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Abstract
In this paper, by introducing the concept of Picard-completeness and using the
sandwich theorem in the sense of w-convergence, we first prove some fixed point
theorems of order-Lipschitz mappings in Banach algebras with non-normal cones
which improve the result of Sun’s since the normality of the cone was removed.
Moreover, we reconsider the case with normal cones and obtain a fixed point
theorem under the assumption relating to the spectral radius, which partially
improves the results of Krasnoselskii and Zabreiko’s. In addition, we present some
suitable examples which show the usability of our theorems.
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1 Introduction
This work is mainly concerned with fixed point theory of order-Lipschitz mappings in
Banach algebras relating to the improvements of the Banach contraction principle which
states that each Banach contraction on a complete metric space has a unique fixed point.
Let (X, d) be a metric space. A Banach contraction in a metric space (resp. a cone metric
space) is also called a Lipschitz mapping with respect to the metric (resp. the cone metric);
see []. Let P be a cone of a Banach algebra (E,‖ ·‖) and � the partial order in E introduced
by P. A mapping T : E → E is called an order-Lipschitz mapping if there exist l, k ∈ P such
that the following Lipschitz condition with respect to the partial order is satisfied:

–l(x – y) � Tx – Ty � k(x – y), ∀x, y ∈ E, y � x. ()

In particular when k, l are nonnegative real numbers, Sun [] obtained the following fixed
point theorem of order-Lipschitz mappings in Banach spaces by using the sandwich the-
orem in the sense of norm-convergence.

Theorem  (see []) Let P be a normal cone of a Banach space (E,‖ · ‖) and u, v ∈ E with
u � v. Assume that T : [u, v] → E is an order-Lipschitz mapping with l ∈ [, +∞) and
k ∈ [, ) such that

u � Tu, Tv � v. ()
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Then T has a unique fixed point x∗ ∈ [u, v]. And for each x ∈ [u, v], let {xn} be the
Picard iterative sequence (i.e., xn = Tnx for each n), then we must have xn

‖·‖→ x∗.

Remark  The normality of the cone is essential for ensuring that the sandwich theorem
holds in the sense of norm-convergence which plays an important role in the proof of
Theorem . However, if P is non-normal then the sandwich theorem does not hold in the
sense of norm-convergence, and consequently, the method used in the proof of Theorem 
may become invalid.

Krasnoselskii and Zabreiko [] considered order-Lipschitz mappings in Banach spaces
restricted with linear bounded mappings (i.e., k, l are linear bounded mappings), and
proved the following fixed point theorem by using the Banach contraction principle.

Theorem  (see []) Let P be a normal solid cone of a Banach space (E,‖·‖) and T : E → E
an order-Lipschitz mapping with k = l, where k : P → P is a linear bounded mapping. If
‖k‖ < , then T has a unique fixed point x∗ ∈ E. And for each x ∈ E, let {xn} be the Picard
iterative sequence, then we must have xn

‖·‖→ x∗.

To our knowledge, in all the works concerned with fixed points of order-Lipschitz map-
pings, the involving cone is necessarily assumed to be normal. In this paper, we shall re-
move the normality of the cone in Theorem  and extend Theorems  and  to Banach
algebras. From Remark  we know that the method in [] is not applicable for the case with
non-normal cones, and so we need to find a new way to solve it. By introducing the con-
cept of Picard-complete and using the sandwich theorem in the sense of w-convergence
established in [], we first prove some fixed point theorems of order-Lipschitz mappings
in Banach algebras with non-normal cones. Motivated by [], we reconsider the case with
normal cones, and we obtain a fixed point theorem of order-Lipschitz mappings in Banach
algebras under the assumption that r(k) <  by showing that there exists some n such that
Tn is a Banach contraction in (E,‖ · ‖), where ‖ · ‖ is a newly introduced norm which
is equivalent to ‖ · ‖; see Lemma . In addition, some suitable examples are presented to
show the usability of our theorems.

2 Preliminaries and lemmas
A Banach space (E,‖ · ‖) is called a Banach algebra [] if there exists a multiplication in E
such that, for each x, y, z ∈ E and a ∈ R, the following conditions are satisfied: (I) (xy)z =
x(yz); (II) x(y + z) = xy + xz and (x + y)z = xz + yz; (III) a(xy) = (ax)y = x(ay); (IV) ‖xy‖ ≤
‖x‖‖y‖. If there exists some e ∈ E such that ex = xe = x for each x ∈ E then e is called a unit
(i.e., a multiplicative identity) of E. A nonempty closed subset P of a Banach space (E,‖ · ‖)
is a cone [, ] if it is such that the following conditions are satisfied: (V) ax + by ∈ P
for each x, y ∈ P and each a, b ≥ ; (VI) P ∩ (–P) = {θ}, where θ is the zero element of E.
A nonempty closed subset P of a Banach algebra (E,‖ · ‖) is a cone [, ] if it is such that
(V) and (VI) are satisfied and (VII) {e} ⊂ P and P = PP ⊂ P.

Each cone P of a Banach space E determines a partial order � on E by x � y ⇔ y – x ∈ P
for each x, y ∈ X. For each u, v ∈ E with u � v, we set [u, v] = {u ∈ E : u � u � v},
[u, +∞) = {x ∈ E : u � x} and (–∞, v] = {x ∈ E : x � v}. A cone P is solid [, ] if int P �=
Ø, where int P denotes the interior of P. For each x, y ∈ E with y – x ∈ int P, we write x � y.
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Definition  Let P be a solid cone of a Banach space E, {xn} ⊂ E and D ⊂ E.
(i) the sequence {xn} is w-convergent [, ] if for each ε ∈ int P, there exist some

positive integer n and x ∈ E such that x – ε � xn � x + ε for each n ≥ n (denote
xn

w→ x and x is called a w-limit of {xn});
(ii) the sequence {xn} is w-Cauchy if for each ε ∈ int P, there exists some positive

integer n such that –ε � xn – xm � ε for each m, n ≥ n, i.e., xn – xm
w→ θ

(m, n → ∞);
(iii) the subset D is w-closed if for each {xn} ⊂ D, xn

w→ x implies x ∈ D.

Lemma  Let P be a solid cone of a Banach space E, {xn} a w-convergent sequence of E and
u, v ∈ E with u � v. Then {xn} has a unique w-limit, and the partial order intervals
[u, v], [u, +∞) and (–∞, v] are w-closed.

Proof Suppose that there exists x, y ∈ E such that xn
w→ x and xn

w→ y. From Definition  we
find that, for each ε ∈ int P, there exists a positive integer n such that x – ε � xn � x + ε

and y –ε � xn � y +ε for each n ≥ n. This forces that x – y – ε � xn – xn = θ � x – y + ε

for each n ≥ n. So we have –ε � x – y � ε, which together with the arbitrary property
of ε implies that x = y. This shows that {xn} has a unique w-limit.

Let {xn} be a sequence of [u, v] such that xn
w→ x. For each ε ∈ int P, there exists a

positive integer n such that x – ε � xn � x + ε for each n ≥ n. Thus we get

θ � xn – u � x – u + ε, θ � v – xn � v – x + ε, ∀n ≥ n, ()

which together with the arbitrary property of ε implies that u � x and x � v, i.e., x ∈
[u, v]. This shows that [u, v] is w-closed. Similarly, we can show [u, +∞) and (–∞, v]
are w-closed. The proof is complete. �

A cone P of a Banach space E is normal if there is some positive number N such that
x, y ∈ E and θ � x � y implies that ‖x‖ ≤ N‖y‖, and the minimal N is called a normal
constant of P. Note that an equivalent condition of a normal cone is that inf{‖x + y‖ : x, y ∈
P and ‖x‖ = ‖y‖ = } > , then it is not hard to conclude that a cone P is non-normal if
and only if there exist {un}, {vn} ⊂ P such that un + vn

‖·‖→ θ � un
‖·‖→ θ . This implies that

the sandwich theorem does not hold in the sense of norm-convergence. Recently, without
using the normality of P Li and Jiang [] proved the following sandwich theorem in the
sense of w-convergence, which is very important for our further discussions.

Lemma  (see []) Let P be a solid cone of a Banach space (E,‖ · ‖) and {xn}, {yn}, {zn} ⊂ E
with xn � yn � zn for each n. If xn

w→ z and zn
w→ z, then yn

w→ z.

Lemma  (see []) Let P be a solid cone of a Banach space (E,‖ · ‖) and xn ⊂ E. Then
xn

‖·‖→ x implies xn
w→ x. Moreover, if P is normal then xn

w→ x ⇔ xn
‖·‖→ x.

Lemma  (see [, ]) Let P be a solid cone of a Banach space (E,‖ · ‖). Then there is τ > 
such that, for each x ∈ E, there exist y, z ∈ P with ‖y‖ ≤ τ‖x‖ and ‖z‖ ≤ τ‖x‖ such that
x = y – z.
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Lemma  Let P be a normal solid cone of a Banach space (E,‖ · ‖) and define ‖ · ‖ in E by

‖x‖ = inf
u∈P

{‖u‖ : –u � x � u
}

, ∀x ∈ E. ()

Then ‖ · ‖ is equivalent to ‖ · ‖ and (E,‖ · ‖) is a Banach space.

Proof It follows from Lemma  that there is a τ >  such that, for each x ∈ E, there exist
y, z ∈ P with ‖y‖ ≤ τ‖x‖ and ‖z‖ ≤ τ‖x‖ such that x = y – z, and so we have

–(y + z) � x � y + z. ()

Then it is clear that, for each x ∈ E, there exists u ∈ P such that

–u � x � u, ()

and hence the definition of ‖ · ‖ is meaningful. It is easy to check that ‖ · ‖ is a norm in E.
For each x ∈ E, by () and the normality of P, we get ‖x‖ ≤ ‖x + u‖ + ‖u‖ ≤ (N + )‖u‖,
and hence ‖x‖ ≤ (N + ) infu∈P ‖u‖ = (N + )‖x‖ by (). On the other hand, by () we
get ‖x‖ ≤ ‖y + z‖ ≤ τ‖x‖ for each x ∈ E. Thus we have ‖x‖

N+ ≤ ‖x‖ ≤ τ‖x‖ for each
x ∈ E. This shows that ‖ · ‖ is equivalent to ‖ · ‖ and hence (E,‖ · ‖) is a Banach space.
The proof is complete. �

Let P be a cone of a Banach space E and T : E → E. For each x ∈ E, set O(T , x) = {xn},
where {xn} is the Picard iterative sequence (i.e., xn = Tnx for each n).

Definition  Let P be a solid cone of a Banach space (E,‖ · ‖), x ∈ E and T : E → E. If the
Picard iterative sequence O(T , x) is w-convergent provided that it is w-Cauchy, then T is
said to be Picard-complete at x. Moreover, if T is Picard-complete at each x ∈ E, then T
is said to be Picard-complete on E.

Remark 
(i) If O(T , x) is w-convergent then T is certainly Picard-complete at x.

(ii) If P is normal then each mapping T : E → E is Picard-complete on E by Lemma .

3 Fixed point theorems
We first state and prove a fixed point result of order-Lipschitz mappings in Banach alge-
bras with non-normal cones as follows.

Theorem  Let P be a solid cone of a Banach algebra (E,‖ · ‖) and u, v ∈ E with u � v.
Assume that T : [u, v] → E is a nondecreasing order-Lipschitz mapping with k, l ∈ P such
that () is satisfied. If r(k) <  and T is Picard-complete at u and v, then T has a unique
fixed point x∗ ∈ [u, v]. And for each x ∈ [u, v], we have xn

w→ x∗, where {xn} = O(T , x).

Proof Let un = Tnu and vn = Tnv for each n. From () and the nondecreasing property
of T on [u, v] it follows that

u � u � u � · · · � un � · · · � vn � · · · � v � v � v. ()
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By () and P ⊂ P, we get

θ � vn – un � k(vn– – un–) � k(vn– – un–) � · · · � kn(v – u), ∀n. ()

Thus for each m > n, by () and () we have

θ � um – un � vn – un � kn(v – u),

θ � vn – vm � vn – un � kn(v – u).
()

It follows from Gelfand’s formula and r(k) <  that there exist n and α ∈ [, ) such that

∥∥kn∥∥ ≤ αn, ∀n ≥ n, ()

which implies that kn ‖·‖→ θ . Note that ‖kn(v –u)‖ ≤ ‖kn‖‖v –u‖ by (IV), then we obtain
kn(v – u) ‖·‖→ θ . Moreover, by Lemma , we get

kn(v – u) w→ θ . ()

Thus it follows from (), (), and Lemma  that {un} and {vn} are w-Cauchy sequences.
Since T is Picard-complete at u and v, there exist u∗, v∗ ∈ E such that

un
w→ u∗, vn

w→ v∗. ()

Letting n → ∞ in (), by () and Lemma  we get u∗ = v∗. Set x∗ = u∗ = v∗, then x∗ ∈
[u, v] by () and Lemma . For each m > n, by () we get

un � um � · · · � vm � vn. ()

Letting m → ∞ in (), by () and Lemma  we have

un � x∗ � vn, ∀n, ()

with together with the nondecreasing property of T on [u, v] implies that

un = Tun– � Tx∗ � Tvn– � vn, ∀n. ()

Letting n → ∞ in (), we get x∗ = Tx∗ by (), Lemma  and Lemma . Hence x∗ is a fixed
point of T .

For each x ∈ [u, v], let xn = Tnx. It is clear that u = Tu � Tx = x � Tv = v since
T is nondecreasing on [u, v]. Then by induction, we obtain

un � xn � vn, ∀n,

which together with () and Lemma  implies that xn
w→ x∗. Let x ∈ [u, v] be another

fixed point of T and yn = Tnx. Similarly, we can show that yn
w→ x∗. Note that yn = Tnx ≡ x

implies that yn
w→ x, then x = x∗ by Lemma . Hence T has a unique fixed point x∗ ∈ [u, v].

The proof is complete. �
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Example  Let E = C
R

[, ] be endowed with the norm ‖u‖ = ‖u‖∞ + ‖u′‖∞ and P = {u ∈
E : u(t) ≥ ,∀t ∈ [, ]}, where ‖u‖∞ = maxt∈[,] u(t) for each u ∈ CR[, ]. Define a mul-
tiplication in E by (xy)(t) = x(t)y(t) for each x, y ∈ E and t ∈ [, ]. Clearly, (E,‖ · ‖) is a
Banach algebra with a unit e(t) ≡  and P is a non-normal solid cone.

Let Tx = x, u = θ and v(t) ≡ a, where a ∈ [, 
 ). Clearly, Tu � u and Tv � v. For

each x, y ∈ [u, v] with y � x, we have  ≤ (Tx)(t)–(Ty)(t) = x(t)–y(t) = (x(t)+y(t))(x(t)–
y(t)) ≤ k(x(t) – y(t)) for each t ∈ [, ], where k = ae. This shows that T : [u, v] → E
is a nondecreasing order-Lipschitz mapping with r(k) = a < . Let {un} and {vn} be the
Picard iterative sequences of u and v, then un = θ and vn(t) ≡ an for each n, and so
‖un‖ ≡  and ‖vn‖ = an for each n, which forces that un

‖·‖→ θ and vn
‖·‖→ θ . This together

with (i) of Remark  and Lemma  implies that T is Picard-complete at u and v. Hence
by Theorem , T has a unique fixed point in [u, v].

However, Theorems  and  are not applicable here since P is non-normal.
In analogy to the proof of Theorem , we can prove the following fixed point theorem

of order-Lipschitz mappings in Banach space.

Theorem  Let P be a solid cone of a Banach space (E,‖ · ‖) and u, v ∈ E with u � v.
Assume that T : [u, v] → E is a nondecreasing order-Lipschitz mapping with k ∈ [, )
such that () is satisfied. If T is Picard-complete at u and v, then T has a unique fixed
point x∗ ∈ [u, v]. And for each x ∈ [u, v], we have xn

w→ x∗, where {xn} = O(T , x).

Corollary  Let P be a solid cone of a Banach space (E,‖ · ‖) and u, v ∈ E with u � v.
Assume that T : [u, v] → E is an order-Lipschitz mapping with l ∈ [, +∞) and k ∈ [, )
such that () is satisfied. If A is Picard-complete at u and v, where Ax = Tx+lx

+l for each
x ∈ E, then T has a unique fixed point x∗ ∈ [u, v].

Proof Set k = l+k
+l . By () and () we get

u � Au, Av � v,

θ � Ax – Ay � k(x – y), ∀x, y ∈ [u, v], y � x,

which indicates that A : [u, v] → E is a nondecreasing order-Lipschitz mapping. Note
that k ∈ [, ) and A is Picard-complete at u and v, then A has a unique fixed point
x∗ ∈ [u, v] by Theorem . Thus we have Tx∗ +lx∗ = x∗ +lx∗ and so Tx∗ = x∗. Let x ∈ [u, v]
be another fixed point of T , then Tx = x and hence Ax = x. Moreover, by the uniqueness of
fixed point of A in [u, v], we get x = x∗. Hence x∗ is the unique fixed point of T in [u, v].
The proof is complete. �

Remark  By (ii) of Remark , Theorem  immediately follows from Corollary , which
indeed improves Theorem  since the normality of P has been removed.

Motivated by [], we reconsider the case with normal cones, and we obtain the following
fixed point result.

Theorem  Let P be a normal solid cone of a Banach algebra (E,‖ · ‖) and T : E → E an
order-Lipschitz mapping with l = k ∈ P. If r(k) < , then T has a unique fixed point x∗ ∈ E.
And for each x ∈ E, we have xn

‖·‖→ x∗, where {xn} = O(T , x).
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Proof Since P is solid, it follows from () that, for each x, y ∈ E, there exists u ∈ P such that

–u � x – y � u, ()

and so

x + y – u


� x,
x + y – u


� y. ()

We observe that

–knu � Tnx – Tny � knu, ∀x, y ∈ E,∀n, ()

where u ∈ P satisfies (). By () and (), for each x, y ∈ E we have

–k
(

x – y + u


)
� Tx – T

(
x + y – u



)
� k

(
x – y + u



)
()

and

–k
(

y – x + u


)
� Ty – T

(
x + y – u



)
� k

(
y – x + u



)
,

which can be rewritten as

–k
(

y – x + u


)
� T

(
x + y – u



)
– Ty � k

(
y – x + u



)
. ()

Adding () and (), by (II), we get

–ku � Tx – Ty � ku, ∀x, y ∈ E,

which implies that () holds for n = . Suppose that () holds for n, then for each x, y ∈ E,
we get

Tnx + Tny – knu


� Tnx,
Tnx + Tny – knu


� Tny.

Moreover, by (), for each x, y ∈ E we get

–k
(

Tnx – Tny + knu


)
� Tn+x – T

(
Tnx + Tny – knu



)

� k
(

Tnx – Tny + knu


)
()

and

–k
(

Tny – Tnx + knu


)
� Tn+y – T

(
Tnx + Tny – knu



)
� k

(
Tny – Tnx + knu



)
,
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which can be rewritten as

–k
(

Tny – Tnx + knu


)
� T

(
Tnx + Tny – knu



)
– Tn+y

� k
(

Tny – Tnx + knu


)
. ()

Adding () and (), by (II) we get –kn+u � Tn+x – Tn+y � kn+u for each x, y ∈ E, and
hence () holds for n + . Therefore () holds true by induction. For each x, y ∈ E and
arbitrary u ∈ P such that () is satisfied, by () and (IV) we get ‖Tnx – Tny‖ ≤ ‖knu‖ ≤
‖kn‖‖u‖ for each n. Then by (), (), and the arbitrariness property of u, we have

∥∥Tnx – Tny
∥∥

 ≤ ∥∥kn∥∥ inf
u∈P

{‖u‖ : –u � x – y � u
}

=
∥∥kn∥∥‖x – y‖ ≤ αn‖x – y‖, ∀n ≥ n,

which together with αn <  implies that Tn : E → E is a Banach contraction. Note that
(E,‖ ·‖) is a Banach space by Lemma , then by the Banach contraction principle, Tn has
a unique fixed point x∗ ∈ E (i.e., Tn x∗ = x∗). It is clear that Tn (Tx∗) = Tn+x∗ = T(Tn x) =
Tx∗, i.e., Tx∗ is a fixed point of Tn , then x∗ = Tx∗ by the uniqueness of fixed point of Tn .
Let x ∈ E be another fixed point of T . Then x is also a fixed point of Tn , and so x = x∗ by
the unique existence of fixed point of Tn . Hence x∗ is the unique fixed point of T .

For each x ∈ E, let xn = Tnx and yi
n = Tnn xi for each n and each  ≤ i ≤ n – . It is

clear that yi
n

‖·‖→ x∗ for each i, and so for each ε > , there exists a positive integer mi
 such

that

∥∥yi
n – x∗∥∥

 < ε, ∀n ≥ mi
.

Set m = max≤i≤n– mi
, then for each i, we get

∥∥yi
n – x∗∥∥

 < ε, ∀n ≥ m,

which together with {xn} =
⋃n–

i= {yi
n} implies that

∥∥xn – x∗∥∥
 < ε, ∀n ≥ mn.

This shows that xn
‖·‖→ x∗ and hence xn

‖·‖→ x∗ since ‖ · ‖ and ‖ · ‖ are equivalent by
Lemma . The proof is complete. �

Remark  Theorem  partially improves Theorem  since the norm condition ‖k‖ <  is
replaced by the spectral radius condition r(k) < .

The following example will show Theorem  is more applicable than many other fixed
point results.

Example  Let E = P = R

+ = {x = (x, x) : x, x ≥ } with the norm ‖x‖ = |x| + |x|.

Clearly, P is a normal solid cone. Define a multiplication in E by

xy = (xy, xy + xy), ∀x = (x, x), y = (y, y) ∈ E,
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then E is a Banach algebra with e = (, ). Define a mapping T : E → E by

T(x, x) =
(
ln(a + x), arctan(b + x) + cx

)
, ∀x ∈ E,

where a > , b ≥ √
a –  and c > , then for each x, y ∈ E with y � x, by the Lagrange mean

value theorem, we have

–k(x – y) � θ � Tx – Ty

=
(
ln(a + x) – ln(a + y), arctan(b + x) – arctan(b + y) + c(x – y)

)

�
(

x – y

a
,

x – y

 + b + c(x – y)
)

�
(

x – y

a
,

x – y

a
+ c(x – y)

)

=
(


a

, c
)

(x – y, x – y) = k(x – y),

where k = ( 
a , c) ∈ P. This implies that T is an order-Lipschitz mapping with k = l = ( 

a , c).
Note that k = ( 

a , c
a ) and k = ( 

a , c
a ), then by induction we obtain kn = ( 

an , nc
an– ) for

each n. Moreover, by Gelfand’s formula, we get

r(k) = lim
n→∞

∥∥kn∥∥

n = lim

n→∞

(


an +
nc

an–

) 
n

=

a

lim
n→∞

(
 +

nc
a

) 
n

=

a

< .

Hence by Theorem , T has a unique fixed point.
In the case that c >  – 

a , we get ‖k‖ = 
a + c > , and hence Theorem  is not applicable

even taking k as a linear bounded mapping.
In the case that c > , we get ‖Tx–Ty‖ ≥ c|x –y| > |x –y| ≥ |x –y|+ |x –y| = ‖x–y‖

for each x, y ∈ E with |x – y| ≥ |x – y|, and hence the Banach contraction principle is
not applicable.

In the case that c > , we get arctan(b + x) – arctan(b + y) + c(x – y) ≥ c(x – y) > x – y

for each x, y ∈ E with y � x and x – y ≥ x – y. This implies that there does not exist
l ∈ [, ) such that Tx – Ty � l(x – y). Consequently, Theorem  is not applicable.

Remark  The normality of P is essential for the completeness of (E,‖·‖) (see Lemma ),
which leads to that the Banach contraction principle is applicable in Theorem . Natu-
rally, one may wonder whether the normality of P in Theorem  could be removed by the
method used in Theorem  or other methods.
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