(Txnk , Txmk )

)

< d(Txnk , Txmk ) – d(Tgxnk +, Tgxmk +),

for all k ∈N. Thus the previous inequality and T ∈ Tg ensure that

lim
k→+∞

d(Tgxnk +, Tgxmk +) = ε.

By using the property (ζ) of a simulation function, with tk = d(Tgxnk +, Tgxmk +) and sk =
d(Txnk , Txmk ), we obtain

 ≤ lim sup
k→+∞

ζ
(
d(Tgxnk +, Tgxmk +), d(Txnk , Txmk )

)
< ,

which is a contradiction. We conclude that the sequence {Txn} is Cauchy.
By the completeness of (X, d) and since T(A) is closed, we have Txn → Tu ∈ B. More-

over, there exists z ∈ A such that

d(z, Tu) = d(A, B).

Since A ⊆ g(A), we obtain z = gx for some x ∈ A, and hence

d(gx, Tu) = d(A, B).

Clearly, if x = xn for infinite n ∈ N, then Tx = Tu. Therefore, we assume that x �= xn for
all n ∈ N. Also there exists a subsequence {xnk } of {xn} such that Txnk �= Tu for all k ∈ N.
Again, since T is a Z-proximal contraction of the second kind, we get

 ≤ ζ
(
d(Tgx, Tgxnk+), d(Tu, Txnk )

)

< d(Tu, Txnk ) – d(Tgx, Tgxnk+)

and hence

d(Tx, Txnk +) ≤ d(Tgx, Tgxnk+) < d(Tu, Txnk ),

for all k ∈ N, since T ∈ Tg . Letting k → +∞, we obtain d(Tx, Txnk +) →  and hence Tx =
Tu. This implies that

d(gx, Tx) = d(A, B).
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To prove the uniqueness, let x∗ �= x be another point in A such that

d
(
gx∗, Tx∗) = d(A, B).

Since T ∈ Tg is injective on A and T is a Z-proximal contraction of the second kind, we
write

 ≤ ζ
(
d
(
Tgx, Tgx∗), d

(
Tx, Tx∗))

< d
(
Tx, Tx∗) – d

(
Tgx, Tgx∗)

≤ d
(
Tx, Tx∗) – d

(
Tx, Tx∗) = ,

which leads to contradiction; we conclude that Tx = Tx∗ and hence x = x∗. �

We get the following corollary, by setting g as the identity mapping on A in Theorem ..

Corollary . Let A and B be two nonempty subsets of a complete metric space (X, d).
Suppose that T(A) is nonempty and closed. Assume also that the mapping T : A → B
satisfies the following conditions:

(a) T is a Z-proximal contraction of the second kind;
(b) T is injective on A;
(c) T(A) ⊆ B.

Then there exists a unique point x ∈ A such that d(x, Tx) = d(A, B). Moreover, for every
x ∈ A there exists a sequence {xn} ⊆ A such that d(xn+, Txn) = d(A, B) for every n ∈N∪{}
and xn → x.

Example . Let X = R be endowed with the usual metric d(x, y) = |x – y| for all x, y ∈ X.
Consider A = [–, –], B = [, ] so that d(A, B) =  and define T : A → B by

Tx =

{
 + x if x ∈ [–, –],
– – x if x ∈ ]–, –].

We have

A =
{

x ∈ A : d(x, y) = d(A, B) = , for some y ∈ B
}

= {–},
B =

{
y ∈ B : d(x, y) = d(A, B) = , for some x ∈ A

}
= {},

and hence T(A) = {} = B.
It is easy to show that T is a Z-proximal contraction of the second kind, where the

function ζλ : [, +∞[×[, +∞[→R is given in Example ..
Indeed, from d(u, Tx) = d(v, Ty) =  = d(A, B), we get (u, v) = (–, –) for x, y ∈ {–, –}

and hence

ζ
(
d(Tu, Tv), d(Tx, Ty)

)
= ζ

(
d(, ), d(, )

)
= ζ (, ) = .

Therefore all the conditions of Corollary . hold true and x = – is the unique point such
that d(–, T(–)) =  = d(A, B).
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4 Variational inequality problems
Let H be a real Hilbert space, with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let K be a
nonempty, closed, and convex subset of H . We consider a monotone variational inequality
problem as follows; see [, ].

Problem . Find u ∈ K such that 〈Su, v – u〉 ≥  for all v ∈ K , where S : H → H is a
monotone operator (i.e., 〈Su – Sv, v – u〉 ≥  for all u, v ∈ K ).

The interest for variational inequalities theory is due to the fact that a wide class of
equilibrium problems, arising in pure and applied sciences, can be treated in an unified
framework []. Now, we recall the metric projection, say PK : H → K , which is a powerful
tool for solving a variational inequality problem. Referring to classical books on approxi-
mation theory in inner product spaces, see [], we recall that for each u ∈ H , there exists
a unique nearest point PK u ∈ K such that

‖u – PK u‖ ≤ ‖u – v‖, for all v ∈ K .

The theoretical background of projection and related approximation methods can be
found in [], too. Here, we need the following crucial lemmas, relating the existence of a
solution for a variational inequality problem and the existence of a fixed point of a certain
mapping.

Lemma . Let z ∈ H . Then u ∈ K satisfies the inequality 〈u – z, y – u〉 ≥ , for all y ∈ K if
and only if u = PK z.

Lemma . Let S : H → H be monotone. Then u ∈ K is a solution of 〈Su, v – u〉 ≥ , for all
v ∈ K , if and only if u = PK (u – λSu), with λ > .

On this basis, we give some general convergence results on the solution of Problem ..

Theorem . Let K be a nonempty, closed, and convex subset of a real Hilbert space H and
IK be the identity operator on K . Assume that the monotone operator S : H → H satisfies
the following condition:

(a) PK (IK – λS) : K → K is a Z-contraction, with λ > .
Then there exists a unique point u ∈ K such that 〈Su, v – u〉 ≥  for all v ∈ K . Moreover,
for every u ∈ K , there exists a sequence {un} ⊆ K such that un+ = PK (un – λSun) for every
n ∈N∪ {} and un → u.

Proof Define T : K → K by Tx = PK (x –λSx) for all x ∈ K so that, by Lemma ., u ∈ K is a
solution of 〈Su, v – u〉 ≥  for all v ∈ K if and only if u = Tu. Clearly, the operator T satisfies
all the hypotheses of Theorem . by setting A = B = K . We deduce that the conclusions
of Theorem . hold true as an immediate consequence of Theorem .. �

Inspired by Theorem ., one can consider the following algorithm to solve Problem ..

Variational inequality problem solving algorithm

Step  (Initialization): Select an arbitrary starting point u ∈ K .
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Step  (Iteration): Given the current approximation point un ∈ K , n ∈ N∪ {}, compute

un+ = PK (un – λSun),

satisfying Theorem .(a).

In view of the proof of Theorem . (and hence Theorem .), this algorithm generates
sequences converging to a unique solution of Problem ..

From Corollary ., we obtain the following result for the solution of a variational in-
equality problem.

Theorem . Let K be a nonempty, closed, and convex subset of a real Hilbert space H and
IK be the identity operator on K . Assume that the monotone operator S : H → H satisfies
the following conditions:

(a) PK (IK – λS) : K → K is a Z-proximal contraction of the second kind, with λ > ;
(b) PK (IK – λS) is injective on K ;
(c) PK (IK – λS)(K) is closed.

Then there exists a unique point u ∈ K such that 〈Su, v – u〉 ≥  for all v ∈ K . Moreover,
for every u ∈ K , there exists a sequence {un} ⊆ K such that un+ = PK (un – λSun) for every
n ∈N∪ {} and un → u.

Inspired by Theorem ., one can consider the following algorithm to solve Problem ..

Variational inequality problem solving algorithm

Step  (Initialization): Select an arbitrary starting point u ∈ K .
Step  (Iteration): Given the current approximation point un ∈ K , n ∈ N∪ {}, compute

un+ = PK (un – λSun),

satisfying Theorem .(a)-(c).

Our results apply to some fundamental problems of optimization theory. In fact, as a
special case of Problem ., we retrieve the following constrained minimization problem.

Problem . Find u ∈ K such that 〈∇fu, v – u〉 ≥  for all v ∈ K , where f : H →R is a con-
tinuously differentiable function which is convex on K with ∇f denoting the gradient of f .

A second special case of Problem ., is the following hierarchical variational inequality
problem.

Problem . Let Fix(g) := {x ∈ K : x = gx}, where g : K → K is such that ‖gx–gy‖ ≤ ‖x–y‖
(i.e., g is nonexpansive). Find u ∈ Fix(g) such that 〈Su, v – u〉 ≥  for all v ∈ Fix(g), where
S : K → K is a monotone continuous operator.

Finally, by using the Gâteaux directional derivative of a metric projection, we denote

�K
(
x, –S(x)

)
:= lim

t→+

PK (x – tS(x)) – x
t

,

where S : K → H is continuous.
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Now, consider the initial value problem:

dx(t)
dt

= �K
(
x(t), –S

(
x(t)

))
, x() = x ∈ K , t ∈ [, +∞[, ()

whose critical points satisfy dx(t)
dt = .

In [], the authors proved that the set of critical points of () coincides with the set of
solutions of a monotone variational inequality problem involving the operator S. Thus, our
theory is applicable to the study of (), which is associated to various economic problems;
see again [].

5 Conclusions
Best approximation and fixed point theories are continuously expanding topics due to
their applications in many fields of pure and applied mathematics. Thus, we gave new
theorems of g-best proximity point by using a notion of simulation function. This ap-
proach is useful to cover existing results in the literature from an unifying point of view.
A discussion of the solvability of monotone variational inequality problems and related
optimization problems supports the new theory.
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