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Abstract
In this paper we consider a class of bilevel variational inequalities with hierarchical
nesting structure. We first of all get the existence of a solution for this problem by
using the Himmelberg fixed point theorem. Then the uniqueness of the solution for
an upper-level variational inequality is given under some mild conditions. By using
gap functions of the upper-level and lower-level variational inequalities, we transform
bilevel variational inequalities into a one-level variational inequality. Moreover, we
propose two iterative algorithms to find the solutions of the bilevel variational
inequalities. Finally, the convergence of the proposed algorithm is derived under
some mild conditions.
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1 Introduction
The idea of bilevel programming problem may be considered to date back to  when
it had been formulated by Stackelberg in a monograph on market economy [, ]. Since
it was introduced to the optimization community in the s, a rapid development and
intensive investigation of these problems begun in theoretical analysis [–]. Now it has
been applied to industry [], decision science [], transportation [], network [], elec-
tricity [], support chain management [, ], cloud computing market [], and so on.
Some mathematical programming problems can be transformed into variational inequal-
ity problems. In order to study the bilevel models better, it is necessary to study bilevel
variational inequalities.

Bilevel variational inequalities models have been investigated in recent decades (see e.g.
[–] and references therein). Many algorithms had been constructed to get the ap-
proximate solution of these models. These models can well be applied. An imperfection
in these models is that the upper-level variational inequality and lower-level variational
inequality of all these models are not better embedded in each other. Sometimes the two
levels of a bilevel problem are interactional; therefore, the bilevel variational inequalities
models, of which the upper -level’s variable is embedded into the lower level, and also the
lower level’s variable is embedded into the upper level, need to be studied.
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In [], Wan and Chen introduced bilevel variational inequalities (shortly BVIs) which
has a hierarchical nesting structure. They gave the existence theorem of a solution and
constructed an algorithm, in the case that the solution set of the lower-level variational in-
equality M(x) is a singleton (M(x) is the solution set of a lower-level variational inequality,
in regard to each parameter x from the upper-level variational inequality). But sometimes,
M(x) is not a singleton. In this case, one wonders whether the solution of the BVI exists.
How to construct an algorithm? In this paper, our work will consider the two problems.

Now we review the model in []. Let K be nonempty subset of the n-dimensional
Euclidean space Rn, and H : Rm × Rn → Rn and P : Rm → Rm be two mappings. Let
T : K → Rm be a set-valued mapping, where Rm is the family of all nonempty subsets
of Rm.

Consider the following bilevel variational inequalities (shortly BVIs): find (x, z) ∈ K ×Rm,
such that

〈
H(z, x), x – y

〉 ≤ , ∀y ∈ K , ()

where z ∈ M(x), M(x) is the solution set of the following parametric variational inequality:
find z ∈ T(x) such that

〈
P(z), z – v

〉 ≤ , ∀v ∈ T(x). ()

Inequations () and () are called the upper-level variational inequality (shortly (UVI))
and the lower-level variation inequality (shortly (LVI)), respectively. The decision variables
of the problem BVI are divided into two classes, namely, the upper-level decision variable
x and the lower-level decision variable z. Denote the optimal solution set of the BVI by �.

Obviously, the BVI involves two variational inequalities. The constraint region of the
lower-level variational inequality T(x) is implicitly determined by the parameter x from
upper-level variational inequality. The lower-level decision variable z is embedded into
upper-level inequality. It is extremely difficult to solve globally, because of its nested struc-
ture. In a broad sense, it is similar to a quasi-variational inequality [–].

Next we review some definitions that are referred in [].
The solution set of the lower-level variational inequality in regard to the parameter x

from the upper-level variational inequality is

M(x) =
{

z ∈ T(x) :
〈
P(z), z – v

〉 ≤ ,∀v ∈ T(x)
}

.

The solution set of the upper-level variation inequality for every parameter z from the
lower-level variational inequality is

U(z) =
{

x ∈ K :
〈
H(z, x), x – y

〉 ≤ ,∀y ∈ K
}

.

We call the BVI well-posed bilevel variational inequalities, if M(x) is a singleton set.
We call it ill-posed bilevel variational inequalities, if M(x) has more than one element.
Wan and Chen gave the existence of the solution and an algorithm when the set M(x) is
a singleton in []. But sometimes, M(x) is not a singleton set; this can be seen from the
next example.



Li et al. Fixed Point Theory and Applications  (2016) 2016:41 Page 3 of 21

Example . Let R = (–∞, +∞), K = [–, –] and T(x) = [–, x] for all x ∈ K , z, v, x, y ∈
R. Let 〈P(z), z – v〉 = 〈–(z + )(z + )(z + )ez, z – v〉 = –(z + )(z + )(z + )ez(z – v),
〈H(z, x), x – y〉 = 〈–(z + )(z + )xez, x – y〉 = –(z + )(z + )xez(x – y). The BVI is defined as
follows: find x ∈ K such that

–(z + )(z + )xez(x – y) ≤ , ∀y ∈ K , ()

where z is a solution of the following variational inequality: find z ∈ T(x) such that

–(z + )(z + )(z + )ez(z – v) ≤ , ∀v ∈ T(x). ()

A simple computation shows that the solution set of lower-level variational inequality is

M(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{–}, if x ∈ [–, – 
 ),

{– 
 }, if x ∈ [– 

 , – 
 ),

{– 
 , – 

 }, if x ∈ [– 
 , –),

{–, – 
 , – 

 }, if x = –.

We can see that if x ∈ [– 
 , –), then M(x) = {– 

 , – 
 }; there are two elements in M(x).

So it is not a singleton set. It is easy to verify that {(–, x) : x ∈ [–, – 
 ) or x = –} is the

solution set of the BVI ()-(). So it is meaningful to research the existence theorem of
the solution and algorithm when the lower-level solution set M(x) is not a singleton. This
paper will discuss these questions.

The rest of this paper is organized as follows. In Section , we recall some important
results of [] and give some preliminary definitions which are needed for our main re-
sults. In Section , we demonstrate the existence theorem of a solution when the lower-
level solution set M(x) is not a singleton, and we investigate the unique solution condition
of the upper-level variational inequality for every parameter z from the lower-level varia-
tional inequality. In Section , we transform the BVI into a one-level variational inequality
by gap functions of the lower-level variational inequality and the upper-level variational
inequality. Based on Section , we proposed two iterative algorithms to compute the ap-
proximation solution of the BVI, and analyzed the convergence of the presented algorithm
in Section . Some numerical examples are given in Section .

2 Preliminaries
We first review some definitions and lemmas which are needed for our main results.

Definition . ([]) Let � be a nonempty subset of Rm. A mapping P : � → Rm is said
to be

(i) monotone on � if

〈
P(x) – P(y), y – x

〉 ≤ , ∀(x, y) ∈ � × �;

(ii) strictly monotone on � if

〈
P(x) – P(y), y – x

〉
< , ∀(x, y) ∈ � × �, x 	= y;
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(iii) pseudomonotone if for any (x, y) ∈ � × �

〈
P(x), y – x

〉 ≥  ⇒ 〈
P(y), x – y

〉 ≤ .

It is easy to see that

strict monotonicity ⇒ monotonicity ⇒ pseudomonotonicity.

Definition . Let � be a nonempty subset of Rn. Let � be a nonempty subset of Rm, for
all z ∈ �, a function H : � × Rn → Rn is said to be

(i) monotone on � if

〈
H(z, x) – H(z, y), y – x

〉 ≤ , ∀(x, y) ∈ � × �;

(ii) strictly monotone on � if

〈
H(z, x) – H(z, y), y – x

〉
< , ∀(x, y) ∈ � × �, x 	= y.

Definition . ([]) Let X ⊆ Rn, Y ⊆ Rm. A set-valued mapping T : X → Y is said to
be

(i) upper semicontinuous (shortly, usc) at x ∈ X if, for each open set V with
T(x) ⊂ V , there exists δ >  such that

T(x) ⊂ V , ∀x ∈ B(x, δ);

(ii) lower semicontinuous (shortly, lsc) at x ∈ X if, for each open set V with
T(x) ∩ V 	= ∅, there exists δ >  such that

T(x) ∩ V 	= ∅, ∀x ∈ B(x, δ);

(iii) closed if the graph of T is closed, i.e., the set Gr(T) = {(ζ , x) ∈ P × E : ζ ∈ T(x)} is
closed in X × Y .

We say T is lsc (resp. usc) on X if it is lsc (resp. usc) at each x ∈ X. T is called continuous
at X if it is both lsc and usc on X.

Definition . ([]) Let K be a nonempty convex subset of Rm. A set-valued mapping
T : K → Rm is said to be convex-valued (compact-valued, closed-valued) if, the images
T(x) of all points x ∈ K are convex (compact, closed).

Definition . ([]) Let � ∈ Rn, E ∈ Rm. A set-valued mapping G : � → E is said to be
local intersection if, for any x ∈ � there exists an open neighborhood Ux of x, such that
⋂

x′∈Ux G(x′) 	= ∅. We denote G(�) =
⋃

x∈� G(x).

Lemma . (Continuous selection theorem [, ]) Let X ⊆ Rn, Y be a nonempty para-
compact subset of Rm. Let G, M : X → Y be two set-valued mappings. Assume that the
following conditions hold:

(i) For any x ∈ X , G(x) is nonempty, and co(G(x)) ⊂ M(x);
(ii) G is local intersection.
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Then M has a continuous selection, namely, there is a continuous mapping f : X → Y ,
such that f (x) ∈ M(x), ∀x ∈ X.

Remark . ([]) If X is a compact set, then coX is a paracompact set.

Lemma . ([]) Let X ⊆ Rn, Y ⊆ Rm, F , G : X → Y be two set-valued mappings such
that, for all x ∈ X, F(x) ∩ G(x) 	= ∅. We suppose that:

(i) F is upper semicontinuous at x;
(ii) F(x) is compact;

(iii) G is closed.
Then the set-valued map F ∩ G : x → F(x) ∩ G(x) is upper semicontinuous at x.

Lemma . (Himmelberg fixed point theorem [, ]) Let X be a convex subset of Rm.
D is a nonempty compact subset of X, H : X → D is an upper semicontinuous set-valued
mapping. And for all x ∈ X, H(x) is a nonempty closed convex subset of D. Then there is a
point x̄ ∈ D, such that x̄ ∈ H(x̄).

Lemma . ([]) Let K be a nonempty subset of Rm. A set-valued mapping T : K → Rm

is compact-valued and continuous. f : K × Rn is continuous. Then

N(x) :=
{

z ∈ T(x) : ∀y ∈ T(x), f (x, z) ≥ f (x, y)
}

defines a compact-valued, and n(x) := maxy∈T(x) f (x, y) is continuous.

3 Existence of solution for the BVI
In this section, we investigate the existence of solution for the BVI when the lower-level
solution set M(x) is not a singleton under some suitable conditions.

For simplicity, let φ : Rm ×Rn ×Rn → Rn, φ : Rm ×Rn ×Rn → Rn, we denote the following
equations:

φ(z, x, y) =
〈
H(z, x), x – y

〉
,

ψ(z, v) =
〈
P(z), z – v

〉
.

Remark . It is easy to verify that φ(z, x, x) = 〈H(z, x), x–x〉 = , both v �→ ψ(·, v) and y �→
φ(·, ·, y) are concave and continuous. For each w, v ∈ Rm, z �→ 〈P(w), z – v〉 is continuous.

Lemma . ([]) Let K be nonempty convex subset of Rn, T : K → Rm be closed convex-
valued. Assume that the following conditions hold:

(i) P is monotone;
(ii) z �→ ψ(z, ·) is lower-hemicontinuous.
Then for each x ∈ K , the solution set M(x) of (LVI) is closed and convex.

Since it is easy to verify that ψ and P in Example . satisfies all conditions of Lemma .,
and M(x) is a closed and convex set, from Example . we can see that Lemma . is ap-
plicable.

Lemma . ([]) Let K be nonempty convex subset of Rn, T : K → Rm be convex and
compact-valued. Assume that the following conditions hold:
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(i) P is pseudomonotone;
(ii) z �→ ψ(z, ·) is lower-hemicontinuous.
Then for each x ∈ K , the solution set M(x) of (LVI) is nonempty and compact.

Example . can be used to show that the result of Lemma . is also applicable.

Example . Let R = (–∞, +∞), K = [–, – 
 ], T(x) = [x, ] for x ∈ K , and let 〈P(z), z – v〉 =

〈ez, z – v〉. It is obvious that all conditions of Lemma . are satisfied. By computation, for
each x ∈ K , the lower-level solution set M(x) = {x}. M(x) is a nonempty and compact set.

Remark . Since monotonicity ⇒ pseudomonotonicity, from the conditions of Lem-
ma ., we can further see that, for each x ∈ K , the solution set M(x) of (LVI) is convex
nonempty and compact.

Remark . Under the conditions of the Lemma ., M(x) may be not a singleton set, this
can be seen in Example .. This example also shows that Lemma . is applicable.

Example . Let R = (–∞, +∞), K = [., ] × [., ], x = (x, x)�, x = (y, y)�, z =
(z, z)�, v = (v, v)�, and T(x) = {y :  < y <  + x,  < y <  + x, y + y = } for x ∈ K ,
z, v ∈ R. Let P(z)� = (, ).

Obviously, P satisfies the conditions of Lemma .. By a simple computation one gets
the solution set of (LVI),

M(x) = {z :  ≤ z,  ≤ z, z + z = }.

It is obvious that M(x) is nonempty convex compact and not a singleton.

The next theorem shows the existence of solution when the solution set M(x) of (LVI)
is not a singleton. That is, the BVI is an ill-posed bilevel variational inequality.

Theorem . Suppose that K is a nonempty compact convex subset of Rm; T : K → Rm

is a convex and compact-valued set-valued mapping, and, for all x ∈ K , K ∈ T(x). Assume
that the following conditions hold:

(i) P is pseudomonotone;
(ii) z �→ ψ(z, ·) is lower-hemicontinuous;

(iii) infz∈K supv∈T(K ) ψ(z, v) ≤ ;
(iv) the function φ is a continuous function.
Then there exist x̄ ∈ K , z̄ ∈ M(x̄), such that 〈H(z̄, x̄), x̄ – y〉 ≤ , ∀y ∈ K . That is, the BVI

()-() has at least one solution (z̄, x̄).

Proof By conditions (i), (ii), and Lemma ., it is easy to show that the solution set M(x)
of (LVI) is nonempty, convex, and compact. Since K is a nonempty convex compact set,
from condition (ii) and (iii) we see that there exists z ∈ K satisfying

sup
v∈T(K )

ψ(z, v) = inf
z∈K

sup
v∈T(K )

ψ(z, v) ≤ .
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First, we will show that z ∈ ⋂
x∈K M(x). Suppose by contradiction that z /∈ ⋂

x∈K M(x),
then there exists x′ ∈ K such that z /∈ M(x′). That is,

z /∈ M
(
x′) =

{
z ∈ T

(
x′) : ψ(z, v) ≤ ,∀v ∈ T

(
x′)},

so there exists at least one v′ ∈ T(x′), such that ψ(z, v′) > . In view of condition (iii), we
get

ψ
(
z, v′) ≤ sup

v∈T(K )
ψ(z, v) = inf

z∈K
sup

v∈T(K )
ψ(z, v) ≤ ,

which is a contradiction.
Second, we show that set-valued mapping M satisfies the conditions of Lemma . (con-

tinuous selection theorem). In fact, since, for any x ∈ K , M(x) is nonempty convex compact
set, it is obvious that there exists a nonempty convex compact subset Nx for x, satisfying
z ∈ Nx ⊂ M(x), then we can find a set-valued mapping G : K �→ Rm , for every x ∈ K , such
that G(x) = Nx. Obviously, G satisfies Definition .. It easy to see that the following two
conditions are satisfied:

(i) For any x ∈ K , G(x) is nonempty, and co(G(x)) = co(Nx) ⊂ M(x);
(ii)

⋂
x∈K G(x) =

⋂
x∈K Nx 	= ∅,

that is, M satisfies Lemma .. Then, from Lemma . and Remark . we know that there
is a continuous mapping f : K �→ Rm such that f (x) ∈ M(x), ∀x ∈ K .

For every x ∈ K , suppose

F(x) =
{

ŷ ∈ K : φ
(
f (x), x, ŷ

)
= max

y∈K
φ
(
f (x), x, y

)}
.

Clearly, F : K → K is a set-valued mapping. According to the continuous property of
f and φ, it follows that y → φ(f (x), x, y) is continuous. By the compactness property of K ,
we know that there exists at least one ŷ ∈ K such that

φ
(
f (x), x, ŷ

)
= max

y∈K
φ
(
f (x), x, y

)
,

so, F(x) is a nonempty set.
Next, we will show that the set-valued mapping F : K → K is convex-valued, compact-

valued, and upper-semicontinuous.
First of all, we show that F is convex-valued. For every x ∈ K , suppose y, y ∈ F(x), that

is,

φ
(
f (x), x, y

)
= φ

(
f (x), x, y

)
= max

y∈K
φ
(
f (x), x, y

)
.

Let y = λy + ( – λ)y, ∀λ ∈ (, ), Since y �→ φ(·, ·, y) is concave, we have

max
y∈K

φ
(
f (x), x, y

)
= λφ

(
f (x), x, y

)
+ ( – λ)φ

(
f (x), x, y

)

≤ φ
(
f (x), x, y

) ≤ max
y∈K

φ
(
f (x), x, y

)
,
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so

φ
(
f (x), x, y

)
= max

y∈K
φ
(
f (x), x, y

)
, y ∈ F(x),

that is, F(x) is a convex set.
Second, we prove that F is compact-valued. For every (x, y) ∈ K × K , let η(x, y) =

–φ(f (x), x, y). It is easy to see that y → η(x, y) is continuous, and

F(x) =
{

ŷ ∈ K : η(x, ŷ) = min
y∈K

η(x, y)
}

.

For every sequence {yk} ⊂ F(x), yk −→ y, we can get the following equation:

min
y∈K

η(x, y) = lim
k→+∞

min
y∈K

η(x, y) = lim
k→+∞

η(x, yk) = η
(

x, lim
k→+∞

yk

)
= η(x, y),

therefore, y ∈ F(x), F is compact-valued.
Finally, we show that F is upper semicontinuous. Let Q : K → K be set-valued map-

ping satisfying Q(x) = K , ∀x ∈ K . It is obvious that Q is a continuous and compact-valued
mapping.

We denote

F(x) = Q(x) ∩ J(x),

where J(x) = {y : η(x, ŷ) = η(x, y)}. Due to J(x) is closed. According to Lemma . we know
that H is upper semicontinuous.

From the above discussion, it is obvious to know that F satisfies the conditions of
Lemma . (Himmelberg fixed point theorem), so there exists a point x̄ ∈ K , such that
x̄ ∈ F(x̄). Then the point x̄ ∈ K satisfies

φ
(
f (x̄), x̄, x̄

)
= max

y∈K
φ
(
f (x̄), x̄, y

)
.

Let z̄ = f (x̄), then z̄ ∈ M(x̄), and φ(z̄, x̄, x̄) = maxy∈K φ(z̄, x̄, y). So, for every y ∈ K

φ(z̄, x̄, y) ≤ max
y∈K

φ(z̄, x̄, y) = φ(z̄, x̄, x̄) = ,

that is, (z̄, x̄) ∈ �, here � is the solution set of the BVI ()-(). �

Example . Let R = (–∞, +∞), K = [., ] × [., ], x = (x, x)�, z = (z, z)�, v =
(v, v)�, y = (y, y)�, u = (u, u)�, and T(x) = {u :  < u <  + x,  < u <  + x, u + u = }
for x ∈ K , z, v, y ∈ R. Let H(z, x)� = (, )z( 

 , 
 ), P(z)� = (, ).

It is not hard to see that all conditions of Theorem . are satisfied.
Simple computation we get the solution set of the lower-level problem

M(x) = {z :  ≤ z,  ≤ z, z + z = }.

It is obvious that M(x) is not a singleton set. Further, we can see that M(x) is a nonempty
convex and compact set, and {(z, x) ∈ R

+ × R
+ : z + z = , x + x = } is the solution set of

the BVI.
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Remark . From Example . we can verify that M satisfies Lemma .. We can choose
the continuous function f (x) = z, z ∈ M(x). It is obvious that f (x) is a constant function.

We can find the following phenomenon from Example ..
If the upper-level decision maker feedback parameter x = (., .) to the lower-level

decision maker, then we can get the lower-level solution set M((., .)) = {z :  ≤ z,  ≤
z, z + z = }. Here, if the lower-level decision maker feedback parameter z = (., .) to
the upper-level decision maker, then it is well known that U((., .)) = {(z, x) ∈ R

+ × R
+ :

z + z = , x + x = } is the solution set of the upper-level variational inequality, and
U((., .)) is not a singleton set. If the conditions of Theorem . are strengthened, we
will get the unique solution of the upper-level variational inequality, in regard to every
parameter z from the lower-level variational inequality. That is, U(z) is a singleton set.

Theorem . (unique solution of (UVI)) Under the hypotheses of Theorem ., if, more-
over, H(z, x) is strictly monotone, for every z ∈ Rm, then, for every z ∈ M(x), the solution set
of the upper-level variation inequality

U(z) =
{

x ∈ K :
〈
H(z, x), x – y

〉 ≤ ,∀y ∈ K
}

is a singleton.

Proof For each x ∈ K from Theorem ., we know that M(x) 	= ∅. Using a proof by con-
tradiction, suppose that there exists a z ∈ M(x) such that U(z) is not a singleton. That is,
there exist x, x ∈ K , x 	= x such that

〈
H(z, x), x – y

〉 ≤ , ∀y ∈ K ,

and

〈
H(z, x), x – y

〉 ≤ , ∀y ∈ K ,

moreover, we have

〈
H(z, x), x – x

〉 ≤  ()

and

〈
H(z, x), x – x

〉 ≤ . ()

Since for every z ∈ Rm, H(z, x) is strictly monotone, from (ii) of Definition ., we have

〈
H(z, x) – H(z, x), x – x

〉
< ,

that is,

〈
H(z, x), x – x

〉
+

〈
H(z, x), x – x

〉
> . ()
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From () and () we have

〈
H(z, x), x – x

〉
> ,

which contradicts (). Therefore, U(z) is a singleton. �

4 Equivalence transformation of the BVI
In this section, we shall transform the bilevel variational inequalities () and () into a
one-level variational inequality by the gap functions of (LVI) and (UVI).

We now define the functions α : Rm × Rn → R, β : Rm × Rn → R, g : Rm × Rn → R, by

α(z, x) = sup
v∈T(x)

〈
P(z), z – v

〉
, (z, x) ∈ Rm × Rn,

β(z, x) = sup
y∈K

〈
H(z, x), x – y

〉
, (z, x) ∈ Rm × Rn,

and

g(z, x) = β(z, x) + α(z, x), (z, x) ∈ Rm × Rn.

Remark . For each x ∈ K , z ∈ M(x) if α(z, x) = . Moreover, we obtain that α(z, x) = 
from α(z, x) ≥  for all z ∈ T(x). The same holds for β(z, x).

We consider the parametric variational inequality defined by the bifunction PVI: find
x ∈ K , z ∈ T(x) such that

g(z, x) ≤ . ()

Denote the solution set of the PVI by S.

Theorem . (x, z) ∈ � if and only if (x, z) ∈ S.

Proof First, we verify that (x, z) ∈ � ⇒ (x, z) ∈ S. Assume that (x, z) ∈ �, then x ∈ K , z ∈
T(x),

〈
P(z), z – v

〉 ≤ , ∀v ∈ T(x),

and

〈
H(z, x), x – y

〉 ≤ , ∀y ∈ K ,

further, we have

α(z, x) = sup
v∈T(x)

〈
P(z), z – v

〉 ≤ ,

β(z, x) = sup
y∈K

〈
H(z, x), x – y

〉 ≤ ,
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therefore,

g(z, x) = β(z, x) + α(z, x) ≤ ,

this implies that (z, x) is a solution of the PVI, so (z, x) ∈ S.
The next thing to do in the proof is to show that (x, z) ∈ S ⇒ (x, z) ∈ �. Let (z, x) ∈ S,

then

g(z, x) = β(z, x) + α(z, x) ≤ , ()

from Remark (.) we have

α(z, x) ≥ , ∀z ∈ T(x), ()

β(z, x) ≥ , ∀x ∈ K , ()

from (), (), and (), we have α(z, x) = , β(z, x) = , so (z, x) is the solution of the BVI,
that is, (z, x) ∈ �. �

Corollary . If all conditions of Theorem . are satisfied, then S is nonempty and

(z, x) ∈ � ⇔ (z, x) ∈ S.

5 Algorithm and convergence analysis
In this section, we first present Algorithm  for the BVI () and () from the theoretical
point of view, and then consider the limiting behavior of the sequence generated by the
algorithm. Algorithm  can be used to solve the BVI which has only one solution. In or-
der to solve the BVI which has more than one solution we modify Algorithm  to obtain
Algorithm .

We have transformed the BVI () and () into a single-level variational inequality (PVI)
(), and discussed the relationship between the two problems in the previous section. From
Theorem ., we know that the two problems are equivalent. So we can find the solution
of the BVI () and () by solving the PVI problem (). In Algorithm , we will solve the BVI
()-() by solving a sequence of the approximation problem PVI ().

Algorithm 
Step . Take {μk}k∈Z+ ⊂ (, +∞), where Z+ is the set of all nonnegative integers. Choose

x ∈ K arbitrarily, let m = x, compute z = arg minz∈T(x) g(x, z). Let the tolerance ε ≥ ,
k = . If g(z, x) ≤ ε, stop, put out (z, x). Otherwise, go to Step .

Step . Let K = K\m, take m ∈ K . Compute n = arg minz∈T(m) g(z, m), go to Step .
Step . If

g(n, m) ≤ 
μk

g(zk , xk),

let zk+ = n, xk+ = m go to Step . Otherwise, go to Step .
Step . If

g(zk+, xk+) ≤ ε, ()

stop, put out (zk+, xk+). Otherwise, let k = k +  go to Step .
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Remark . In Step , we discretize K within acceptable error range of the solution. We
take different discrete points m of K in every iterative process. For example, if the error
band of solution is δ, K ∈ R, then in every iterative process, m = m + δ (or m = m – δ). If
with the algorithm we have not found a solution until m has equality to one of the bound-
ary points of K , put the other boundary point in m. Algorithm  is effective for the bilevel
variational inequalities which have only one solution.

Remark . In order to guarantee the existence of a solution for minz∈T(m) g(z, m) in
Step , we need to suppose that ψ and φ are continuous and T is compact-valued and
continuous. Then according to Lemma ., it follows that z �→ α(z, x) and z �→ β(z, x) are
continuous; further, z �→ g(z, x) is continuous. Thus minz∈T(m) g(z, m) has a solution.

To explain the Algorithm , we give the next example.

Example . Let R = (–∞, +∞), K = [–, –], and T(x) = [–, x] for x ∈ K , z, v, y ∈ R.
〈H(z, x), x–y〉 = 〈zxez, x–y〉 = zxez(x–y), 〈P(z), z–v〉 = 〈–(z+)ez, z–v〉 = –(z+)ez(z–v).
The BVI is defined as follows: find x ∈ K such that

zxez(x – y) ≤ , ∀y ∈ K , ()

where z is the solution of the following variational inequality: find z ∈ T(x) = [–, x] such
that

–(z + )ez(z – v) ≤ , ∀v ∈ T(x). ()

By a simple computation we get the lower-level solution set,

M(x) =

⎧
⎨

⎩
{–}, if x ∈ [–, – 

 ),

{–, – 
 }, if x ∈ [– 

 , –].

Observe that M(x) is not a singleton, and (–, –) is the unique solution of the BVI
()-(). By the proposed Algorithm , first we should transform the BVI into a one-level
variational inequality.

The gap function of the lower-level variational inequality is

α(z, x) = sup
v∈[–,x]

–(z + )ez(z – v).

Moreover,

sup
v∈[–,x]

–(z + )ez(z – v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–(z + )ez(z + ), x ∈ [–, – 
 ],⎧

⎨

⎩
–(z + )ez(z + ), z ∈ [–, – 

 ],

–(z + )ez(z – x), z ∈ (– 
 , –],

x ∈ (– 
 , –].

The gap function of upper-level variational inequality is

β(z, x) = sup
y∈[–,–]

zxez(x – y) = zxez(x + ).
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By equality (), we have

g(z, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zxez(x + ) – (z + )ez(z + ), x ∈ [–, – 
 ],⎧

⎨

⎩
zxez(x + ) – (z + )ez(z + ), z ∈ [–, – 

 ],

zxez(x + ) – (z + )ez(z – x), z ∈ (– 
 , –],

x ∈ (– 
 , –].

()

Next, we illustrate the process of solving the BVI ()-() by the proposed Algorithm .
Step . Choose x = – 

 and the tolerance ε = –, μk = μ = .
Step . Verify whether there exists z ∈ T(x) = [–, – 

 ] such that inequality () holds.
From equality () we have

g(z, x) = zxez(x + z) – (z + )ez(z + ).

In order to find z ∈ T(x), we need to solve the following optimization problem:

min
z∈T(x)

g(z, x). ()

Applying the descent direction method to solve (), we conclude that z = –, which is
an optimal solution of (), but

g(z, x) = xez (x + ) – (z + )ez (z + ) =


e > ε.

Go to Step , set K = K\{– 
 }. For simplicity, take m = – ∈ K . In numerical experiments,

we take m by the method of Remark .. Solve the following optimization problem:

arg min
n∈T()

g(n, ). ()

Applying the descent direction method to solve (), we get n = –, and go to Step .
Step . We have

g(n, m) ≤ 


g(z, x).

Let z = n, x = m, go to Step .
Step . As g(z, x) =  ≤ ε, stop, put out (z, x). So (–, –) is the solution of the BVI

()-().

5.1 Convergence analysis
Let us consider the behavior of a sequence {(xk , zk)} generated by the proposed Algo-
rithm .

Theorem . Suppose K is a nonempty compact convex subset of Rn; T : K → Rm is a
continuous, convex, and compact-valued set-valued mapping. Assume that the following
conditions hold:

(i) z �→ ψ(z, ·) is lower-hemicontinuous;
(ii) φ is a continuous function.
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If the solution of the BVI ()-() exists, then the sequence {(xk , xk)} generated by the pro-
posed Algorithm  converges to a solution of the BVI ()-().

Proof According to Algorithm  we have

g(n, m) ≤ 
μk

g(zk , xk).

This shows that

g(zk+, xk+) ≤
k∏

j=


μj

g(z, x). ()

Observe that μk > , then k ↗ +∞,
∏k

i=

μj

↘ . Since T : K → Rm is convex compact-
valued, from condition (i), we know that α(z, x) is finite. Similarly, since K is nonempty
compact convex subset of Rn, from condition (ii), we see that β(z, x) is finite. Further,

g(z, x) = β(z, x) + α(z, x)

is finite. This combined with k ↗ +∞ shows that we have
∏k

j=

μj

g(z, x) ↘ .
Observe that {xk}k∈Z+ ⊆ K is compact. Without loss of generality, let xk → x∗ ∈ K . Ow-

ing to T : K → Rm being convex compact-valued and continuous, there exists z∗ ∈ T(x∗)
such that zk → z∗ and limk→∞ T(xk) = T(x∗). By condition (i), we have

α
(
z∗, x∗) ≤ lim sup

k→+∞
α(zk+, xk+). ()

Similarly, by condition (ii), we have

β
(
z∗, x∗) = lim sup

k→+∞
β(zk+, xk+). ()

From () and ()

g
(
z∗, x∗) = α

(
z∗, x∗) + β

(
z∗, x∗) ≤ lim sup

k→+∞

(
α(zk+, xk+) + β(zk+, xk+)

)

= lim sup
k→+∞

g(zk+, xk+). ()

By equality (), we have

lim sup
k→+∞

g(zk+, xk+) ≤ lim sup
k→+∞

k∏

i=


μj

g(z, x) = , ()

and combining inequality () and () it is easy to see that

g
(
z∗, x∗) = β

(
z∗, x∗) + α

(
z∗, x∗) ≤ ,

that is, (z∗, x∗) ∈ S. According to Theorem ., it follows that (z∗, x∗) ∈ �. So, the sequence
{(zk , xk)} generated by Algorithm  converges to a solution of the BVI. �



Li et al. Fixed Point Theory and Applications  (2016) 2016:41 Page 15 of 21

In order to solve the bilevel variational inequalities which has more than one solution,
we modify Algorithm  to obtain Algorithm .

Algorithm 
Step . Take {μj

k}k∈Z+ ⊂ (, +∞), j ∈ Z+, where Z+ is the set of all nonnegative in-
tegers. Let the tolerance ε ≥ , k = , j = . Choose x

 ∈ K arbitrarily, compute z
 =

arg minz∈T(x
) g(x

, z), such that g(z
, x

) > ε, let K = K\x
. Go to Step .

Step . Take m ∈ K , let K = K\m. Compute n = arg minz∈T(m) g(z, m), go to Step .
Step . If

g(n, m) ≤ 
μ

j
k

g
(
zj

k , xj
k
)
,

let zj
k+ = n, xj

k+ = m, go to Step . Otherwise, go to Step .
Step . If

g
(
zj

k+, xj
k+

) ≤ ε,

put out (zj
k+, xj

k+), j = j + , choose xj
 ∈ K , compute zj

 = arg minz∈T(xj
) g(xj

, z) such

that g(zj
, xj

) > ε (automatically initialize xj
 and zj

 again), take {μj
k}k∈Z+ ⊂ (, +∞), let

K = K\xj
, go to Step . Otherwise, let k = k + , go to Step .

Step . If K = ∅, stop. Otherwise, go to Step .

Remark . In Step  we discretize K within an acceptable error range of solution. m takes
different discrete points m of K in every iterative process. It is not hard to see that the
major part of Algorithm  is similar to Algorithm . If we use Algorithm  to solve the
BVI which has more than one solution, Algorithm  will stop when we get one solution. In
order to get all the solutions, we should choose another initial point again, and reiterate
the process of Algorithm . So, Step  in Algorithm  is important. m needs to take all the
discrete points of K . Since we discretize K within an acceptable error range of solution,
the stopping criterion K = ∅ is reasonable.

Theorem . Suppose all the conditions of Theorem . are satisfied. If the BVI ()-() has
n solutions, then, for all j ∈ [, n] the sequence {(xj

k , xj
k)} generated by the proposed Algo-

rithm  converges to one solution of the BVI ()-(). Further, Algorithm  can be used to find
all the solution of the BVI ()-().

Proof The proof of Theorem . is similar to the proof of Theorem ., so it is omitted
here. �

6 Numerical illustrative examples
Next, we will given two numerical examples of the proposed Algorithm .

Example . Let R = (–∞, +∞), K = [, ] and T(x) = [, x] for x ∈ K , z, v, y ∈ R,
〈H(z, x), x – y〉 = 〈zx, x – y〉 = zx(x – y), 〈P(z), z – v〉 = 〈z, z – v〉 = z(z – v). The BVI is de-
fined as follows: find x ∈ K such that

zx(x – y) ≤ , ∀y ∈ K , ()
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where z is the solution of the following variational inequality: find z ∈ T(x) = [, x] such
that

z(z – v) ≤ , ∀v ∈ T(x). ()

It is easy to see that the lower-level solution set is M(x) = {}, ∀x ∈ K , and (, ) is the
unique solution of the BVI ()-().

The gap function of the lower level variational inequality is

α(z, x) = sup
v∈[,x]

z(z – v) = z(z – ).

The gap function of the upper-level variational inequality is

β(z, x) = sup
y∈[,]

xz(x – y) = xz(x – ).

Further,

g(z, x) = β(z, x) + α(z, x) = xz(x – ) + z(z – ).

Example . Let R = (–∞, +∞), K = [., ], and T(x) = [., x] for x ∈ K , z, v, y ∈ R,
〈H(z, x), x – y〉 = 〈–zx, x – y〉 = –zx(x – y), 〈P(z), z – v〉 = 〈z, z – v〉 = z(z – v). The BVI
is defined as follows: find x ∈ K such that

–zx(x – y) ≤ , ∀y ∈ K , ()

where z is the solution of the following variational inequality: find z ∈ T(x) = [., x] such
that

z(z – v) ≤ , ∀v ∈ T(x). ()

It is easy to see that the rational reaction set is M(x) = {.}, ∀x ∈ K , and (., ) is the
unique solution of the BVI ()-().

The gap function of the lower level variational inequality is

α(z, x) = sup
v∈[.,x]

z(z – v) = z(z – .).

The gap function of the upper-level variational inequality is

β(z, x) = sup
y∈[.,]

–xz(x – y) = –xz(x – ).

Further,

g(z, x) = β(z, x) + α(z, x) = –xz(x – ) + z(z – .).
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Table 1 Computational results using the proposed Algorithm 1

Example x0 μ ε (z, x) g(z, x) times

6.1 1.3 1.1 0.001 (1.000, 1.000) 0.0001 0.714 s
6.2 3.5 1.1 0.001 (0.500, 5.007) 0.0006 0.752 s

Using the proposed Algorithm , we obtain the results for solving Example . and Ex-
ample .. In Table , the fifth column denotes the solutions of the BVI ()-() and the
BVI ()-(); the sixth column denotes the value of g(z, x), which corresponds to equality
to the BVI; the third column denotes the value of μk , here we let μk be a fixed value μ; the
last column denotes the operation time. From the numerical results, we observe that the
proposed algorithm can solve the BVI well.

Next, we will given two numerical examples for the proposed Algorithm .

Example . Let R = (–∞, +∞), K = [, ], and T(x) = [,  + x] for x ∈ K , z, v, y ∈ R,
〈H(z, x), x – y〉 = 〈z(z – .)x, x – y〉 = z(z – .)x(x – y), 〈P(z), z – v〉 = 〈z(z – .), z – v〉 =
z(z – .)(z – v). The BVI is defined as follows: find x ∈ K such that

z(z – .)x(x – y) ≤ , ∀y ∈ K , ()

where z is the solution of the following variational inequality: find z ∈ T(x) = [,  + x] such
that

z(z – .)(z – v) ≤ , ∀v ∈ T(x). ()

It is easy to see that the lower-level solution set is M(x) = {, .}, ∀x ∈ K . M(x) is not a
singleton, and {(, ), (., )} is the solution set of the BVI ()-().

The gap function of the lower level variational inequality is

α(z, x) = sup
v∈[,+x]

z(z – .)(z – v) = z(z – .)(z – ).

The gap function of the upper-level variational inequality is

β(z, x) = sup
y∈[,]

z(z – .)x(x – y).

Moreover,

sup
y∈[,]

z(z – .)x(x – y) =

⎧
⎨

⎩
xz(z – .)(x – ), z ≤ .,

xz(z – .)(x – ), z > ..

Further,

g(z, x) = β(z, x) + α(z, x) =

⎧
⎨

⎩
xz(z – .)(x – ) + z(z – .)(z – ), z ≤ .,

xz(z – .)(x – ) + z(z – .)(z – , ), z > ..
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Example . Let R = (–∞, +∞), K = [, ], and T(x) = [,  + x] for x ∈ K , z, v, y ∈ R,
〈H(z, x), x – y〉 = 〈(z – .)x, x – y〉 = (z – .)x(x – y), 〈P(z), z – v〉 = 〈z(z – ), z – v〉 = z(z –
)(z – v). The BVI is defined as follows: find x ∈ K such that

(z – .)x(x – y) ≤ , ∀y ∈ K , ()

where z is the solution of the following variational inequality: find z ∈ T(x) = [,  + x]
such that

z(z – )(z – v) ≤ , ∀v ∈ T(x). ()

It is easy to see that the lower-level solution set is M(x) = {, }, ∀x ∈ K . M(x) is not a
singleton, and {(, ), (, )} is the solution set of the BVI ()-().

The gap function of the lower level variational inequality is

α(z, x) = sup
v∈[,+x]

z(z – )(z – v) = z(z – )(z – ).

The gap function of the upper-level variational inequality is

β(z, x) = sup
y∈[,]

(z – .)x(x – y).

Moreover,

sup
y∈[,]

(z – .)x(x – y) =

⎧
⎨

⎩
(z – .)x(x – ), z ≤ .,

(z – .)x(x – ), z > ..

Further,

g(z, x) = β(z, x) + α(z, x) =

⎧
⎨

⎩
(z – .)x(x – ) + z(z – )(z – ), z ≤ .,

(z – .)x(x – ) + z(z – )(z – ), z > ..

Example . Let R = (–∞, +∞), K = [, ] × [, ], and T(x) = [,  + x] for x ∈ K , z, v, y ∈
R, 〈H(z, x), x – y〉 = ((. – z)x, )(x – y, x – y)�, 〈P(z), z – v〉 = (z – .)(z – v). The BVI
is defined as follows: find x ∈ K such that

(
(. – z)x, 

)
(x – y, x – y)� ≤ , ∀y ∈ K , ()

where z is the solution of the following variational inequality: find z ∈ T(x) = [,  + x]
such that

(z – .)(z – v) ≤ , ∀v ∈ T(x). ()

It is easy to see that the lower-level solution set is M(x) = {, .}, ∀x ∈ K . M(x) is not a
singleton, and {((, ), .), ((, ), )} is the solution set of the BVI ()-().
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Table 2 Computational results using the proposed Algorithm 2

Example xj
0 μj (z, x) g(z, x) times

6.3 1.9 1.1 (1.498, 1.002) 0.0008 2.674 s
1.91 1.1 (1.000, 1.998) 0.0009

6.4 1.6 1.1 (1.997, 1.002) 0.0010 7.618 s
1.61 1.1 (1.000, 4.000) 0.0000

6.5 (2, 2) 1.1 (1.402, (2, 1.001)) 0.008 75.260 s
(2, 0.99) 1.1 (1.005, (1, 1.001)) 0.008

Table 3 Compare Algorithm 1 with Algorithm 2 when solve Example 6.1, respectively

method x0 μ ε (z, x) g(z, x) times

Algorithm 1 1.3 1.1 0.001 (1.000, 1.000) 0.0001 0.714 s
Algorithm 2 1.3 1.1 0.001 (1.000, 1.000) 0.0001 2.556 s

The gap function of the lower level variational inequality is

α(z, x) = sup
v∈[,+x]

(z – .)(z – v) = (z – .)(z – ).

The gap function of the upper-level variational inequality is

β(z, x) = sup
y∈[,]×[,]

(
(. – z)x, 

)
(x – y, x – y)�

= (. – z)x(x – y) + (x – y).

Moreover,

sup
y∈[,]×[,]

(. – z)x(x – y) + (x – y) =

⎧
⎨

⎩
(. – z)x(x – ) + (x – ), z ≤ .,

(. – z)x(x – ) + (x – ), z > ..

Let ε = ., use the proposed Algorithm , we obtain the results for solving Example .,
Example ., and Example .. In Table , the fourth column denotes the solutions of the
BVI ()-(), the BVI ()-(), and the BVI ()-(); the fifth column denotes the value
of g(z, x) which is equivalent to the BVI; the second column denotes the initial value of xj

.
From this column we can see that, in order to get the approximate solution of Example .,
Algorithm  only needs to initialize x two times, that is, x

 = ., x
 = .; the third

column denotes the value of μ
j
k , here we let μ

j
k = μj be a fixed value .; the last column

denotes the operation time. From the numerical results, we observe that the proposed
Algorithm  can get all solutions of the BVI.

Next, we solve the BVI ()-() which has only one solution in Example . with the
two proposed algorithms, respectively; see the results detailed in Table .

In Table , we can see that the two algorithms can solve the BVI ()-() well. The last
column denotes the operation time. Obviously, Algorithm  is faster than Algorithm .
Because the two algorithms have different termination conditions, if the BVI has only one
solution, we should solve it by Algorithm .
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7 Conclusions
In this paper, we have investigated a class of bilevel variational inequalities (BVIs) with
hierarchical nesting structure, which was introduced in [] first. In the case that the so-
lution set M(x) of the lower-level variational inequality is not a singleton, we call it Ill-
posed bilevel variational inequality. We first obtained the existence theorem of a solution
for ill-posed bilevel variational inequalities by the Himmelberg fixed point theorem. Then
the uniqueness of a solution for the upper-level variational inequality in regard to every
feedback parameter is given under some mild condition. We transform the BVI into a one-
level variational inequality by gap functions of the upper-level and lower-level function,
and we proved their equivalence. Two algorithms to find the solutions of the BVI were
constructed. Finally, we have proved the convergence of the iterative sequence generated
by the proposed algorithm under some mild conditions. We said that the two algorithms
can also be used to solve well-posed bilevel variational inequalities. Furthermore, we can
see that for the two algorithms M(x) does not need to be compact or convex. In the future,
we will consider the following questions. We know that one of the conditions for a solution
to exist is that M(x) is a convex set. In the future we will consider the solution existence
conditions in the case that M(x) is not a convex set. Since the BVI is a very complicated
model, it is quite difficulty to design an algorithm that is efficient for all examples. From
the numerical examples, we can see that the two algorithms are efficient in R. In the future,
we will design algorithms that are more efficient in Rd for d > .
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