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Abstract
In this paper, using a multistep iterative scheme, we establish strong and
�-convergence theorems for finite families of total asymptotically
quasi-nonexpansive mappings in uniformly convex hyperbolic spaces. We then
establish �- and polar convergence theorems for finite families of total
asymptotically nonexpansive mappings in CAT(0) spaces. These new theorems are
extensions, improvements, and generalizations of some recently announced results
by many authors.
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1 Introduction
Let (X, d) be a metric space, x, y ∈ X, and d(x, y) = l. A geodesic path from x to y is an
isometry c : [, l] → c([, l]) ⊂ X such that c() = x and c(l) = y. The image of a geodesic
path between two points is called a geodesic segment. A metric space (X, d) is called a
geodesic space if every two points of X are joined by a geodesic segment.

A geodesic triangle represented by �(x, y, z) in a geodesic space consists of three points
x, y, z and the three segments joining each pair of the points. A comparison triangle of
a geodesic triangle �(x, y, z), denoted by �(x, y, z) or �(x, y, z), is a triangle in the Eu-
clidean space R

 such that d(x, y) = dR (x, y), d(x, z) = dR (x, z), and d(y, z) = dR (y, z).
This is obtainable by using the triangle inequality, and it is unique up to isometry on R

.
A geodesic segment joining two points x, y in a geodesic space X is represented by [x, y].
Every point z in the segment is represented by αx ⊕ ( – α)y where α ∈ [, ], that is,
[x, y] := {αx ⊕ ( – α)y : α ∈ [, ]}. A subset K of a metric space X is called convex if for all
x, y ∈ K , [x, y] ⊂ K . A geodesic space is called a CAT() space if for every geodesic trian-
gle � and its comparison �, the following inequality is satisfied: d(x, y) ≤ dR (x, y) for all
x, y ∈ � and x, y ∈ �. Examples of CAT() spaces include the R-tree, Hadamard manifold,
and Hilbert ball equipped with hyperbolic metric. For more details on these spaces, see,
for example, [–].
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A geodesic space (X, d) is called hyperbolic (see [, ]) if, for any x, y, z ∈ X,

d
(




z ⊕ 


x,



z ⊕ 


y
)

≤ 


d(x, y).

The class of hyperbolic spaces include the normed spaces, CAT() spaces, and some oth-
ers. The following is an example of a hyperbolic space that is not a normed space.

Example . Let D be a unit disc in a complex plane C. Define d : D×D →R by

d(z, w) = log

(  + | z–w
–zw |

 – | z–w
–zw |

)
.

Then (D, d) is a complete hyperbolic metric space.

It is then clear that the class of hyperbolic spaces is more general than the class of normed
spaces.

Definition . Let (X, d) be a hyperbolic metric space. Then X is called uniformly convex
if for all a ∈ X, r > , and ε > ,

δa(r, ε) = inf

{
 –


r

d
(




x ⊕ 


y, a
)

; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε
}

> .

Let (X, d) be a metric space. A self-mapping T : X → X is called nonexpansive if
d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X and quasi-nonexpansive if F(T) := {x ∈ X : Tx = x} �= ∅
and d(Tx, p) ≤ d(x, p) for all x ∈ X and p ∈ F(T). The class of quasi-nonexpansive map-
pings properly contains the class of nonexpansive mappings with fixed points; see, for
example, [].

A mapping T is called asymptotically nonexpansive [] if there exists a sequence {kn} ⊂
[,∞) such that kn →  as n → ∞ and, for every n ∈ N,

d
(
Tnx, Tny

) ≤ knd(x, y) for all x, y ∈ X.

If F(T) �= ∅ and there exists a sequence {kn} ⊂ [,∞) such that kn →  as n → ∞ and, for
n ∈N,

d
(
Tnx, p

) ≤ knd(x, p) for all x ∈ X and p ∈ F(T),

then T is called an asymptotically quasi-nonexpansive mapping. A mapping T is called
total asymptotically nonexpansive if there exist infinitesimal real sequences {un} and {vn}
of nonnegative numbers (i.e., un, vn →  as n → ∞) and a strictly increasing function
ψ : [,∞) → [,∞) with ψ() =  such that

d
(
Tnx, Tny

) ≤ d(x, y) + unψ
(
d(x, y)

)
+ vn for all x, y ∈ X.

A mapping T is total asymptotically quasi-nonexpansive if F(T) �= ∅ and there exist in-
finitesimal real sequences {un} and {vn} and a strictly increasing function ψ : [,∞) →
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[,∞) with ψ() =  such that

d
(
Tnx, p

) ≤ d(x, p) + unψ
(
d(x, p)

)
+ vn for all x ∈ X, p ∈ F(T).

The concept of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[] as an important generalization of nonexpansive mappings. Alber et al. [] introduced
the class of total asymptotically nonexpansive mappings that generalizes several classes
of maps that are extensions of asymptotically nonexpansive mappings. These classes of
maps were extensively studied by many authors (see, e.g., [, –], to list a few) by virtue
of important generalizations of nonexpansive mappings. Example  of [] shows that the
class of total asymptotically nonexpansive mappings properly contains the class of asymp-
totically nonexpansive mappings.

Remark . In what follows, for a closed convex and nonempty subset K of a uniformly
convex metric space X and a bounded sequence {xn}, we shall write xn ⇀ x if and only if
φ(x) = infy∈K φ(y) where φ(y) = lim supn→∞ d(xn, y); see, for example, [].

A mapping T is said to be demiclosed at zero if for any sequence {xn} in X such that
xn ⇀ x and d(xn, Txn) →  as n → ∞, we have Tx = x.

Let K be a nonempty subset of a metric space X, and let {xn} be any bounded sequence
in K . For x ∈ X, define r(x, {xn}) := lim supn→∞ d(xn, x). The asymptotic radius of the se-
quence {xn} in K denoted by r(K , {xn}) is defined by r(K , {xn}) := inf{r(x, {xn}) : x ∈ K}.
A point z is called an asymptotic center of a sequence {xn} in K if r(z, {xn}) = r(K , {xn}).
The set of all asymptotic centers of the sequence {xn} in K is denoted by A(K , {xn}). The
asymptotic radius and asymptotic center of the sequence {xn} with respect to the whole
space are denoted by r({xn}) and A({xn}), respectively. It is known that r({xn}) =  if and
only if limn→∞ xn = x.

A sequence {xn} in X is said to be �-convergent to a point x if x is the unique asymp-
totic center of {un} for every subsequence {un} of {xn}. This is written as �-limn→∞ xn = x.
A sequence {xn} is said to polar converge to a point x ∈ X (see []) if for every y ∈ X such
that y �= x, there exists Ny ∈ N such that d(xn, x) < d(xn, y) for all n ≥ Ny. A sequence {xn}
is said to converge �-strongly to a point x if the limit limn→∞ d(xn, x) exists and for any
y �= x, limn→∞ d(xnx) ≤ lim infn→∞ d(xn, y).

The notion of polar convergence was introduced by Devillanova et al. []. They dis-
cussed various relations between polar convergence and �-convergence in metric spaces.
By definition, if {xn} �-converges strongly to x, then the limit limn→∞ d(xn, x) exists. Thus,
for any subsequence {xnk } of {xn}, limn→∞ d(xn, x) = limk→∞ d(xnk , x). This implies that x
is an asymptotic center of {xnk }, and hence {xn} �-converges to x.

Chang et al. [] established relations between the weak convergence and �-convergence
in their attempt to establish the demiclosedness principle for total asymptotically nonex-
pansive mappings.

Recently, new fixed point results were studied by many authors in the setting of hyper-
bolic and CAT() metric spaces; see, for example, [, , , –], and the references
therein.

In , Lim [] introduced the concept of �-convergence in general metric spaces.
In , Kirk and Panyanak [] studied �-convergence in the setting of hyperbolic and
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CAT() spaces. Basarir and Sahin [] studied a multistep iterative process for fixed points
of generalized nonexpansive mappings in a CAT() space. They established the demiclo-
deness principle for this class of maps in a CAT() space. Kim et al. [] proved strong and
�-convergence theorems for generalized nonexpansive mappings in hyperbolic spaces.
Chang et al. [] proved strong and �-convergence theorems for total asymptotically non-
expansive mappings in CAT() spaces. They also established the demiclosedness principle
for this class of maps in a CAT() space.

In , Markov [] (see also Kakutani []) showed that if a commuting family of
bounded linear transformations Tα , α ∈ � (� an arbitrary index set), of a locally con-
vex Hausdorrf space E into itself leaves some nonempty compact convex subset K of E
invariant, then the family has at least one common fixed point in the set K .

Chidume and the author [] introduced the scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ K ,
xn+ = P[( – αn)xn + αnT(PT)n–yn+m–],
yn+m– = P[( – αn)xn + αnT(PT)n–yn+m–],
...
yn = P[( – αmn)xn + αmnTm(PTm)n–xn], n ≥ , m ≥ ,

and studied the convergence of this scheme to a common fixed point of finite family of
nonself-asymptotically nonexpansive mappings in a uniformly convex Banach space.

Let {αn} be a real sequence in [ε,  – ε], ε ∈ (, ). Let T, T, . . . , Tm : K → K be a family
of mappings. Define the sequence {xn} by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ K ,
xn+ = ( – αn)xn ⊕ αnTn

 xn, n ≥ , m = ,
xn+ = ( – αn)xn ⊕ αnTn

 yn+m–,
yn+m– = ( – αn)xn ⊕ αnTn

 yn+m–,
...
yn = ( – αn)xn ⊕ αnTn

mxn, n ≥ , m ≥ .

(.)

Our purpose in this paper to prove necessary and sufficient conditions for the strong
convergence of the scheme defined by (.) to a common fixed point of finite family
T, T, . . . , Tm of total asymptotically quasi-nonexpansive mappings in a complete hyper-
bolic space. We also prove �-convergence and polar convergence theorems for finite fam-
ily of uniformly L-Lipschitzian total asymptotically nonexpansive mappings in a CAT()
space. Our results generalized and improved some recent important results announced.

2 Preliminaries
In what follows, we shall use the following results.

Theorem . ([]) Let K be a closed and convex subset of a complete CAT() space X, and
T : K → X be a uniformly L-Lipschitzian and total asymptotically nonexpansive mapping.
Let {xn} be a bounded sequence in K such that xn ⇀ x and limn→∞ d(xn, Txn) = . Then
x = Tx.
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Lemma . ([]) Let E be a complete CAT() space, {xn} be a bounded sequence in E with
A({xn}) = {p}, and {un} be a subsequence of {xn} with A({un}) = {u}. If the sequence {d(xn, u)}
converges, then p = u.

Lemma . ([]) Let E be a CAT() space. Then

d(( – α)x ⊕ αy, a
) ≤ ( – α)d(x, a) + αd(y, a) – α( – α)d(x, y)

for all α ∈ [, ] and x, y, a ∈ E.

Lemma . ([]) Let E be a complete CAT() space. Let K be a closed convex subset of E.
If {xn} is a bounded sequences in K , then the asymptotic center of {xn} is in K .

Lemma . ([]) Let (E, d) be a uniformly convex hyperbolic space. Let {xn} and {yn} be
bounded sequences in E. For any λ ∈ (, ), if there exists r ∈ [,∞) such that

lim sup
n→∞

d(xn, a) ≤ r, lim sup
n→∞

d(yn, a) ≤ r, and lim sup
n→∞

d
(
( – λ)xn ⊕ λyn, a

)
= r,

then limn→∞ d(xn, yn) = .

Lemma . ([]) Every bounded sequence in a complete CAT() space has a �-
convergent subsequence.

Lemma . ([]) Let {λn} and {σn} be sequences of nonnegative real numbers such that
λn+ ≤ λn + σn for all n ≥  and

∑∞
n= σn < ∞. Then limn→∞ λn exists. Moreover, if there

exists a subsequence {λnj} of {λn} such that λnj →  as j → ∞, then λn →  as n → ∞.

3 Main results
In this section, we state and prove the main results of this paper. In the sequel, we denote
the set {, , . . . , m} by I , and we always assume that F :=

⋂m
i= F(Ti) �= ∅.

Lemma . Let (X, d) be a hyperbolic space, and K be a nonempty closed convex subset
of X. Let T, T, . . . , Tm : K → K be total asymptotically quasi-nonexpansive mappings with
sequences {uin}∞n=, {vin}∞n= and mappings ψi : [,∞) → [,∞) satisfying

∑∞
n= uin < ∞ and∑∞

n= vin < ∞, i ∈ I . Let {αn}∞n= be a sequences in [ε,  – ε], ε ∈ (, ). Assume there exist
constants Mi, Mi such that ψi(ri) ≤ Miri for all ri ≥ Mi, i ∈ I . Let {xn} be the sequence
defined iteratively by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ K ,
xn+ = ( – αn)xn ⊕ αnTn

 xn, n ≥ , m = ,
xn+ = ( – αn)xn ⊕ αnTn

 yn+m–,
yn+m– = ( – αn)xn ⊕ αnTn

 yn+m–,
...
yn = ( – αn)xn ⊕ αnTn

mxn, n ≥ , m ≥ .

(.)

Then, {xn} is bounded, and the limits limn→∞ d(xn, x∗) and limn→∞ d(xn, F) exist.
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Proof We start the proof by considering the case m ≥ . Since ψi is increasing for each
i ∈ I , ψi(ri) ≤ ψ(Mi) whenever ri ≤ Mi, and, by hypothesis, ψi(ri) ≤ Miri when ri ≥ Mi. In
any case, ψi(ri) ≤ ψi(Mi) + Miri, i ∈ I . Now set wn :=

∑m
i= uinMi and let x∗ ∈ F . Then we

have

d
(
xn+, x∗) = d

(
( – αn)xn ⊕ αnTn

 yn+m–, x∗)
≤ ( – αn)d

(
xn, x∗) + αnd

(
Tn

 yn+m–, x∗)
≤ ( – αn)d

(
xn, x∗) + αn

[
d
(
yn+m–, x∗)

+ unψ
(
d
(
yn+m–, x∗)) + vn

]
≤ ( – αn)d

(
xn, x∗) + αn( + unM)d

(
yn+m–, x∗) + αnunψ(M) (.)

+ αnvn

≤ ( – αn)d
(
xn, x∗) + αn( + unM)

[
( – αn)d

(
xn, x∗)

+ αn
[
d
(
yn+m–, x∗) + unψ

(
d
(
yn+m–, x∗)) + vn

]]
+ αnunψ(M) + αnvn

≤ ( – αn)d
(
xn, x∗) + αn( + unM)

[
( – αn)d

(
xn, x∗) (.)

+ αn
[
( + unM)d

(
yn+m–, x∗) + αnunψ(M) + vn

]]
+ αnunψ(M) + αnvn

≤ ( – αn)d
(
xn, x∗) + ( – αn)αn( + unM)d

(
xn, x∗)

+ α
n( + unM)( + unM)d

(
yn+m–, x∗) + α

n( + unM)vn

+ α
n( + unM)unψ(M) + αn

(
vn + unψ(M)

)
≤ ( – αn)d

(
xn, x∗) + αn( – αn)( + unM)d

(
xn, x∗) + · · ·

+ (αn)h–( – αn)( + unM)( + unM) · · · ( + uh–nMh–)d
(
xn, x∗)

+ · · · + (αn)m( – αn)( + unM)( + unM) · · · ( + umnMm)d
(
xn, x∗)

+ αnvn + α
n( + unM)vn + · · · + αm

n ( + unM)( + unM)

· · · ( + um–nMm)vmn

+ αnvn + αnunψ(M) + α
n( + unM)vn + α

n( + un)unψ(M)

+ · · · + αm
n ( + unM)( + unM) + · · · + ( + um–nMm)vmn

+ · · · + αm
n ( + unM)( + unM) + · · · + ( + um–nMm)umnψm(Mm)

≤ d
(
xn, x∗)[ + unM + unM( + unM)

+ unM( + unM)( + unM) + · · ·
+ umnMm( + unM)( + unM) . . . ( + um–nMm–)

]

+ αnvn +
m∑
j=

αj
n
[
vjn + ujnψj(Mj)

] j∏
k=

( + uknMk)

≤ d
(
xn, x∗)

[
 +

(
m


)
wn +

(
m


)
w

n + · · · +

(
m
m

)
wm

n

]
(.)
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+ αnvn +
m∑
j=

αj
n
[
vjn + ujnψj(Mj)

] j∏
k=

( + uknMk)

≤ d
(
xn, x∗)( + δmwn) + αnvn +

m∑
j=

αj
n
[
vjn + ujnψj(Mj)

] j∏
k=

( + uknMk)

≤ d
(
xn, x∗)eδmwn + αnvn +

m∑
j=

αj
n
[
vjn + ujnψj(Mj)

] j∏
k=

( + uknMk)

≤ d
(
x, x∗)eδm

∑∞
n= wn + αnvn +

m∑
j=

αj
n
[
vjn + ujnψj(Mj)

] j∏
k=

( + uknMk)

≤ d
(
x, x∗)eδm

∑∞
n= wn + αnvn

+
m∑
j=

αj
n
[
vjn + ujnψj(Mj)

]
e
∑j

k= uknMk < ∞, (.)

where δm is a positive real number defined by δm :=
[( m


)

+
( m


)

+ · · · +
( m

m
)]

.
This implies that {xn} is bounded, and so setting vn := max≤j≤m{vin +ujnψi(Mi)}, we have

that there exists a positive integer M such that

d
(
xn+, x∗) ≤ d

(
xn, x∗) + (δmwn + vn)M. (.)

Since (.) is true for each x∗ in F , we have

d(xn+, F) ≤ d(xn, F) + (δmwn + vn)M. (.)

By Lemma ., limn→∞ d(xn, x∗) and limn→∞ d(xn, F) exist.
For m = , we have

d
(
xn+, x∗) = d

(
( – αn)xn ⊕ αnTn

 xn, x∗)
≤ ( – αn)d

(
xn, x∗) + αnd

(
Tn

 xn, x∗)
≤ ( – αn)d

(
xn, x∗) + αn

[
d
(
xn, x∗) + unψ

(
d
(
xn, x∗)) + vn

]
≤ ( + αnunM)d

(
xn, x∗) + αn

[
vn + unψ(M)

]
≤ d

(
xn, x∗)( + wn) + αn

[
vn + unψ(M)

]
≤ d

(
xn, x∗)ewn + αn

[
vn + unψ(M)

]
≤ d

(
x, x∗)e

∑∞
n= wn + αn

[
vn + unψ(M)

]
≤ d

(
x, x∗)e

∑∞
n= wn + αn

[
vn + unψ(M)

]
< ∞. (.)

Hence, {xn} is bounded, and using (.), Lemma ., and similar arguments as before, we
get that the limits limn→∞ d(xn, x∗) and limn→∞ d(xn, F) exist. This completes the proof.

�

Theorem . Let K be a nonempty closed convex subset of a hyperbolic space E. Let
T, T, . . . , Tm : K → K be total asymptotically quasi-nonexpansive mappings with se-
quences and functions satisfying the conditions of Lemma .. Let {xn} be defined by (.).
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Then, {xn} converges to a common fixed point of the family T, T, . . . , Tm if and only if
lim infn→∞ d(xn, F) = .

Proof The necessity is trivial. We prove the sufficiency. Let lim infn→∞ d(xn, F) = . Since
limn→∞ d(xn, F) exists by Lemma ., we have that limn→∞ d(xn, F) = . Thus, given ε > ,
there exist a positive integer N and b∗ ∈ F such that for all n ≥ N, d(xn, b∗) < ε

 . Then,
for any k ∈N and n ≥ N, we have

d(xn+k , xn) ≤ d
(
xn+k , b∗) + d

(
b∗, xn

)
<

ε


+

ε


= ε,

and so {xn} is Cauchy. Let limn→∞ xn = b. We need to show that b ∈ F . Let Ti ∈
{T, T, . . . , Tm}. Since limn→∞ d(xn, F) = , there exists N ∈N sufficiently large and b∗ ∈ F
such that n ≥ N implies d(b, xn) < ε

(+w) , d(b∗, xn) < ε
(+w) and vin + uinψi(Mi) < ε

 . Then,
d(b∗, b) < ε

(+w) . Thus, we have the following estimates for n ≥ N and arbitrary Ti,
i = , , . . . , m:

d(b, Tib) ≤ d(b, xn) + d
(
xn, b∗) + d

(
b∗, Tib

)
≤ d(b, xn) + d

(
xn, b∗) + ( + w)d

(
b∗, b

)
+ vin + uinψi(Mi)

<
ε

( + w)
+

ε

( + w)
+

ε


+

ε


≤ ε.

This implies that b ∈ Fix(Ti) for all i = , , . . . , m, and thus b ∈ F . This completes the
proof. �

Corollary . Let K be a nonempty closed convex subset of a complete hyperbolic space X.
Let T, T, . . . , Tm : K → K be total asymptotically nonexpansive mappings with F �= ∅. Let
the sequence {αn}∞n= be as in Lemma .. Let {xn} be defined by (.). Then, {xn} converges
to a common fixed point of the family T, T, . . . , Tm if and only if lim infn→∞ d(xn, F) = .

For our next theorems, we start by proving the following auxiliary lemma.

Lemma . Let X be a uniformly convex hyperbolic space, and K be a closed, convex, and
nonempty subset of X. Let T, T, . . . , Tm : K → K be uniformly continuous total asymptoti-
cally quasi-nonexpansive mappings with sequences and functions satisfying the conditions
of Lemma .. Let {αn}∞n= be a sequence in [ε, –ε], ε ∈ (, ). Let {xn} be a sequence defined
iteratively by (.). Then,

lim
n→∞ d(xn, Txn) = lim

n→∞ d(xn, Txn) = · · · = lim
n→∞ d(xn, Tmxn) = .

Proof Since for some x∗ ∈ F , the limit limn→∞ d(xn, x∗) exists by Lemma ., let
limn→∞ d(xn, x∗) = l. From (.), (.), and (.) we obtain the following relation by taking
the limit superior through the inequalities:

l = lim sup
n→∞

d
(
xn+, x∗) ≤ lim sup

n→∞
d
(
yn+m–, x∗)

≤ lim sup
n→∞

d
(
yn+m–, x∗)
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...

≤ lim sup
n→∞

d
(
yn+, x∗)

≤ lim sup
n→∞

d
(
xn, x∗) = l.

This implies that for  ≤ h ≤ m, we have lim supn→∞ d(( – αn)xn ⊕ αnTn
h yn+m–h–, x∗) ≤

l. From this and from limn→∞ d(xn, x∗) = l, using Lemma ., we have limn→∞ d(xn,
Tn

h yn+m–h–) = ,  ≤ h ≤ m. Observe that

d(xn, yn+m–h–) = d
(
( – αn)xn ⊕ αnTn

h yn+m–h–, xn
)

≤ αnd
(
Tn

h yn+m–h–, xn
) →  as n → ∞.

Thus,

d
(
xn, Tn

h xn
) ≤ d

(
xn, Tn

h yn+m–h–
)

+ d
(
Tn

h yn+m–h–, Tn
h xn

)
≤ d

(
xn, Tn

h yn+m–h–
)

+ ( + uhnM)d(yn+m–h–, xn)

+ vhn + uhnψh(Mh) →  as n → ∞, (.)

and

d(xn+, xn) = d
(
( – αn)xn ⊕ αnTn

 yn+m–, xn
)

≤ αnd
(
xn, Tn

h yn+m–
) →  as n → ∞. (.)

Now

d(xn, Thxn) ≤ d
(
xn, Tn

h xn
)

+ d
(
Tn

h xn, Tn
h yn+m–h–

)
+ d

(
Tn

h yn+m–h–, Thxn
)

≤ d
(
xn, Tn

h xn
)

+ ( + uhnM)d(yn+m–h–, xn)

+ vhn + uhnψh(Mh) + d
(
Tn

h yn+m–h–, Thxn
)
. (.)

Consider the following:

d
(
Tn–

h yn+m–h–, xn
) ≤ d

(
Tn–

h yn+m–h–, xn–
)

+ d(xn–, xn) →  as n → ∞. (.)

Since Th is uniformly continuous and d(Tn–
h yn+m–h–, xn) →  as n → ∞, we get

d(Tn
h yn+m–h–, Thxn) →  as n → ∞. So from (.) we get

lim
n→∞ d(xn, Thxn) = . (.)

�

Theorem . Let X be a uniformly convex hyperbolic space, and K be a closed convex
nonempty subset of X. Let T, T, . . . , Tm : K → K be uniformly L- Lipschitzian total asymp-
totically quasi-nonexpansive mappings with sequences and functions satisfying the condi-
tions of Lemma .. Let {αn}∞n= be a sequence in [ε,  – ε], ε ∈ (, ) and assume that each
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Ti is demiclosed at  for each i ∈ I . Let {xn} be a sequence defined iteratively by (.). Then,
{xn} �-converges to an element of F .

Proof Let W�({xn}) :=
⋃

{un}⊂{xn} A({un}). We now show that W�({xn}) ⊂ F and also that
W�({xn}) consists only of a single point. Now let u ∈ W�({xn}). Then there exists a subse-
quence say {un} of {xn} such that A({un}) = {u}. By Lemma . there exists a convergence
subsequence {vn} of {un} such that �-lim vn = v for some v ∈ K . But limn→∞ d(vn, Tivn) = 
for each i ∈ {, , , . . . , m}. By the demiclosedness property of each Ti we have v ∈ F . Since
the limit limn→∞ d(vn, v) exists, u = v ∈ F , and this implies W�({xn}) ⊂ F . Next, we show
that W�({xn}) is singletone. Let {un} be a subsequence of {xn} such that A({un}) = {u}, and
let A({xn}) = {x}. Since u ∈ W�({xn}) ⊂ F , the limit limn→∞ d(xn, u) exists, by Lemma .,
x = u, and so W�({xn}) is singletone, which implies that {xn} �-converges to an element
of F . �

Next, we present �- and polar convergence theorems for finite families of total asymp-
totically nonexpansive mappings in the framework of a complete CAT() space. This next
result is a corollary of the previous Lemma ., but we shall present them using a different
method of proof.

Corollary . Let X be a complete CAT() space, and K be a closed, convex, and nonempty
subset of X. Let T, T, . . . , Tm : K → K be uniformly continuous total asymptotically non-
expansive mappings with sequences and functions satisfying the conditions of Lemma ..
Let {αn}∞n= be a sequence in [ε,  – ε], ε ∈ (, ). Let {xn} be a sequence defined iteratively
by (.). Then,

lim
n→∞ d(xn, Txn) = lim

n→∞ d(xn, Txn) = · · · = lim
n→∞ d(xn, Tmxn) = .

Proof Since {xn} is bounded, for some x∗ ∈ F , there exist positive real numbers γ and M
with d(xn, x∗) ≤ γ for all n ≥ , and by using Lemma ., the recursion formula (.), we
have

d(yn, x∗) = d(( – αn)xn ⊕ αnTn
mxn, x∗)

≤ ( – αn)d(xn, x∗) + αnd(Tn
mxn, x∗)

– αn( – αn)d(xn, Tn
mxn

)
≤ ( – αn)d(xn, x∗) + αn

[
( + umnMm)d

(
xn, x∗)

+
[
vmn + umnψm(Mm)

]]

– αn( – αn)d(xn, Tn
mxn

)
≤ ( – αn)d(xn, x∗) + αn

[
( + umnMm)d(xn, x∗)

+ 
(
vmn + umnψm(Mm)

)
( + umnMm)d

(
xn, x∗) +

[
vmn + umnψm(Mm)

]]
– αn( – αn)d(xn, Tn

mxn
)

= ( – αn)d(xn, x∗) + αn
[
d(xn, x∗) +

(
umnMm + u

mnM
m
)
d(xn, x∗)

+ 
(
vmn + umnψm(Mm)

)
( + umnMm)d

(
xn, x∗) +

[
vmn + umnψm(Mm)

]]
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– αn( – αn)d(xn, Tn
mxn

)
≤ d(xn, x∗) + αnωnMγ + αnω


n – αn( – αn)d(xn, Tn

mxn
)
.

Also,

d(yn+, x∗) = d(( – αn)xn ⊕ αnTn
m–yn, x∗)

≤ ( – αn)d(xn, x∗) + αnd(Tn
m–yn, x∗) – αn( – αn)d(xn, Tn

m–yn
)

≤ ( – αn)d(xn, x∗) + αn
[
( + um–nMm–)d

(
yn, x∗)

+
[
vm–n + um–nψm–(Mm–)

]] – αn( – αn)d(xn, Tn
m–yn

)
≤ ( – αn)d(xn, x∗) + αn

[
( + um–nMm–)d(yn, x∗)

+ 
[
vm–n + um–nψm–(Mm–)

]
( + um–nMm–)d

(
yn, x∗)

+
[
vm–n + um–nψm–(Mm–)

]] – αn( – αn)d(xn, Tn
m–yn

)
= ( – αn)d(xn, x∗) + αn

[
d(yn, x∗)

+
(
um–nMm– + u

m–nM
m–

)
d(yn, x∗)

+ 
[
vm–n + um–nψm–(Mm–)

]
( + um–nMm–)d

(
yn, x∗)

+
[
vm–n + um–nψm–(Mm–)

]] – αn( – αn)d(xn, Tn
m–yn

)
≤ ( – αn)d(xn, x∗) + αnd(yn, x∗) + αnωnMγ + αnω


n

– αn( – αn)d(xn, Tn
m–yn

)
≤ ( – αn)d(xn, x∗) + αn

[
d(xn, x∗) + αnωnMγ

+ αnω

n – αn( – αn)d(xn, Tn

mxn
)]

+ αnωnMγ + αnω

n – αn( – αn)d(xn, Tn

m–yn
)

≤ d(xn, x∗) + αn
(
ωnMγ + ω

n
)
( + αn)

– αm
n ( – αn)

[
d(xn, Tn

mxn
)

+ d(xn, Tn
m–yn

)]
.

Continuing in this fashion, we get, using xn+ = ( – αn)xn ⊕ αnTyn+m–, that

d(xn+, x∗) ≤ d(xn, x∗) + αn
(
ω

n + ω
nMγ

) m–∑
j=

αj
n

– αm
n ( – αn)

[
d(xn, Tn

mxn
)

+
m–∑
j=

d(xn, Tn
m–jyn+j–

)]
,

so that

αm
n ( – αn)

[
d(xn, Tn

mxn
)

+
m–∑
j=

d(xn, Tn
m–jyn+j–

)]

≤ d(xn, x∗) – d(xn+, x∗) + αn
(
ω

n + ω
nMγ

) m–∑
j=

αj
n.
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This implies that

∞∑
n=

(
αm

n ( – αn)

[
d(xn, Tn

mxn
)

+
m–∑
j=

d(xn, Tn
m–jyn+j–

)])
< ∞,

and by the choice of the sequence {αn} we have

lim
n→∞ d

(
xn, Tn

mxn
)

= lim
n→∞ d

(
xn, Tn

m–yn
)

...

= lim
n→∞ d

(
xn, Tn

h yn+m–h–
)

...

= lim
n→∞ d

(
xn, Tn

 yn+m–
)

=  (.)

for  ≤ h < m.
The remaining part of the proof follows as in Lemma .. �

Theorem . Let E be a complete CAT() space, and K be a closed convex nonempty
subset of E. Let T, T, . . . , Tm : K → K be uniformly L-Lipschitzian total asymptotically
quasi-nonexpansive mappings with sequences and functions satisfying the conditions of
Lemma .. Let {αn}∞n= be a sequence in [ε,  – ε], ε ∈ (, ). Let {xn} be the sequence defined
iteratively by (.). Then, {xn} �-converges to an element of F .

Proof Let W�({xn}) :=
⋃

{un}⊂{xn} A({un}). We now show that W�({xn}) ⊂ F and also that
W�({xn}) consists only of a single point. Now let u ∈ W�({xn}). Then there exists a sub-
sequence say {un} of {xn} such that A({un}) = {u}. By Lemma . there exists a convergent
subsequence {vn} of {un} such that �-lim vn = v for some v ∈ K . But limn→∞ d(vn, Tivn) = 
for each i ∈ {, , , . . . , m}. By the demiclosedness property of each Ti we have v ∈F . Since
the limit limn→∞ d(vn, v) exists, u = v ∈F , and this implies W�({xn}) ⊂F . Next, we show
that W�({xn}) is singletone. Let {un} be a subsequence of {xn} such that A({un}) = {u}, and
let A({xn}) = {x}. Since u ∈ W�({xn}) ⊂F , the limit limn→∞ d(xn, u) exists, by Lemma .,
x = u, and so W�({xn}) is singletone, which implies that {xn} �-converges to an element
of F . �

Remark . The CAT() spaces are rotund metric (‘staple rotund,’ see []) spaces. The
polar and �-convergence coincide in a complete rotund metric space; see Lemma . of
[].

As a consequence of Remark . and Theorem ., we have the following theorem.

Theorem . Let E be a complete CAT() space, and K be a closed convex nonempty
subset of E. Let T, T, . . . , Tm : K → K be uniformly L-Lipschitzian total asymptotically
quasi-nonexpansive mappings with sequences and functions satisfying the conditions of
Lemma .. Let {αn}∞n= be a sequence in [ε,  – ε], ε ∈ (, ). Let {xn} be the sequence defined
iteratively by (.). Then, {xn} polar converges to an element of F .
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