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Abstract
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1 Introduction
Let C be a nonempty subset of a metric space (X, d). A mapping T : C → C is said to be
nonexpansive if

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C. We say that x ∈ C is a fixed point of T if

Tx = x.

We denote the set of all fixed points of T by Fix(T); for more details see [].
The concept of �-convergence in general metric spaces was introduced by Lim []. Kirk

[] has proved the existence of fixed point of nonexpansive mappings in CAT() spaces.
Kirk and Panyanak [] specialized this concept to CAT() spaces and showed that many
Banach space results involving weak convergence have precise analogs in this setting.
Dhompongsa and Panyanak [] continued to work in this direction. Their results involved
the Mann and Ishikawa iteration process involving one mapping. After that Khan and Ab-
bas [] studied the approximation of common fixed point by the Ishikawa-type iteration
process involving two mappings in CAT() spaces.

The Mann iteration process [] was defined by x ∈ C and

xn+ = anTxn ⊕ ( – an)xn, n ≥ , (.)

where {an} is a sequence in (, ). He et al. [] proved the convergence results in CAT(κ)
spaces.
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The Ishikawa iteration process [] was defined by x ∈ C and

yn = bnTxn ⊕ ( – bn)xn,

xn+ = anTyn ⊕ ( – an)xn, n ≥ ,
(.)

where {an} and {bn} are sequences in (, ). Jun [] proved that the sequence {xn} generated
by (.) �-converges to a fixed point of T in CAT(κ) spaces.

The S-iteration process [] was defined by x ∈ C and

yn = bnTxn ⊕ ( – bn)xn,

xn+ = anTyn ⊕ ( – an)Txn, n ≥ ,
(.)

where {an} and {bn} are sequences in (, ). This scheme has a better convergence rate than
those of (.) and (.) for a contraction in metric space (see []).

In , Khan and Abbas [] studied the iteration (.) in CAT() spaces and proved the
�-convergence. Khan and Abbas [] also studied the following Ishikawa-type iteration
process: x ∈ C and

yn = bnTxn ⊕ ( – bn)xn,

xn+ = anSyn ⊕ ( – an)xn, n ≥ ,
(.)

where {an} and {bn} are sequences in (, ). This iteration was introduced by Das and De-
bata []. They proved some results on �-convergence in CAT() spaces for two nonex-
pansive mappings of the sequence defined by (.).

There have been, recently, many convergence and existence results established in
CAT() and CAT(κ) spaces (see [–]).

Motivated by [] and [], in this paper, we study the following modified S-iteration pro-
cess: x ∈ C and

yn = bnTxn ⊕ ( – bn)xn,

xn+ = anSyn ⊕ ( – an)Txn, n ≥ ,
(.)

where {an} and {bn} are sequences in (, ). We prove some results on �-convergence for
two nonexpansive mappings in CAT(κ) spaces with κ ≥  under suitable conditions. We
finally provide some examples and numerical results to support our main result.

Remark . We note that this scheme reduces to the iteration process (.) when S = T .
The iteration process (.) is quite different from (.).

2 Preliminaries and lemmas
In this section, we provide some basic concepts, definitions, and lemmas which will be
used in the sequel and can be found in [].

Let (X, d) be a metric space and x, y ∈ X with d(x, y) = l. A geodesic path from x to y is
an isometry c : [, l] → X such that c() = x, c(l) = y. The image of a geodesic path is called
geodesic segment. The space (X, d) is said to be a geodesic space if every two points of X
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are joined by a geodesic, and X is a uniquely geodesic space if every two points of X are
joined by only one geodesic segment. We write ( – t)x ⊕ ty for the unique point z in the
geodesic segment joining x and y such that d(x, z) = td(x, y) and d(y, z) = ( – t)d(x, y) for
t ∈ [, ]. A subset E of X is said to be convex if E includes every geodesic segment joining
any two of its points.

Let D be a positive number. A metric space (X, d) is called a D-geodesic space if any two
points of X with the distance less than D are joined by a geodesic. If this holds in a convex
set E, then E is said to be D-convex. For a constant κ , we denote Mκ by the -dimensional,
complete, simply connected spaces of curvature κ .

In the following, we assume that κ ≥  and define the diameter Dκ of Mκ by Dκ = π√
κ

for
κ >  and Dκ = ∞ for κ = . It is well known that any ball in X with radius less than Dκ/
is convex []. A geodesic triangle �(x, y, z) in the metric space (X, d) consists of three
points x, y, z in X (the vertices of �) and three geodesic segments between each pair of
vertices. For �(x, y, z) in a geodesic space X satisfying

d(x, y) + d(y, z) + d(z, x) < Dκ ,

there exist points x̄, ȳ, z̄ ∈ Mκ such that d(x, y) = dκ (x̄, ȳ), d(y, z) = dκ (ȳ, z̄), and d(z, x) =
dκ (z̄, x̄) where dκ is the metric of Mκ . We call the triangle having vertices x̄, ȳ, z̄ ∈ Mκ a
comparison triangle of �(x, y, z). A geodesic triangle �(x, y, z) in X with d(x, y) + d(y, z) +
d(z, x) < Dκ is said to satisfy the CAT(κ) inequality if, for any p, q ∈ �(x, y, z) and for their
comparison points p̄, q̄ ∈ �̄(x̄, ȳ, z̄), we have d(p, q) ≤ dκ (p̄, q̄).

Definition . A metric space (X, d) is called a CAT(κ) space if it is Dκ -geodesic and any
geodesic triangle �(x, y, z) in X with d(x, y) + d(y, z) + d(z, x) < Dκ satisfies the CAT(κ)
inequality.

Since the results in CAT(κ) spaces can be deduced from those in CAT() spaces, we now
sufficiently state lemmas on CAT() spaces.

Lemma . [] Let (X, d) be a CAT() space and let K be a closed and π -convex subset
of X. Then for each point x ∈ X such that d(x, K) < π/, there exists a unique point y ∈ K
such that d(x, y) = d(x, K).

Lemma . [] Let (X, d) be a CAT() space. Then there is a constant M >  such that

d(x, ty ⊕ ( – t)z
) ≤ td(x, y) + ( – t)d(x, z) –

M


t( – t)d(y, z)

for any t ∈ [, ] and any point x, y, z ∈ X such that d(x, y) ≤ π/, d(x, z) ≤ π/, and d(y, z) ≤
π/.

Let {xn} be a bounded sequence in X. For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ X

}
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and the asymptotic center A({xn}) of {xn} is the set

A
({xn}

)
=

{
x ∈ X : r

({xn}
)

= r
(
x, {xn}

)}
.

Definition . A sequence {xn} in X is said to �-converge to x ∈ X if x is the unique
asymptotic center of {un} for every subsequence {un} of {xn}.

In this case we write �-limn→∞ xn = x and call x the �-limit of {xn}.

Definition . For a sequence {xn} in X, a point x ∈ X is a �-cluster point of {xn} if there
exists a subsequence of {xn} that �-converges to x.

Lemma . [] Let (X, d) be a complete CAT(κ) space and let p ∈ X. Suppose that a se-
quence {xn} in X �-converges to x such that r(p, {xn}) < Dκ/. Then

d(x, p) ≤ lim inf
n→∞ d(xn, p).

Definition . Let (X, d) be a complete metric space and let K be a nonempty subset of X.
Then a sequence {xn} in X is Fejér monotone with respect to K if

d(xn+, q) ≤ d(xn, q)

for all n ≥  and all q ∈ K .

Lemma . [] Let (X, d) be a complete CAT() space and let K be a nonempty subset of X.
Suppose that the sequence {xn} in X is Fejér monotone with respect to K and the asymptotic
radius r({xn}) of {xn} is less than π/. If any �-cluster point x of {xn} belongs to K , then {xn}
�-converges to a point in K .

3 Main results
Lemma . Let (X, d) be a complete CAT() space and let C be a nonempty, closed, and
convex subset of X. Let T and S be two nonexpansive mappings of C such that F := Fix(T)∩
Fix(S) 
= ∅. Let {xn} be defined by (.) for x ∈ C such that d(x, F) ≤ π/. Then there exists
a unique point p in F such that d(yn, p) ≤ d(xn, p) ≤ π/ for all n ≥ .

Proof By Theorem . in [] and Lemma ., there exists a unique point p in F such that
d(x, F) = d(x, p). From d(Tx, p) ≤ d(x, p) ≤ π/ and Bπ/[p] is convex, we have

d(y, p) = d
(
bTx ⊕ ( – b)x, p

) ≤ d(x, p) ≤ π/.

Suppose that d(yk , p) ≤ d(xk , p) ≤ π/ for k ≥ . Since d(Syk , p) ≤ d(yk , p) ≤ π/ and
Bπ/[p] is convex, we have

d(xk+, p) = d
(
akSyk ⊕ ( – ak)Txk , p

) ≤ d(xk , p) ≤ π/

and

d(yk+, p) = d
(
bk+Txk+ ⊕ ( – bk+)xk+, p

) ≤ d(xk+, p) ≤ π/.
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It follows that d(yk+, p) ≤ d(xk+, p) ≤ π/. By mathematical induction, hence d(yn, p) ≤
d(xn, p) ≤ π/ for all n ≥ . �

Lemma . Let (X, d) be a complete CAT() space and let C be a nonempty, closed, and
convex subset of X. Let T and S be two nonexpansive mappings of C such that F := Fix(T)∩
Fix(S) 
= ∅. Let {an} and {bn} be such that  < a ≤ an, bn ≤ b <  for all n ≥  and for some
a, b. If {xn} is defined by (.) for x ∈ C such that d(x, F) ≤ π/, then

(i) limn→∞ d(xn, p) exists;
(ii) limn→∞ d(Txn, xn) =  = limn→∞ d(Sxn, xn).

Proof By Lemma . and Lemma ., there exist p ∈ F and M >  such that

d(xn+, p) = d(anSyn ⊕ ( – an)Txn, p
)

≤ and(Syn, p) + ( – an)d(Txn, p) –
M


an( – an)d(Syn, Txn)

≤ and(yn, p) + ( – an)d(xn, p) –
M


an( – an)d(Syn, Txn) (.)

≤ and(yn, p) + ( – an)d(xn, p) (.)

and

d(yn, p) = d(bnTxn ⊕ ( – bn)xn, p
)

≤ bnd(Txn, p) + ( – bn)d(xn, p) –
M


bn( – bn)d(Txn, xn)

≤ d(xn, p) –
M


bn( – bn)d(Txn, xn)

≤ d(xn, p). (.)

By (.) and (.), we have

d(xn+, p) ≤ d(xn, p) –
M


an( – an)d(Syn, Txn)

≤ d(xn, p).

Hence

d(xn+, p) ≤ d(xn, p).

This shows that {d(xn, p)} is decreasing and this proves part (i). Let

lim
n→∞ d(xn, p) = c. (.)

We next prove part (ii). From (.), we get

d(xn+, p) ≤ and(yn, p) + ( – an)d(xn, p),
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from which it follows that

and(xn, p) ≤ d(xn, p) + and(yn, p) – d(xn+, p).

This implies that

d(xn, p) ≤ d(yn, p) +


an

[
d(xn, p) – d(xn+, p)

]
.

So

c ≤ lim inf
n→∞ d(yn, p).

On the other hand, (.) gives

lim sup
n→∞

d(yn, p) ≤ c

so that

lim
n→∞ d(yn, p) = c. (.)

We see that

d(yn, p) ≤ d(xn, p) –
M


bn( – bn)d(Txn, xn),

thus

d(Txn, xn) ≤ 
bn( – bn)M

[
d(xn, p) – d(yn, p)

]
.

Using (.) and (.), we can conclude that

lim
n→∞ d(Txn, xn) = . (.)

Next, we know that

d(xn+, p) ≤ d(xn, p) –
M


an( – an)d(Syn, Txn),

from which it follows that

d(Syn, Txn) ≤ 
an( – an)M

[
d(xn, p) – d(xn+, p)

]
.

This yields

lim
n→∞ d(Syn, Txn) = . (.)
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Using (.), we obtain

d(yn, xn) = d
(
bnTxn ⊕ ( – bn)xn, xn

)
= bnd(Txn, xn).

This implies by (.),

lim
n→∞ d(yn, xn) = . (.)

Since

d(Syn, xn) ≤ d(Syn, Txn) + d(Txn, xn),

by (.) and (.),

lim
n→∞ d(Syn, xn) = . (.)

Finally, we see that

d(Sxn, xn) ≤ d(Sxn, Syn) + d(Syn, xn)

≤ d(xn, yn) + d(Syn, xn),

hence, by (.) and (.), we get

lim
n→∞ d(Sxn, xn) = .

This completes the proof. �

Theorem . Let (X, d) be complete a CAT(κ) space and let C be a nonempty, closed,
and convex subset of X. Let T and S be two nonexpansive mappings of C such that F :=
Fix(T) ∩ Fix(S) 
= ∅. Let {an} and {bn} be such that  < a ≤ an, bn ≤ b <  for all n ≥ 
and for some a, b. If {xn} is defined by (.) for x ∈ C such that d(x, F) < Dκ/, then {xn}
�-converges to a point in F .

Proof Without loss of generality, we assume that κ = . Set F := F ∩ Bπ/(x). Let q ∈ F.
Since d(Tx, q) ≤ d(x, q) and since the open ball Bπ/(q) in C with radius r < π/ is convex,
we have

d(y, q) = d
(
bTx ⊕ ( – b)x, q

) ≤ d(x, q).

Since d(Sy, q) ≤ d(y, q) and since the open ball Bπ/(q) in C with radius r < π/ is convex,
we have

d(x, q) = d
(
aSy ⊕ ( – a)Tx, q

) ≤ d(x, q).

By mathematical induction, we can show that

d(xn+, q) ≤ d(xn, q) ≤ d(x, q)
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for all n ≥ . Hence {xn} is a Fejér monotone sequence with respect to F. Let p ∈ F such
that d(x, p) ≤ π/. Then p ∈ F. Also we have

d(xn+, p) ≤ d(xn, p) ≤ d(x, p) < π/ (.)

for all n ≥ . This shows that r({xn}) < π/. By Lemma ., let x ∈ C be a �-cluster point
of {xn}. Then there exists a subsequence {xnk } of {xn} which �-converges to x. From (.),
we get

r
(
p, {xnk }

) ≤ d(x, p) < π/.

By Lemma ., we obtain

d(x, x) ≤ d(x, p) + d(x, p) ≤ lim inf
k→∞

d(xnk , p) + d(x, p) < π/.

This implies that x ∈ Bπ/(x). By Lemma ., we have

lim sup
k→∞

d(Tx, xnk ) ≤ lim sup
k→∞

d(Tx, Txnk ) + lim sup
k→∞

d(Txnk , xnk )

≤ lim sup
k→∞

d(x, xnk )

and

lim sup
k→∞

d(Sx, xnk ) ≤ lim sup
k→∞

d(Sx, Sxnk ) + lim sup
k→∞

d(Sxnk , xnk )

≤ lim sup
k→∞

d(x, xnk ).

Hence Tx, Sx ∈ A({xnk }) and Tx = x = Sx. Therefore x ∈ F. By Lemma ., we thus com-
plete the proof. �

We immediately obtain the following results in CAT() spaces.

Corollary . Let (X, d) be a complete CAT() space and let C be a nonempty, closed,
and convex subset of X. Let T and S be two nonexpansive mappings of C such that F :=
Fix(T) ∩ Fix(S) 
= ∅. Let {an} and {bn} be such that  < a ≤ an, bn ≤ b <  for all n ≥  and
for some a, b. If {xn} is defined by (.), then {xn} �-converges to a point in F .

Remark . When S = T , we obtain Theorem  of Khan and Abbas [].

Along a similar proof line, we can obtain the following result for the Ishikawa-type iter-
ation process.

Theorem . Let (X, d) be a complete CAT(κ) space and let C be a nonempty, closed,
and convex subset of X. Let T and S be two nonexpansive mappings of C such that F :=
Fix(T) ∩ Fix(S) 
= ∅. Let {an} and {bn} be such that  < a ≤ an, bn ≤ b <  for all n ≥ 
and for some a, b. If {xn} is defined by (.) for x ∈ C such that d(x, F) < Dκ/, then {xn}
�-converges to a point in F .
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Corollary . [] Let (X, d) be a complete CAT() space and let C be a nonempty, closed,
and convex subset of X. Let T and S be two nonexpansive mappings of C such that F :=
Fix(T) ∩ Fix(S) 
= ∅. Let {an} and {bn} be such that  < a ≤ an, bn ≤ b <  for all n ≥  and
for some a, b. If {xn} is defined by (.), then {xn} �-converges to a point in F .

4 Numerical examples
In this section, we consider the m-sphere S

m, which is a CAT(κ) space.
The m-sphere S

m is defined by

{
x = (x, . . . , xm+) ∈R

m+ : 〈x, x〉 = 
}

,

where 〈·, ·〉 denotes the Euclidean scalar product.
Next, the normalized geodesic c : R → S

m starting from x ∈ S
m is given by

c(t) = (cos t)x + (sin t)v, ∀t ∈R,

where v ∈ TxS
m is the unit vector; while the distance d on S

m is

d(x, y) = arccos
(〈x, y〉), ∀x, y ∈ S

m.

Then iteration process (.) has the form

yn =
(
cos( – bn)r(xn, xn)

)
xn +

(
sin( – bn)r(xn, xn)

)
V (xn, xn),

xn+ =
(
cos( – an)r̄(xn, yn)

)
xn +

(
sin( – an)r̄(xn, yn)

)
V̄ (xn, yn), ∀n ≥ ;

(.)

and iteration process (.) has the form

yn =
(
cos( – bn)r(xn, xn)

)
xn +

(
sin( – bn)r(xn, xn)

)
V (xn, xn),

xn+ =
(
cos( – an)r̄(Txn, yn)

)
Txn +

(
sin( – an)r̄(Txn, yn)

)
V̄ (Txn, yn), ∀n ≥ ,

(.)

where

r(x, y) = arccos
(〈x, Ty〉), r̄(x, y) = arccos

(〈x, Sy〉),

V (x, y) =
Ty – 〈x, Ty〉x
√

 – 〈x, Ty〉
and V̄ (x, y) =

Sy – 〈x, Sy〉x
√

 – 〈x, Sy〉
, ∀x, y ∈R

m+.

Example . Let C = S
 and let T and S be two nonexpansive mappings of C be defined

by

Tx = (x, –x, –x, –x) and Sx = (x, –x, –x, –x).

For any x = (x, x, x, x) ∈ S
. Then Fix(T) = {(, , , )} = Fix(S).

Choose x = (., ., ., .) and let an = n
n+ and bn = n

n+ . Then we obtain the nu-
merical results in Table  and Figure .

We next consider the hyperbolic m-space H
m.
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Table 1 Convergence behavior of (4.1) and (4.2)

n xn is defined by (4.1) xn is defined by (4.2)

1 (0.64798180, 0.43974219, 0.43974219, 0.43974219) (0.72059826, 0.40030744, 0.40030744, 0.40030744)
2 (0.75902424, 0.37589103, 0.37589103, 0.37589103) (0.85117540, 0.30304039, 0.30304039, 0.30304039)
3 (0.83727864, 0.31568152, 0.31568152, 0.31568152) (0.92240530, 0.22298615, 0.22298615, 0.22298615)
4 (0.89102247, 0.26209347, 0.26209347, 0.26209347) (0.95999322, 0.16167149, 0.16167149, 0.16167149)
5 (0.92740383, 0.21596460, 0.21596460, 0.21596460) (0.97950207, 0.11629804, 0.11629804, 0.11629804)
6 (0.95181217, 0.17706270, 0.17706270, 0.17706270) (0.98953675, 0.08330070, 0.08330070, 0.08330070)
7 (0.96809244, 0.14468014, 0.14468014, 0.14468014) (0.99467153, 0.05952183, 0.05952183, 0.05952183)
8 (0.97890884, 0.11795122, 0.11795122, 0.11795122) (0.99729071, 0.04247057, 0.04247057, 0.04247057)
9 (0.98607580, 0.09601130, 0.09601130, 0.09601130) (0.99862397, 0.03027739, 0.03027739, 0.03027739)
10 (0.99081568, 0.07806896, 0.07806896, 0.07806896) (0.99930171, 0.02157235, 0.02157235, 0.02157235)
...

...
...

55 (1.00000000, 0.00000620, 0.00000620, 0.00000620) (1.00000000, 0.00000000, 0.00000000, 0.00000000)

Figure 1 Comparison of errors in (4.1) and (4.2).

The hyperbolic m-space H
m is defined by

{
x = (x, . . . , xm+) ∈R

m+ : 〈x, x〉 = –, xm+ ≥ 
}

,

where

〈x, y〉 =
m∑

i=

xiyi – xm+ym+, ∀x = (xi), y = (yi) ∈R
m+.

Next, the normalized geodesic c : R →H
m starting from x ∈H

m is given by

c(t) = (cosh t)x + (sinh t)v, ∀t ∈R,

where v ∈ TxH
m is the unit vector; while the distance d on H

m is

d(x, y) = arccosh
(
–〈x, y〉), ∀x, y ∈ H

m.

Then iteration process (.) has the form

yn =
(
cosh( – bn)r(xn, xn)

)
xn +

(
sinh( – bn)r(xn, xn)

)
V (xn, xn),

xn+ =
(
cosh( – an)r̄(xn, yn)

)
xn +

(
sinh( – an)r̄(xn, yn)

)
V̄ (xn, yn), ∀n ≥ ;

(.)



Suparatulatorn and Cholamjiak Fixed Point Theory and Applications  (2016) 2016:25 Page 11 of 12

Table 2 Convergence behavior of (4.3) and (4.4)

n xn is defined by (4.3) xn is defined by (4.4)

1 (1.77547237, 0.98692599, 1.18530561, 2.55563582) (1.08924010, 0.51696725, 0.46166164, 1.63304335)
2 (0.86101141, 1.01967810, 0.66960079, 1.79706686) (0.09467395, 0.45823859, 0.19274032, 1.12075626)
3 (0.50793301, 0.63730440, 0.65740263, 1.44787122) (0.09214727, –0.02529962, 0.22462285, 1.02936224)
4 (0.45512909, 0.39762058, 0.47219289, 1.26024234) (0.11301324, 0.05817553, –0.05672644, 1.00964067)
5 (0.35116401, 0.33063402, 0.31268711, 1.15343324) (–0.05463911, 0.05458569, 0.04470058, 0.04470058)
6 (0.24499408, 0.26285320, 0.24775268, 1.09109821) (0.03652253, –0.04228414, 0.02306040, 1.00182515)
7 (0.18906704, 0.19095564, 0.19822904, 1.05427945) (0.00627063, 0.02939078, –0.02899485, 1.00087154)
8 (0.15056381, 0.14567561, 0.14817634, 1.03239870) (–0.01800599, –0.00210393, 0.02266815, 1.00042115)
9 (0.11463049, 0.11504761, 0.11272592, 1.01935432) (0.01662614, –0.00999700, –0.00565079, 1.00020413)
10 (0.08734712, 0.08852508, 0.08831015, 1.01156557) (–0.00652282, 0.01156060, –0.00466467, 1.00009897)
...

...
...

50 (0.00000284, 0.00000284, 0.00000284, 1.00000000) (0.00000000, 0.00000000, 0.00000000, 1.00000000)

Figure 2 Comparison of errors in (4.3) and (4.4).

and iteration process (.) has the form

yn =
(
cosh( – bn)r(xn, xn)

)
xn +

(
sinh( – bn)r(xn, xn)

)
V (xn, xn),

xn+ =
(
cosh( – an)r̄(Txn, yn)

)
Txn

+
(
sinh( – an)r̄(Txn, yn)

)
V̄ (Txn, yn), ∀n ≥ ,

(.)

where

r(x, y) = arccosh
(
–〈x, Ty〉), r̄(x, y) = arccosh

(
–〈x, Sy〉),

V (x, y) =
Ty + 〈x, Ty〉x
√〈x, Ty〉 – 

and V̄ (x, y) =
Sy + 〈x, Sy〉x
√〈x, Sy〉 – 

, ∀x, y ∈R
m+.

Example . Let C = H
 and let T and S be two nonexpansive mappings of C be defined

by

Tx = (–x, –x, –x, x) and Sx = (–x, –x, –x, x)

for any x = (x, x, x, x) ∈H
. Then Fix(T) = {(, , , )} = Fix(S).
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Choose x = (, , , ) and let an = n
n+ and bn = n

n+ . Then we obtain the numerical
results in Table  and Figure .

From the numerical experience, we observe that the convergence rate of S-iteration pro-
cess is much quicker than that of the Ishikawa iteration process.

Remark . The convergence behavior of Mann and Halpern iterations in Hadamard
manifolds can be found in the work of Li et al. [].
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