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Abstract
This work is devoted to analyzing the feasibility study of a Moudafi viscosity
projection method with a weak contraction for a finite family of quasinonexpansive
mappings in a Hadamard space. To this end, we need to construct a countable family
of nonexpansive mappings satisfying AKTT condition with a weak contraction by
choosing an appropriate control sequence under certain conditions.
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1 Introduction
Let C be a nonempty subset of a metric space (X, d). Suppose that, for each x ∈ X, there
exists a unique point PCx ∈ C such that d(x, PCx) = d(x, C) = infy∈C d(x, y). Then, the map-
ping PC of X onto C is called the metric projection.

The well-known Banach contraction principle is an important tool in the theory of
metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-
mappings of metric spaces. One generalization of the contraction principle for weak con-
tractions is obtained by Alber and Guerre-Delabriere [] in Hilbert spaces. A mapping
f : X → X is called a ϕ-weak contraction if

d
(
f (x), f (y)

) ≤ d(x, y) – ϕ
(
d(x, y)

)
, x, y ∈ X,

where ϕ : [,∞) → [,∞) is a continuous and nondecreasing function with ϕ(t) =  if and
only if t = .

Let T : C → X be a mapping. If d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C, then T is nonexpansive.
We denote byF(T) the set o fixed points of T . The mapping T is quasinonexpansive ifF(T)
is nonempty and

d(Tx, y) ≤ d(x, y), x ∈ C, y ∈ F(T).

A point p ∈ C is said to be a strongly asymptotic fixed point [] of T if there exists a se-
quence {xn} in C that converges strongly to p and limn→∞ d(xn, Txn) = . We denote by

© 2016 Huang and Kimura. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13663-016-0523-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-016-0523-6&domain=pdf
mailto:shuang@mail.ndhu.edu.tw


Huang and Kimura Fixed Point Theory and Applications  (2016) 2016:36 Page 2 of 13

F̃(T) the set of strongly asymptotic fixed points of T . It is known that the fixed point set of
a quasinonexpansive mapping defined on a CAT() space (see Section  for the definition)
is closed and convex.

Approximation methods for finding specific fixed points of a family of nonexpansive
mappings in Hilbert, Banach, and geodesic metric spaces have been studied by many re-
searchers; see, e.g., [–] and the references therein. One well-known method, called the
shrinking projection method, was first proposed by Takahashi et al. [] and has been
applied to a variety of approximation problems; see, e.g., [, ]. In particular, Kimura
and Takahashi [] applied this method to the zero-point problem for a maximal mono-
tone operator defined in a Banach space and obtained strong convergence theorems. To
generate the iterative sequence by the shrinking projection method, they use the metric
projection onto a closed convex set Cn for each n ∈ N. It is noticeable that the larger the
integer n, the more complicated the shape of Cn. Hence, the calculation of the projection is
tedious as n gets larger. In , Kimura et al. [] overcome this difficulty and introduce the
so-called averaged projection method of Halpern type for a family of quasinonexpansive
mappings by combining the Halpern iteration. They still use the metric projection ap-
proach; nevertheless, the subsets corresponding to these projections have simpler shapes
than the classical ones. Let us denote by F(T) the common fixed point set of all mappings
in a family T. Their theorem is stated as follows.

Theorem . (Kimura et al. [], Theorem .) Let C be a closed convex subset of a Hilbert
space H , T = {Tj : j = , . . . , N} a finite family of quasinonexpansive mappings of C into H
with F(T) �= ∅ and F̃(Tj) = F(Tj) for j = , . . . , N . Let u, x ∈ C and define the sequence {xn} by

yj
n = αnxn + ( – αn)Tjxn,

Cj
n =

{
z ∈ C :

∥
∥yj

n – z
∥
∥ ≤ ‖xn – z‖}, j = , . . . , N ,

vj
n,k = PCj

k
xn, k = , . . . , n, j = , . . . , N ,

wn,k =
N∑

j=

β
j
kvj

n,k , k = , . . . , n,

xn+ = δnu + ( – δn)
n∑

k=

γn,kwn,k ,

where {αn}, {β j
n : j = , . . . , N}, {γn,k : k ≤ n}, and {δn} are sequences in [, ] satisfying the

following conditions:
(i) lim infn→∞ αn < ,

(ii) β
j
n >  for j = , . . . , N , and

∑N
j= β

j
n =  for n ∈N,

(iii)
∑n

k= γn,k =  for n ∈N, limn→∞ γn,k >  for k ∈N, and
∑∞

n=
∑n

k= |γn+,k – γn,k| < ∞,
(iv) limn→∞ δn = ,

∑∞
n= δn = ∞, and

∑∞
n= |δn+ – δn| < ∞.

Then {xn} converges strongly to the point PF(T)u.

The problem of whether or not we can construct a shrinking projection method analo-
gous to that given in Theorem . for solving a common fixed point problem for a finite
family of quasinonexpansive mappings in a geodesic metric space is still open. The pur-
pose of this paper is to analyze the feasibility study of Moudafi viscosity type of projection
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method with a weak contraction for a finite family of quasinonexpansive mappings in a
complete CAT() space, also known as a Hadamard space.

This paper is organized as follows. In Section  we recall the definition of geodesic met-
ric spaces and summarize some useful lemmas and the main properties of CAT() spaces.
Besides, without vector addition as in a Banach space, we present an inequality to estimate
the distance between two elements defined by finite convex combination ‘⊕’ in a CAT()
space; see Lemma .. In Section  we construct a sequence of nonexpansive mappings
satisfying AKTT condition by choosing an appropriate control sequence under certain
conditions; see Theorem .. Therefore, a convergence theorem of a new Moudafi vis-
cosity approximation follows from Theorem .; see Theorem .. Using Theorem .,
we also derive a strong convergence theorem by a Moudafi type viscosity approximation
with a weak contraction for a family of quasinonexpansive mappings; see Theorem .. As
a particular case where a weak contraction is constant in Theorem ., a strong conver-
gence theorem by the averaged projection method of Halpern type is then obtained; see
Theorem ..

2 Preliminaries
Let (X, d) be a metric space. For x, y ∈ X, a geodesic path joining x to y (or a geodesic from
x to y) is an isometric mapping c : [,�] ⊂ R → X such that c() = x, c(�) = y, that is,
d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [,�]. Therefore, d(x, y) = �. The image of c is called a
geodesic (segment) from x to y, and we shall denote a definite choice of this geodesic seg-
ment by [x, y]. A point z = c(t) in the geodesic [x, y] will be written as z = ( – λ)x ⊕ λy,
where λ = t/�, and so d(z, x) = λd(x, y) and d(z, y) = ( – λ)d(x, y). A subset C of X is convex
if every pair of points x, y ∈ C can be joined by a geodesic in X and the image of every such
geodesic is contained in C.

A geodesic triangle �(x, x, x) in (X, d) consists of three points xi ∈ X (i = , , ), its
vertices, and a geodesic segment between each pair of vertices, its sides. If a point x ∈ X lies
in the union of [xi, xj], i, j ∈ {, , }, then we write x ∈ �(x, x, x). A comparison triangle
for the geodesic triangle �(x, x, x) in X is a triangle �(x̄, x̄, x̄) in the Euclidean plane
E

 such that dE (x̄i, x̄j) = d(xi, xj) for i, j ∈ {, , }.
A geodesic triangle � in X is said to satisfy the CAT() inequality if, given a comparison

triangle � in E
 for �,

d(x, y) ≤ dE (x̄, ȳ) for x, y ∈ �,

where x̄, ȳ ∈ � are the corresponding comparison points of x, y. The geodesic metric space
X is called a CAT() space if all geodesic triangles in X satisfy the CAT() inequality. Note
that Hilbert spaces are CAT().

Lemma . Let (X, d) be a CAT() space, and let α,β ∈ [, ]. Then:
(i) For x, y ∈ X , we have

d
(
αx ⊕ ( – α)y,βx ⊕ ( – β)y

)
= |α – β|d(x, y).

(ii) ([], Chapter II.. Proposition .) For x, y, p, q ∈ X , we have

d
(
αx ⊕ ( – α)y,αp ⊕ ( – α)q

) ≤ αd(x, p) + ( – α)d(y, q).
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In particular, if p = q, this reduces to

d
(
αx ⊕ ( – α)y, p

) ≤ αd(x, p) + ( – α)d(y, p).

(iii) ([], Lemma .) For x, y, z ∈ X , we have

d
(
αx ⊕ ( – α)y, z

) ≤ αd(x, z) + ( – α)d(y, z) – α( – α)d(x, y).

We will extend the equality in Lemma .(i) to any finitely many elements in X. First, we
recall the notion of a finite sum ‘⊕’ defined by Butsan et al. []. Fix n ∈ N with n ≥  and
let {α, . . . ,αn} ⊂ (, ) with

∑n
k= αk =  and {x, . . . , xn} ⊂ X. By induction we define

n⊕

k=

αkxk = ( – αn)
(

α

 – αn
x ⊕ · · · ⊕ αn–

 – αn
xn–

)
⊕ αnxn. (.)

The definition of
⊕

in (.) is an ordered one in the sense that it depends on the order of
points x, . . . , xn. However, we occasionally use the notation αx ⊕ αx ⊕ · · · ⊕ αnxn for
such a point. Lemma .(ii) assures that, for y ∈ X,

d

( n⊕

k=

αkxk , y

)

≤
n∑

k=

αkd(xk , y). (.)

Lemma . Let (X, d) be a CAT() space, and for n ∈ N with n ≥ , let {αk}n
k= and

{βk}n
k= ⊂ (, ) be two sequences such that

∑n
k= αk =

∑n
k= βk = . Then, for x, . . . , xn ∈ X,

we have

d

( n⊕

k=

αkxk ,
n⊕

k=

βkxk

)

≤
∣∣
∣∣

α

α + α
–

β

β + β

∣∣
∣∣(α + α)d(x, x)

+
∣∣
∣∣

α
∑

k= αk
–

β
∑

k= βk

∣∣
∣∣

∑

k=

αk ·
∑

k=

βk

β + β
d(xk , x)

+ · · · +
∣
∣∣
∣

αj
∑j

k= αk
–

βj
∑j

k= βj

∣
∣∣
∣

j∑

k=

αj ·
j–∑

k=

βk

β + · · · + βj–
d(xk , xj)

+ · · · + |αn – βn|
n–∑

k=

βk

 – βn
d(xk , xn).

Proof We will prove the result by induction.
Step . According to Lemma .(ii), (.), and (.), we derive

d

( n⊕

k=

αkxk ,
n⊕

k=

βkxk

)

≤ d

(

( – αn)

( n–⊕

k=

αk

 – αn
xk

)

⊕ αnxn, ( – αn)

( n–⊕

k=

βk

 – βn
xk

)

⊕ αnxn

)
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+ d

(

( – αn)

( n–⊕

k=

βk

 – βn
xk

)

⊕ αnxn, ( – βn)

( n–⊕

k=

βk

 – βn
xk

)

⊕ βnxn

)

≤ ( – αn)d

( n–⊕

k=

αk

 – αn
xk ,

n–⊕

k=

βk

 – βn
xk

)

+ |αn – βn|d
( n–⊕

k=

βk

 – βn
xk , xn

)

≤ ( – αn)d

( n–⊕

k=

αk

 – αn
xk ,

n–⊕

k=

βk

 – βn
xk

)

+ |αn – βn|
n–∑

k=

βk

 – βn
d(xk , xn).

Step . Apply the inequality in Step  for the case n –  to obtain

d

( n–⊕

k=

αk

 – αn
xk ,

n–⊕

k=

βk

 – βn
xk

)

≤  – αn– – αn

 – αn
d

( n–⊕

k=

αk

 – αn– – αn
xk ,

n–⊕

k=

βk

 – βn– – βn
xk

)

+
∣∣
∣∣

αn–

 – αn
–

βn–

 – βn

∣∣
∣∣

n–∑

k=

βk

 – βn– – βn
d(xk , xn–).

Step . Recall that
∑n

k= αk =
∑n

k= βk = . Hence, the two inequalities in Step  and Step 
imply that

d

( n⊕

k=

αkxk ,
n⊕

k=

βkxk

)

≤ ( – αn– – αn)d

( n–⊕

k=

αk

 – αn– – αn
xk ,

n–⊕

k=

βk

 – βn– – βn
xk

)

+
∣
∣∣
∣

αn–
∑n–

k= αk
–

βn–
∑n–

k= βk

∣
∣∣
∣

n–∑

k=

αk ·
n–∑

k=

βk

 – βn– – βn
d(xk , xn–)

+ |αn – βn|
n–∑

k=

βk

 – βn
d(xk , xn).

Continuing the process in Step  to estimate the first term of this inequality on the right-
hand side, after n –  steps, we have

d

( n⊕

k=

αkxk ,
n⊕

k=

βkxk

)

≤
∣
∣∣
∣

α

α + α
–

β

β + β

∣
∣∣
∣(α + α)d(x, x)

+
∣∣∣
∣

α
∑

k= αk
–

β
∑

k= βk

∣∣∣
∣

∑

k=

αk ·
∑

k=

βk

β + β
d(xk , x)
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+ · · · +
∣∣
∣∣

αj
∑j

k= αk
–

βj
∑j

k= βj

∣∣
∣∣

j∑

k=

αj ·
j–∑

k=

βk

β + · · · + βj–
d(xk , xj)

+ · · · + |αn – βn|
n–∑

k=

βk

 – βn
d(xk , xn). �

Let {αn}∞n= be a sequence in (, ) such that
∑∞

n= αn = . For notational convenience, let

ᾱk =
αk

∑k
j= αj

, α′
k =

∞∑

j=k+

αj for k ∈N,

The following result is an immediate consequence of Lemma ..

Lemma . Let (X, d) be a CAT() space, and for n ∈N (n ≥ ), let {αk}n
k=, {βk}n

k= ⊂ (, )
be such that

∑n
k= αk =

∑n
k= βk = . Then for x, . . . , xn ∈ X, we have

d

( n⊕

k=

αkxk ,
n⊕

k=

βkxk

)

≤ M
n∑

k=

|ᾱk – β̄k|,

where M = max{d(xi, xj) : i, j = , . . . , n}.

It is remarkable that Dhompongsa et al. [] define an infinite sum ‘⊕’ as follows. Let
{αn} ⊂ (, ) with

∑∞
n= αn = , and let {xn} be a bounded sequence in a complete metric

space X. Choose arbitrary u ∈ X. Suppose that limn→∞
∑∞

k=n α′
k = . Define the sequence

{yn} in X by

yn = αx ⊕ αx ⊕ · · · ⊕ αnxn ⊕ α′
nu.

Then, according to (.),

yn =

( n∑

k=

αk

)

zn ⊕ α′
nu, (.)

where

zn =
α∑n
k= αk

x ⊕ · · · ⊕ αn∑n
k= αk

xn.

Recall that {yn} is a Cauchy sequence [] and therefore converges to some point x ∈ X. We
can write

x =
∞⊕

n=

αnxn.

By (.), d(yn, zn) = α′
nd(zn, u). Hence, {zn} also converges to x, and the limit x is indepen-

dent of the choice of u.
To verify our main results in Section , the following property is required and crucial.
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Lemma . (Dhompongsa et al. [], Lemma .) Let C be a closed convex subset of a com-
plete CAT() space X, {Tn} a sequence of nonexpansive mappings on C with

⋂∞
n= F(Tn) �= ∅,

and {αn} a sequence in (, ) such that
∑∞

n= αn =  and limn→∞
∑∞

k=n α′
k = . Define the

mapping S : C → C by Sx =
⊕∞

n= αnTnx, x ∈ C. Then S is nonexpansive, and F(S) =
⋂∞

n= F(Tn).

3 Projection method
Let C be a closed convex subset of a complete metric space X. A family {Tn} of nonexpan-
sive self-mappings of C is said to satisfy AKTT condition [] if for every bounded subset
B of C,

∞∑

n=

sup
{

d(Tn+x, Tnx) : x ∈ B
}

< ∞.

In this case, the sequence {Tnx} is Cauchy for each x ∈ C and so converges in X. We recall
the following convergence theorem with a weak contraction for a sequence of nonexpan-
sive mappings with AKTT condition.

Theorem . (Huang [], Theorem .) Let X be a complete CAT() space, C a closed
convex subset of X, {Tn} a family of nonexpansive mappings on C satisfying AKTT condition
such that

⋂∞
n= F(Tn) �= ∅, f a ϕ-weak contraction on C, where ϕ is strictly increasing, and

{αn} is a sequence in (, ] satisfying
(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C) either
∑∞

n= |αn+ – αn| < ∞, or limn→∞(αn+/αn) = .
Define the mapping S : C → C by Sx = limn→∞ Tnx for x ∈ C. Suppose that F(S) =
⋂∞

n= F(Tn). Then the sequence {xn} defined by x ∈ C and

xn+ = αnf (xn) ⊕ ( – αn)Tnxn

converges strongly to a point x̂ ∈ C such that x̂ = PF(S)f (x̂).

We now construct a sequence of nonexpansive mappings satisfying AKTT condition by
choosing an appropriate control sequence under certain conditions.

Theorem . Let C be a closed convex subset of a complete CAT() space X, T = {Tn} a
family of nonexpansive mappings on C with F(T) �= ∅, and {γn,k : k ≤ n} ⊂ (, ) a sequence
satisfying

(D)
∑n

k= γn,k = , ∀n ∈N;
(D) λk = limn→∞ γn,k > , ∀k ∈N, and limn→∞

∑∞
k=n λ′

k = ;
(D)

∑∞
n=

∑n+
k= |γ̄n+,k – γ̄n,k| < ∞, where γn,n+ =  and

γ̄n,k =
γn,k

γn, + · · · + γn,k
, k = , . . . , n + .

For each n ∈N, define the mapping Sn : C → C by

Snx =
n⊕

k=

γn,kTkx.
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Then {Sn} is a family of nonexpansive mappings satisfying AKTT condition and

∞⋂

n=

F(Sn) =
∞⋂

n=

F(Tn).

Moreover, the mapping S : C → C defined by Sx = limn→∞ Snx is also nonexpansive, and
F(S) =

⋂∞
n= F(Sn).

Proof Fix any n ∈ N. We may assume that γn,k =  for all k > n. Then Lemma . states
that Sn is nonexpansive and F(Sn) =

⋂n
k= F(Tk). Thus,

∞⋂

n=

F(Sn) =
∞⋂

k=

F(Tk) �= ∅.

For every bounded subset B of C, the set {Tkx : x ∈ B, k ∈ N} is bounded since
⋂∞

k= F(Tk) �= ∅. Let

M = diam{Tkx : x ∈ B, k ∈N},

so that by Lemma ., for x ∈ B and n ∈N, we have

d(Sn+x, Snx) ≤ d

( n⊕

k=

γn+,kTkx,
n⊕

k=

γn,kTkx

)

+ γn+,n+d

(

Tn+x,
n⊕

k=

γn,kTkx

)

≤ M
n∑

k=

|γ̄n+,k – γ̄n,k| + Mγn+,n+

n∑

k=

γn,k

= M
n∑

k=

|γ̄n+,k – γ̄n,k| + Mγ̄n+,n+

= M
n+∑

k=

|γ̄n+,k – γ̄n,k|.

It follows that

∞∑

n=

sup
{

d(Sn+x, Snx) : x ∈ B
} ≤ M

∞∑

n=

n+∑

k=

|γ̄n+,k – γ̄n,k| < ∞.

Therefore, {Sn} is a family of nonexpansive mappings on C satisfying AKTT condition
such that

⋂∞
n= F(Sn) �= ∅. It follows that {Snx} converges for all x ∈ C, and thus S is well

defined.
If m, n ∈N and m > n, then we get

n∑

k=

|γ̄m,k – γ̄n,k| ≤
n∑

k=

(|γ̄n+,k – γ̄n,k| + |γ̄n+,k – γ̄n+,k| + · · · + |γ̄m,k – γ̄m–,k|
)

=
m–∑

j=n

n∑

k=

|γ̄j+,k – γ̄j,k|

≤
m–∑

j=n

j+∑

k=

|γ̄j+,k – γ̄j,k|.



Huang and Kimura Fixed Point Theory and Applications  (2016) 2016:36 Page 9 of 13

Recall that λ̄k = limn→∞ γ̄n,k for k ∈N. We take the limit as m → ∞ to obtain

n∑

k=

|λ̄k – γ̄n,k| ≤
∞∑

j=n

j+∑

k=

|γ̄j+,k – γ̄j,k|

and then take the limit as n → ∞ to obtain

lim
n→∞

n∑

k=

|λ̄k – γ̄n,k| = . (.)

On the other hand, the absolute convergence of the series

∞∑

n=

n+∑

k=

(γ̄n+,k – γ̄n,k)

implies the convergence of its partial sums

m∑

n=

n+∑

k=

(γ̄n+,k – γ̄n,k) =

(m+∑

k=

γ̄m+,k

)

– γ̄, =

(m+∑

k=

γ̄m+,k

)

– .

Hence, by (.),
∑∞

k= λ̄k converges (in fact, to
∑∞

k= γ̄n,k), and so does
∑∞

k= λk because
λk ≤ λ̄k . Let λ =

∑∞
k= λk . Define the mapping W : C → C by

Wx =
∞⊕

n=

λn

λ
Tnx.

Then by (D) Lemma . guarantees that W is nonexpansive and F(W ) =
⋂∞

n= F(Tn). If

Wnx =
n⊕

k=

λk∑n
j= λj

Tkx, x ∈ C,

then {Wnx} converges to Wx. Recall that

(
λk∑n
j= λj

)
= λ̄k for k = , . . . , n.

Fix any x ∈ C. Then by Lemma . and (.) we get

d(Snx, Wnx) ≤ K
n∑

k=

|γ̄n,k – λ̄k| →  as n → ∞,

where K = max{d(Tix, Tjx) : i, j = , . . . , n}. This shows that Wx = Sx for all x ∈ C, as re-
quired. �

The following result follows immediately from Theorems . and ..
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Theorem . Let C be a closed convex subset of a complete CAT() space X, T = {Tn} a
family of nonexpansive mappings on C such that F(T) �= ∅, and f a ϕ-weak contraction on
C, where ϕ is strictly increasing. Let {αn} ⊂ (, ] and {γn,k : k ≤ n} ⊂ (, ) be two sequences
such that {αn} satisfies (C)-(C) and {γn,k : k ≤ n} satisfies (D)-(D). Let x ∈ C and define
the sequence {xn} by

xn+ = αnf (xn) ⊕ ( – αn)
n⊕

k=

γn,kTkxn.

Then {xn} converges strongly to a point x̂ ∈ C such that x̂ = PF(T)f (x̂).

Proof For each n ∈N, let Sn : C → C be the mapping defined by

Snx =
n⊕

k=

γn,kTkx.

Then by Theorem ., {Sn} is a family of nonexpansive mappings satisfying the AKTT
condition and

⋂∞
n= F(Sn) =

⋂∞
n= F(Tn). We can write

xn+ = αnf (xn) ⊕ ( – αn)Snxn.

Define the mapping S : C → C by Sx = limn→∞ Snx for x ∈ C, so that S is nonexpansive
and F(S) =

⋂∞
n= F(Sn). Consequently, Theorem . assures the strong convergence of {xn}

with limit x̂, say, such that x̂ = PF(S)f (x̂). �

Using Theorem ., we establish a strong convergence theorem by a Moudafi type of
shrinking projection method for a family of quasinonexpansive mappings as follows.

Theorem . Let C be a closed convex subset of a complete CAT() space X such that {z ∈
C : d(u, z) ≤ d(v, z)} is a convex subset of C for every u, v ∈ C. Let T = {Tj : j = , . . . , N} be a
finite family of quasinonexpansive mappings of C into X with F(T) �= ∅ and F̃(Tj) = F(Tj)
for j = , . . . , N , and f a ϕ-weak contraction on C, where ϕ is strictly increasing. Let {αn},
{δn} be sequences in (, ], and {β j

n : j = , . . . , N} and {γn,k : k ≤ n} be sequences in (, ). Let
x ∈ C and define the sequence {xn} by

yj
n = δnxn ⊕ ( – δn)Tjxn,

Cj
n =

{
z ∈ C : d

(
yj

n, z
) ≤ d(xn, z)

}
, j = , . . . , N ,

vj
n,k = PCj

k
xn, k = , . . . , n, j = , . . . , N ,

wn,k =
N⊕

j=

β
j
kvj

n,k , k = , . . . , n,

xn+ = αnf (xn) ⊕ ( – αn)
n⊕

k=

γn,kwn,k ,

where {αn} satisfies (C)-(C), {γn,k : k ≤ n} satisfies (D)-(D), and {δn}, {β j
n} satisfy the

following conditions:
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(i) lim infn→∞ δn < ;
(ii)

∑N
j= β

j
n =  for n ∈N.

Then {xn} converges strongly to a point x̂ ∈ C such that x̂ = PF(T)f (x̂).

Proof First, we can see that every Cj
n is closed and convex by the assumption on the space.

To prove that the metric projection PCj
k

is well defined, let z ∈ F(T). Since Tj is quasinon-
expansive, we have

d
(
yj

n, z
) ≤ δnd(xn, z) + ( – δn)d(Tjxn, z) ≤ d(xn, z),

and so z ∈ Cj
n. This implies that

∅ �= F(T) ⊂ Cj
n, j = , . . . , N , n ∈N.

Thus, the metric projection onto Cj
n is well defined. For n ∈N, define Qn : C → C by

Qnx =
N⊕

j=

β j
nPCj

n
x, x ∈ C.

It follows from Lemma . and condition (ii) that Qn is nonexpansive and F(Qn) =
⋂N

j= Cj
n.

According to our construction, we can write

wn,k = Qkxn, k = , . . . , n,

xn+ = αnf (xn) ⊕ ( – αn)
n⊕

j=

γn,kQkxn, n ∈N.

Hence, Theorem . and conditions (C)-(C) and (D)-(D) assure the strong conver-
gence of {xn} to a point x̂ ∈ C such that x̂ = PF f (x̂), where

F =
∞⋂

n=

F(Qn) =
∞⋂

n=

N⋂

j=

Cj
n =

N⋂

j=

∞⋂

n=

Cj
n.

Notice thatF(T) ⊂ F . Condition (i) asserts that there exists a convergent subsequence {δni}
of {δn} such that limi→∞ δni < . Since x̂ ∈ Cj

n for all j = , . . . , N and n ∈N, we obtain

d(xni , x̂) ≥ d(yni , x̂)

= d
(
δni xni ⊕ ( – δni )Tjxni , x̂

)

≥ d
(
xni , δni xni ⊕ ( – δni )Tjxni

)
– d(xni , x̂)

= ( – δni )d(xni , Tjxni ) – d(xni , x̂),

which yields


 – δni

d(xni , x̂) ≥ d(xni , Tjxni ).
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We then take the limit as i → ∞ and get

lim
i→∞ d(xni , Tjxni ) = , j = , . . . , N .

This shows that x̂ ∈ F̃(Tj) = F(Tj) for j = , . . . , N , that is, x̂ ∈ F(T). Since F(T) ⊂ F , we then
have x̂ = PF f (x̂) = PF(T)f (x̂), which completes the proof. �

Consequently, when f is constant in Theorem ., we obtain the following strong con-
vergence theorem by a new Halpern type of shrinking projection method.

Theorem . Let X, C, T = {Tj : j = , . . . , N}, and the sequences {αn}, {δn}, {β j
n : j =

, . . . , N}, {γn,k : k ≤ n} be as in Theorem .. Let u, x ∈ C and define the sequence {xn}
by

yj
n = δnxn ⊕ ( – δn)Tjxn,

Cj
n =

{
z ∈ C : d

(
yj

n, z
) ≤ d(xn, z)

}
, j = , . . . , N ,

vj
n,k = PCj

k
xn, k = , . . . , n, j = , . . . , N ,

wn,k =
N⊕

j=

β
j
kvj

n,k , k = , . . . , n,

xn+ = αnu ⊕ ( – αn)
n⊕

k=

γn,kwn,k .

Then {xn} converges strongly to the point PF(T)u.
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