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Abstract
In this paper, we study the circular cone eigenvalue complementarity problem
(CCEiCP) by variational inequality technique, prove the existence of a solution to
CCEiCP, and investigate different nonlinear programming formulations of the
symmetric and asymmetric CCEiCP, respectively. We reduce CCEiCP to a variational
inequality problem on a compact convex set, which guarantees that CCEiCP has at
least one solution. Based on the variational inequality formulation of CCEiCP, the
symmetric CCEiCP can be reformulated as a nonlinear programming problem NLP1,
and solved by computing a stationary point of the Rayleigh quotient function on a
compact set. We formulate the asymmetric CCEiCP as another nonlinear
programming problem NLP2, and show that any global minimum of NLP2 with an
objective function value equal to zero is a solution of the asymmetric CCEiCP.
Moreover, a stationary point of NLP2 is a solution of the asymmetric CCEiCP, if and only
if the Lagrange multipliers associated with the equalities in NLP2 are equal to zero. The
different formulations of CCEiCP provide alternative approaches for solving CCEiCP,
which will play an important role in designing efficient algorithms to solve CCEiCP.

Keywords: circular cone eigenvalue complementarity problem; variational
inequality formulation; nonlinear programming; stationary point

1 Introduction
In the past years, the eigenvalue complementarity problems (EiCP) have received great
attention, since they have a wide range of applications in engineering, such as the contact
problems in mechanics, electrical circuit simulation, dynamic analysis of structural me-
chanical systems, and vibro-acoustic systems [–]. It is noted that the eigenvalue com-
plementarity problem differs from the traditional eigenvalue problem in that the primal
and dual variables belong to a closed and convex cone and its dual, respectively, and satisfy
a complementarity condition []. In [], the second-order cone eigenvalue complemen-
tarity problem (SOCEiCP) was studied via a special variational inequality problem on a
compact set defined by a Lorentz cone and a normalization constraint, and moreover, an
enumerative algorithm was proposed for solving this problem.

The EiCP where the cone is the nonnegative orthant is called the Pareto eigenvalue com-
plementarity problem. In this case, the spectrum is finite and its cardinality grows expo-
nentially with the size of the problem [–]. A number of algorithms have been proposed
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for solving EiCP, such as the Path solver [], the spectral projected gradient algorithm [],
the scaling and projection algorithm [], and the semismooth Newton method [].

The second-order cone eigenvalue complementarity problem (SOCEiCP) [, ] is the
EiCP involving the product of second-order cones (or Lorentz cones), which is widely
used in game theory, economic equilibrium, engineering, and so on [–]. SOCEiCP
is regarded as one of the most difficult problems to solve, because the Lorentz spectrum
may be the union of finitely many mutually disjoint connected sets and each connected
set is either a singleton or a closed interval of positive length (not finite and not countable)
[]. Therefore, it is a difficult task to compute and detect all the eigenvalues of SOCEiCP.
A number of semismooth Newton methods have been proposed in [] for finding a so-
lution of SOCEiCP. A hybrid algorithm which combines a semismooth Newton method
with an enumeration algorithm is presented in [] to detect multiple solutions of SOCE-
iCP, and it performs very well in practice. A scaling and projection algorithm in [] is
applied to finding a solution of the circular cone eigenvalue complementarity problem
(CCEiCP), which is an extension of SOCEiCP.

The circular cone eigenvalue complementarity problem (CCEiCP) [] consists of find-
ing a real number λ and a vector x ∈ Rn\{} such that

ω = (λB – A)x,
x ∈ C, ω ∈ C∗,
xTω = ,

()

where ω ∈ Rn, A, B ∈ Rn×n, and B is positive definite, i.e., xT Bx >  for all x �= . And C ⊆ Rn

is the Cartesian product of circular cones, i.e., C = Cn
θ

× Cn
θ

× · · · × Cnm
θm , where n = n +

n + · · · + nm and Cni
θi

is the ni-dimensional circular cone with θi ∈ (, π
 ), i = , , . . . , m.

When the rotation angle θi = ◦, the circular cone Cni
θi

reduces to the second-order cone
[, ]. Thus CCEiCP includes SOCEiCP as a special case.

Motivated by [, –], in this paper, we aim to study the variational inequality formu-
lation of CCEiCP, prove the existence of a solution to CCEiCP, and investigate different
nonlinear programming formulations of the symmetric and asymmetric CCEiCP, respec-
tively. The different formulations of CCEiCP provide alternative approaches for finding
solutions of CCEiCP, which will play an important role in designing efficient algorithms to
find multiple solutions of CCEiCP. We reduce the circular cone eigenvalue complemen-
tarity problem (CCEiCP) to a variational inequality problem on a compact convex set.
This guarantees that CCEiCP has at least one solution. Moreover, the symmetric CCEiCP
can be reformulated as a nonlinear programming problem NLP, which maximizes the
Rayleigh quotient function on a compact set. Any stationary point of NLP is a solution
of the symmetric CCEiCP. For the asymmetric CCEiCP, the reduction NLP no longer
holds. We formulate the asymmetric CCEiCP as another nonlinear programming prob-
lem NLP, and show that any global minimum of NLP with an objective function value
equal to zero provides a solution of the asymmetric CCEiCP. Moreover, a stationary point
of NLP is a solution of the asymmetric CCEiCP, if and only if the Lagrange multipliers
associated with the equalities in NLP are equal to zero. Note that the circular cone Cni

θi

reduces to the second-order cone, whenever the rotation angle θi = ◦. Therefore the
presented results in this paper on the symmetric CCEiCP extend that on SOCEiCP in [].
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The organization of this paper is as follows. In Section , we review some preliminar-
ies including the circular cone, the Euclidean Jordan algebra associated with the second-
order cone, and some concepts. In Section , we reduce CCEiCP to a variational inequality
problem on a compact convex set, and prove the existence of a solution to CCEiCP. More-
over, we reformulate the symmetric CCEiCP as a nonlinear programming problem NLP.
In Section , we formulate the asymmetric CCEiCP as another nonlinear programming
problem NLP, and investigate when a stationary point of NLP is a solution of CCEiCP.

In the following, we denote the nonnegative orthant of R by R+. We use the symbol ‖ · ‖
to denote the Euclidean norm defined by ‖x‖ :=

√
xT x for a vector x or the corresponding

induced matrix norm. For simplicity, we often use x = (x; x:n) for the column vector x =
(x, xT

:n)T .

2 Preliminaries
In this section, we recall some concepts and results, which include the circular cone [,
] and the Euclidean Jordan algebra [, ] associated with the second-order cone (SOC)
Kn.

First, we recall some concepts and the Euclidean Jordan algebra associated with the SOC
[, ]. The second-order cone (also called Lorentz cone or ice-cream cone) is defined by

Kn =
{

x = (x; x:n) ∈ R × Rn– : ‖x:n‖ ≤ x
}

, ()

where x:n := (x, x, . . . , xn)T ∈ Rn–. The Euclidean Jordan algebra for the SOC Kn is the
algebra defined by

x ◦ s =
(
xT s; xs:n + sx:n

)
, ∀x, s ∈ Rn,

with e = (, , . . . , )T ∈ Rn being its unit element. Given an element x = (x; x:n) ∈ R×Rn–,
we define

L(x) =

(
x xT

:n

x:n xI

)

,

where I represents the (n – ) × (n – ) identity matrix. It is easy to verify that x ◦ s = L(x)s
for any s ∈ Rn. Moreover, L(x) is symmetric positive definite (and hence invertible) if and
only if x ∈ int Kn.

Now we give some results about the circular cone [, ]. The circular cone is a pointed
closed convex cone having hyperspherical sections orthogonal to its axis of revolution
about which the cone is invariant to rotation. Let its half-aperture angle be θ with θ ∈
(, π

 ). Then the n-dimensional circular cone Cn
θ is defined by

Cn
θ :=

{
x = (x; x:n) ∈ R × Rn– : cos θ‖x‖ ≤ x

}
. ()

In fact, it is not difficult to see that

Cn
θ =

{
x = (x; x:n) ∈ R × Rn– : ‖x:n‖ ≤ x tan θ

}
.



Chi et al. Fixed Point Theory and Applications  (2016) 2016:31 Page 4 of 14

Thus the circular cone Cn
θ includes the second-order cone Kn as a special case when the

half-aperture angle is π
 . Therefore,

[
x

x:n

]

∈ Cn
θ ⇔

[
x tan θ

x:n

]

∈ Kn ⇔
[

tan θ 
 I

][
x

x:n

]

∈ Kn,

which is equivalent to

[
x

x:n

]

∈ Cn
θ ⇔ T

[
x

x:n

]

∈ Kn

with

T :=

[
tan θ 

 I

]

.

It should be pointed out that the matrix T is positive definite and its inverse matrix is

T– =

[
cot θ 

 I

]

, where cot θ =


tan θ
.

For a convex cone K , its dual cone is defined by

K∗ =
{

s : 〈s, x〉 ≥ ,∀x ∈ K
}

.

It is well known that the second-order cone Kn is self-dual, i.e., (Kn)∗ = Kn. However, the
circular cone is not generally self-dual.

Theorem . [] Let Kn and Cn
θ be defined as () and (), respectively. Thus Cn

π
 –θ

is
expressed as

Cn
π
 –θ

=
{

x = (x; x:n) ∈ R × Rn– : ‖x:n‖ ≤ x cot θ
}

.

Then, we have
(i) Cn

θ = T–Kn and Kn = TCn
θ .

(ii) TKn = Cn
π
 –θ

and Cn
π
 –θ

= TCn
θ .

(iii) (Cn
θ )∗ = Cn

π
 –θ

and ((Cn
θ )∗)∗ = Cn

θ .

3 A variational inequality formulation of CCEiCP
In this section, we present a variational inequality formulation of CCEiCP, and prove the
existence of a solution to CCEiCP. Moreover, we reformulate the symmetric CCEiCP as a
nonlinear programming problem, which will be helpful to detect multiple solutions of the
symmetric CCEiCP.

As stated in [] for EiCP, the CCEiCP can be formulated as the following variational
inequality problem VI(F , C):

Finding a vector x ∈ C such that

F(x)T (y – x) ≥ , ∀y ∈ C, ()
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where the function F : Rn → Rn is defined by

F(x) =
(

xT Ax
xT Bx

B – A
)

x, ()

and C = C ∩ � with

� =

{

x ∈ Rn :
m∑

i=

xi
 = , xi

 tan θi ≥ , i = , , . . . , m

}

. ()

Proposition . VI(F , C) has at least one solution.

Proof Because of the positive definiteness of the matrix B, the function F is well defined
and continuous on C. Furthermore, since C ⊆ Rn is compact convex, it follows from Corol-
lary .. in [] that the set of solutions to VI(F , C) is nonempty and compact. �

We now set

C̃ni
θi

=
{

xi =
(
xi

; xi
:ni

) ∈ R × Rni– :
∥∥xi

:ni

∥∥ ≤ (
xi


)

tan θi
}

, i = , , . . . , m, ()

and

C̃ =
(
C̃n

θ
× C̃n

θ
× · · · C̃nm

θm

) ∩ �. ()

It therefore follows that

C = C̃. ()

Now we present the sufficient optimality conditions for CCEiCP by the variational in-
equality technique.

Theorem . If x ∈ C is a solution of VI(F , C), then (x,λ = xT Ax
xT Bx ) is a solution of CCEiCP.

Proof (i) First of all we consider the case xi
 tan θi �=  for any i = , , . . . , m. From () and (),

x is a solution of VI(F , C) if and only if y = x is the optimal solution of the following mini-
mization problem:

min F(x)T y
s.t. y ∈ C̃.

Since the linear independence constraint qualification holds at x, we see that x satisfies the
following Karush-Kuhn-Tucker (KKT) conditions []:

F(x) = Dα + Eβ + γ e, ()
∥∥xi

:ni

∥
∥ ≤ (

xi

)

tan θi, i = , , . . . , m, ()

αi
(∥∥xi

:ni

∥∥ –
(
xi


)

tan θi
)

= , i = , , . . . , m, ()
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αi ≥ , i = , , . . . , m, ()

xi
 tan θi ≥ , βi ≥ , i = , , . . . , m, ()

βixi
 tan θi = , i = , , . . . , m, ()

eT x = , ()

where

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x
 tan θ  · · · 

–x
:n  · · · 

 x
 tan θ · · · 

 –x
:n · · · 

...
...

...
...

  · · · xm
 tan θm

m m · · · –xm
:nm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ Rn×m,

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

tan θ  · · · 
  · · · 

 tan θ · · · 
  · · · 

...
...

...
...

  · · · tan θm

m m · · · m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ Rn×m, e =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣







...


m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ Rn,

α =

⎡

⎢⎢⎢⎢
⎣

α

α
...

αm

⎤

⎥⎥⎥⎥
⎦

∈ Rm, β =

⎡

⎢⎢⎢⎢
⎣

β

β
...

βm

⎤

⎥⎥⎥⎥
⎦

∈ Rm.

Here i is a null vector of dimension ni –, and αi, βi, γ are the Lagrange multipliers associ-
ated with the constraints ‖xi

:ni
‖ ≤ (xi

) tan θi, xi
 tan θi ≥ , and eT x =  for i = , , . . . , m,

respectively. On the one hand, it follows from (), (), and () that

xT F(x) = γ .

On the other hand, we have by ()

xT F(x) =
xT Ax
xT Bx

xT Bx – xT Ax = .

Therefore, γ = . Then it follows from () and () that

ω = λBx – Ax, ωT x = ,

where we let λ = xT Ax
xT Bx and ω = Dα + Eβ . Moreover, we have from (), (), and ()

∥∥ωi
:ni

∥∥ – ωi
 cot θi = αi

(∥∥xi
:ni

∥∥ – xi
 tan θi

)
– βi = –βi ≤ ,
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which implies ωi ∈ Cni
π
 –θi

for i = , , . . . , m, and therefore ω ∈ C∗. Hence (x,λ) is a solution
of CCEiCP.

(ii) Now we consider the case that there exists some j such that xj
 tan θj = . Without

loss of generality, we assume that there exists only one such j and j = m in the following
analysis, since our analysis can easily be extended to the general case. Then x = (u; xm) ∈
Rn–nm × Rnm with

u =
(
x; x; . . . ; xm–), xm = 

and xi �=  for i = , . . . , m – . By letting λ = xT Ax
xT Bx , we obtain from () and ()

ω =

(
v

ωm

)

= F(x) = F

(
u


)

=

[
λBu – Au
λBu – Au

]

=

[
F(u)
F(u)

]

,

where

λ =
uT Au
uT Bu

,

A =

[
A A

A A

]

, B =

[
B B

B B

]

,

with A, B ∈ R(n–nm)×(n–nm) and A, B ∈ Rnm×nm . Since x = (u; ) is a solution of
VI(F , C), we get

F(x)T (y – x) = F(u)T (z – u) +
(
ωm)T ym ≥ , ()

where y = (z; ym) ∈ C with z ∈ Rn–nm and ym ∈ Rnm . By letting ym =  in (), we see that u
is the solution of the following VI(F, C):

F(u)T (z – u) ≥ , ∀z ∈ C,

where

C =
(
Cn

θ
× · · · × Cnm–

θm–

) ∩ � ⊆ Rn–nm

with

� =

{

x ∈ Rn–nm :
m–∑

i=

xi
 = , xi

 tan θi ≥ , i = , , . . . , m – 

}

.

Then by following the proof of case (i), we can show that (u,λ = uT Au
uT Bu ) is a solution of

CCEiCP:

v = λBu – Au,
∥∥xi

:ni

∥∥ ≤ xi
 tan θi, i = , , . . . , m – ,
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∥∥ωi
:ni

∥∥ ≤ ωi
 cot θi, i = , , . . . , m – ,

uT v = ,

where u = (x; x; . . . ; xm–), v = (ω;ω; . . . ;ωm–) ∈ Rn–nm .
In order to prove that (x = (u; ),λ = uT Au

uT Bu ) is a solution of CCEiCP, in the following we
will show

∥∥ωm
:nm

∥∥ ≤ ωm
 cot θm, ()

where

ωm =
(
ωm

 ;ωm
:nm

)
= λBu – Au.

Since x = (u; ) is a solution of VI(F , C) and

F(x)T x =

(
v

ωm

)T (
u


)

= vT u = ,

we have

F(x)T (y – x) = F(x)T y ≥ , ∀y ∈ C,

which is equivalent to

F(x)T (y – x) = F(x)T y ≥ , ∀y ∈ C.

By letting y = (; ym) ∈ Rn–nm × Rnm , we obtain

F(x)T y =

(
v

ωm

)T (


ym

)

=
(
ωm)T ym ≥ , ∀ym ∈ Cnm

θm .

The last relation implies ωm ∈ (Cnm
θm )∗, that is, () holds. �

Combining Proposition . and Theorem . yields the following result as regards the
existence of a solution of CCEiCP.

Corollary . CCEiCP has at least one solution.

From Theorem ., we reduce CCEiCP to VI(F , C). However, the mapping F is not
monotone, which precludes CCEiCP from being solved by the efficient algorithms avail-
able for variational inequality problems []. There is no theoretical guarantee that these
algorithms globally converge to a solution of CCEiCP, even if line-search processes are
employed [].

As discussed in [, , , ], if A and B are both symmetric matrices, problem () is
called the symmetric CCEiCP. As a consequence of Theorem ., we can reformulate the
symmetric CCEiCP as the following nonlinear programming problem.
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Theorem . If x is a stationary point of

NLP : max f (x) =
xT Ax
xT Bx

s.t.
∥∥xi

:ni

∥∥ ≤ (
xi


)

tan θi, i = , , . . . , m,
m∑

i=

xi
 = ,

xi
 tan θi ≥ , i = , , . . . , m,

where A ∈ Rn×n is symmetric and B ∈ Rn×n is symmetric positive definite, then (x,λ = xT Ax
xT Bx )

is a solution of the symmetric CCEiCP.

Proof Let f : Rn → R be the Rayleigh quotient function defined by f (x) = xT Ax
xT Bx . Then for

any x ∈ C̃ given by (), the gradient of f at x is

∇f (x) = –


xT Bx

(
xT Ax
xT Bx

Bx – Ax
)

.

Therefore, if x is a stationary point of

max
{

f (x) : x ∈ C̃
}

,

i.e., NLP, then it follows from Theorem . and () that (x,λ = xT Ax
xT Bx ) is a solution of the

symmetric CCEiCP. �

Remark . (i) Since the feasible set of NLP is nonempty and compact, such a station-
ary point x∗ always exists. Moreover, the corresponding eigenvalue λ∗ of the symmetric
CCEiCP is obtained by λ∗ = (x∗)T Ax∗

(x∗)T Bx∗ .
(ii) NLP maximizes the Rayleigh quotient function on a compact set defined by linear

constraints and m nonlinear inequalities. Therefore, the symmetric CCEiCP can be effi-
ciently solved by employing the algorithms available [] or developing new algorithms to
compute a stationary point of NLP.

(iii) The reduction NLP only holds in the symmetric CCEiCP. For the asymmetric CCE-
iCP (where at least one of the matrices A or B is asymmetric), we will formulate another
nonlinear programming problem in the next section.

4 A nonlinear programming formulation of the asymmetric CCEiCP
In this section, we derive the nonlinear programming problem formulation NLP of the
asymmetric CCEiCP, and show that any global minimum of NLP with an objective func-
tion value equal to zero provides a solution of the asymmetric CCEiCP. Moreover, we
investigate when a stationary point of NLP is a solution of the asymmetric CCEiCP. The
nonlinear programming formulation NLP of CCEiCP provides an alternative approach
for solving CCEiCP, which will play an important role in the design of efficient algorithms
for finding multiple solutions to CCEiCP.

Theorem . CCEiCP has a solution (x,ω,λ) if and only if (x,ω,λ, y) is a global minimum
of
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NLP : max f (x,ω,λ, y) = ‖y – λx‖ +
(
xTω

) ()

s.t. ω – By + Ax = , ()
∥∥xi

:ni

∥∥ ≤ (
xi


)

tan θi, i = , , . . . , m, ()
∥∥ωi

:ni

∥∥ ≤ (
ωi


)

cot θi, i = , , . . . , m, ()
m∑

i=

(
ei)T xi –  = , ()

m∑

i=

(
ei)T yi – λ = , ()

xi
 tan θi ≥ , i = , , . . . , m, ()

ωi
 cot θi ≥ , i = , , . . . , m, ()

with f (x,ω,λ, y) = .

Proof Let yi = λxi, i = , , . . . , m. It is not difficult to verify that () and () are equivalent
to

∑m
i= xi

 =  and
∑m

i= yi
 = λ, respectively. Then we obtain the desired result. �

It should be noted that the intersection of the constraints (), (), and () in NLP

represents a convex region due to (), though the regions defined by the individual con-
straints () and () are nonconvex. Thus, the feasible region of NLP is convex. More-
over, the functions associated with the constraints () and () are differentiable every-
where. Therefore, any global minimum of NLP is a stationary point which is much easier
to compute. Thus it is important to investigate the conditions for such a stationary point
to be a solution of the asymmetric CCEiCP.

Theorem . For any given stationary point (x∗,ω∗,λ∗, y∗) of NLP, (x∗,ω∗,λ∗) is a so-
lution of CCEiCP if and only if δ = μ = , where δ and μ are the Lagrange multipliers
associated with the equality constraints () and (), respectively.

Proof Let

γ =

⎛

⎜⎜⎜⎜
⎝

γ

γ
...

γn

⎞

⎟⎟⎟⎟
⎠

∈ Rn, α =

⎛

⎜⎜⎜⎜
⎝

α

α
...

αm

⎞

⎟⎟⎟⎟
⎠

∈ Rm, β =

⎛

⎜⎜⎜⎜
⎝

β

β
...

βm

⎞

⎟⎟⎟⎟
⎠

∈ Rm,

δ ∈ R, μ ∈ R, ζ =

⎛

⎜⎜⎜⎜
⎝

ζ

ζ
...

ζm

⎞

⎟⎟⎟⎟
⎠

∈ Rm, η =

⎛

⎜⎜⎜⎜
⎝

η

η
...

ηm

⎞

⎟⎟⎟⎟
⎠

∈ Rm

be the Lagrange multipliers associated with the constraints ()-(), respectively. Then
a stationary point (x∗,ω∗,λ∗, y∗) of NLP satisfies the following KKT conditions []:


(
xTω

)
ω – λ(y – λx) = ATγ + Dα + Eζ + δe, ()
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(
xTω

)
x = γ + Fβ + Gη, ()

– xT (y – λx) = –μ, ()

(y – λx) = –BTγ + μe, ()

αi
[∥∥xi

:ni

∥∥ –
(
xi


)

tan θi
]

= , i = , , . . . , m, ()

βi
[∥∥ωi

:ni

∥∥ –
(
ωi


)

cot θi
]

= , i = , , . . . , m, ()

ζixi
 tan θi = ηiω

i
 cot θi = , i = , , . . . , m, ()

αi ≥ , βi ≥ , ζi ≥ , ηi ≥ , i = , , . . . , m, ()

where

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x
 tan θ  · · · 

–x
:n  · · · 

 x
 tan θ · · · 

 –x
:n · · · 

...
...

...
...

  · · · xm
 tan θm

m m · · · –xm
:nm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ Rn×m,

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ω
 cot θ  · · · 

–ω
:n  · · · 

 ω
 cot θ · · · 

 –ω
:n · · · 

...
...

...
...

  · · · ωm
 cot θm

m m · · · –ωm
:nm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ Rn×m,

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

tan θ  · · · 
  · · · 

 tan θ · · · 
  · · · 

...
...

...
...

  · · · tan θm

m m · · · m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ Rn×m

and

G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

cot θ  · · · 
  · · · 

 cot θ · · · 
  · · · 

...
...

...
...

  · · · cot θm

m m · · · m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ Rn×m.
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Multiplying (), (), and () by xT , ωT , and yT , respectively, and using (), (), and
(), we have


(
xTω

) – λxT (y – λx) = γ T Ax + 
m∑

i=

αi
[
–
∥∥xi

:ni

∥∥ +
(
xi


)

tan θi
]

+ δ,


(
xTω

) = γ Tω + 
m∑

i=

βi
[
–
∥∥ωi

:ni

∥∥ +
(
ωi


)

cot θi
]
,

yT (y – λx) = –γ T By + μλ.

Adding the last three inequalities and using (), (), and (), we obtain


(
xTω

) + ‖y – λx‖ = δ + μλ,

i.e., there exists some (δ,μ) such that the stationary point (x∗,ω∗,λ∗, y∗) of NLP satisfies


(
xTω

) + f (x,ω,λ, y) = δ + μλ. ()

(i) Suppose that (x∗,ω∗,λ∗) is a solution of CCEiCP, i.e., (x∗)Tω∗ =  and ω∗ = λ∗Bx∗ –
Ax∗. Since (x∗,ω∗,λ∗, y∗) is also a stationary solution of NLP, we have ω∗ = By∗ – Ax∗.
Then By∗ = λ∗Bx∗ and hence y∗ = λ∗x∗, since B is positive definite. Combining y∗ = λ∗x∗

with (x∗)Tω∗ =  yields f (x∗,ω∗,λ∗, y∗) = . Thus we have from () μ =  and therefore by
() δ = .

(ii) If δ = μ = , we have from () f (x∗,ω∗,λ∗, y∗) = , and (x∗,ω∗,λ∗) is a solution of
CCEiCP. �

Remark . Since the constraints (), (), (), (), and () are all linear, the linear
independence constraint qualification holds at a stationary point (x,ω,λ, y) of NLP if and
only if xi

 tan θi >  and ωi
 cot θi >  for any i = , , . . . , m.

Corollary . For any given solution (x∗,ω∗,λ∗) of CCEiCP, there exists a corresponding
stationary point (x∗,ω∗,λ∗, y∗) of NLP.

From Theorem ., a stationary point of NLP is a solution of CCEiCP if and only if the
Lagrange multipliers associated with the equality constraints () and () in NLP are
exactly zero. Therefore, the computation of stationary points of NLP is a valuable tool
for the design of efficient algorithms to find multiple solutions of CCEiCP.

5 Conclusions
In this paper, we study the variational inequality formulation of the circular cone eigen-
value complementarity problem (CCEiCP). We reduce CCEiCP to a variational inequality
problem on a compact convex set, which guarantees that CCEiCP has at least one solu-
tion. Based on the variational inequality formulation of CCEiCP, the symmetric CCEiCP
can be reformulated as a nonlinear programming problem NLP, whose stationary point
is a solution of the symmetric CCEiCP. For the asymmetric CCEiCP, this reduction is no
longer valid. We formulate the asymmetric CCEiCP as another nonlinear programming
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problem NLP, and show that any global minimum of NLP with an objective function
value equal to zero provides a solution of the asymmetric CCEiCP. However, contrary to
the symmetric case, a stationary point of NLP is not sufficient for finding a solution of
the asymmetric CCEiCP. Moreover, the sufficient condition is not too strong. The differ-
ent formulations of CCEiCP provide alternative approaches for solving CCEiCP, which
will play an important role in designing efficient algorithms to find multiple solutions of
CCEiCP. This is an interesting topic for our future research.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this paper. They read and approved the final manuscript.

Author details
1School of Mathematics and Computing Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and
Computation, Guilin University of Electronic Technology, Guilin, 541004, China. 2Hubei Province Key Laboratory of
Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China. 3College
of Science, Wuhan University of Science and Technology, Wuhan, 430081, China. 4School of Mathematics and Statistics,
Southwest University, Chongqing, 400715, China.

Acknowledgements
This research is supported by the National Natural Science Foundation of China (Nos. 11401126, 11401487, 71461005),
Hubei Provincial Natural Science Foundation (No. 2013CFA131), Hubei Province Key Laboratory of Systems Science in
Metallurgical Process (Wuhan University of Science and Technology) (No. Z201401), Guangxi Natural Science Foundation
(No. 2014GXNSFFA118001), the Fundamental Research Funds for the Central Universities (Nos. SWU113037,
XDJK2014C073), and the Scientific Research Foundation of the Higher Education Institutions of Guangxi (No. ZD2014050),
China. The authors are grateful to the editor and the anonymous referees for their valuable comments on this paper.

Received: 28 October 2015 Accepted: 28 February 2016

References
1. Martins, JAC, Barbarin, S, Raous, M, Pinto da Costa, A: Dynamic stability of finite dimensional linearly elastic systems

with unilateral contact and Coulomb friction. Comput. Methods Appl. Mech. Eng. 177, 289-328 (1999)
2. Martins, JAC, Pinto da Costa, A: Stability of finite-dimensional nonlinear elastic systems with unilateral contact and

friction. Int. J. Solids Struct. 37, 2519-2564 (2000)
3. Martins, JAC, Pinto da Costa, A, Figueiredo, IN, Júdice, JJ: The directional instability problem in systems with frictional

contacts. Comput. Methods Appl. Mech. Eng. 193, 357-384 (2004)
4. Fernandesa, LM, Fukushima, M, Júdice, JJ, Sherali, HD: The second-order cone eigenvalue complementarity problem.

Optim. Methods Softw. 31, 24-52 (2016)
5. Adly, S, Rammal, H: A new method for solving eigenvalue complementarity problems. Comput. Optim. Appl. 55,

703-731 (2013)
6. Adly, S, Seeger, A: A nonsmooth algorithm for cone-constrained eigenvalue problems. Comput. Optim. Appl. 49,

299-318 (2011)
7. Seeger, A, Vicente-Perez, J: On cardinality of Pareto spectra. Electron. J. Linear Algebra 22, 758-766 (2011)
8. Dirkse, SP, Ferris, MC: The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems.

Optim. Methods Softw. 5, 123-156 (1995)
9. Júdice, JJ, Raydan, M, Rosa, S, Santos, S: On the solution of symmetric eigenvalue complementarity problem by the

spectral projected gradient algorithm. Numer. Algorithms 47, 391-407 (2008)
10. Pindo da Costa, A, Seeger, A: Cone-constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl.

45, 25-57 (2010)
11. Adly, S, Rammal, H: A new method for solving second-order cone eigenvalue complementarity problems. J. Optim.

Theory Appl. 165, 563-585 (2015)
12. Seeger, A, Torki, M: On eigenvalues induced by a cone constraint. Linear Algebra Appl. 372, 181-206 (2003)
13. Alizadeh, F, Goldfarb, D: Second-order cone programming. Math. Program. 95, 3-51 (2003)
14. Lobo, M, Vandenberghe, L, Boyd, S, Lebret, H: Applications of second-order cone programming. Linear Algebra Appl.

284, 193-228 (1998)
15. Wang, GQ, Bai, YQ: A new full Nesterov-Todd step primal-dual path-following interior-point algorithm for symmetric

optimization. J. Optim. Theory Appl. 154, 966-985 (2012)
16. Che, HT: A smoothing and regularization predictor-corrector method for nonlinear inequalities. J. Inequal. Appl. 2012,

214 (2012)
17. Chen, JW, Liou, YC, Wan, Z, Yao, JC: A proximal point method for a class of monotone equilibrium problems with

linear constraints. Oper. Res. Int. J. 15, 275-288 (2015)
18. Pinto Da Costa, A, Seeger, A: Numerical resolution of cone-constrained eigenvalue problems. Comput. Appl. Math.

28, 37-61 (2009)
19. Zhou, JC, Chen, JS, Hung, HF: Circular cone convexity and some inequalities associated with circular cones. J. Inequal.

Appl. 2013, 571 (2013)



Chi et al. Fixed Point Theory and Applications  (2016) 2016:31 Page 14 of 14

20. Bai, YQ, Gao, XR, Wang, GQ: Primal-dual interior-point algorithms for convex quadratic circular cone optimization.
Numer. Algebra Control Optim. 5, 211-231 (2015)

21. Dattorro, J: Convex Optimization and Euclidean Distance Geometry. Meboo Publishing, Palo Alto (2005)
22. Zhou, JC, Chen, JS: Properties of circular cone and spectral factorization associated with circular cone. J. Nonlinear

Convex Anal. 14, 807-816 (2013)
23. Faraut, U, Korányi, A: Analysis on Symmetric Cones. Oxford University Press, New York (1994)
24. Júdice, JJ, Sherali, H, Ribeiro, IM, Rosa, S: On the asymmetric eigenvalue complementarity problem. Optim. Methods

Softw. 24, 549-586 (2009)
25. Facchinei, F, Pang, J: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York

(2003)
26. Bazaraa, MS, Sherali, HD, Shetty, CM: Nonlinear Programming: Theory and Algorithms. Wiley, New York (2006)
27. Brás, C, Fukushima, M, Júdice, J, Rosa, S: Variational inequality formulation of the asymmetric eigenvalue

complementarity problem and its solution by means of gap functions. Pac. J. Optim. 8, 197-215 (2012)
28. Queiroz, MG, Júdice, JJ, Humes, JC: The symmetric eigenvalue complementarity problem. Math. Comput. 73,

1849-1863 (2004)
29. Seeger, A, Torki, M: Local minima of quadratic forms on convex cones. J. Glob. Optim. 44, 1-28 (2009)


	Variational inequality formulation of circular cone eigenvalue complementarity problems
	Abstract
	Keywords

	Introduction
	Preliminaries
	A variational inequality formulation of CCEiCP
	A nonlinear programming formulation of the asymmetric CCEiCP
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


