
Radu and Tanase Fixed Point Theory and Applications  (2016) 2016:43 
DOI 10.1186/s13663-016-0528-1

R E S E A R C H Open Access

A new proof of a theorem of Hubbard and
Oberste-Vorth
Remus Radu* and Raluca Tanase

*Correspondence:
rradu@math.stonybrook.edu
Institute for Mathematical Sciences,
Stony Brook University, Stony Brook,
NY 11794-3660, USA

Abstract
We give a new proof of a theorem of Hubbard and Oberste-Vorth (Real and Complex
Dynamical Systems, pp. 89-132, 1995) for Hénon maps that are perturbations of a
hyperbolic polynomial and obtain the Julia set J+ inside a polydisk as the image of the
fixed point of a contracting operator. We also give different characterizations of the
Julia sets J and J+ which prove useful for later applications.
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1 Introduction
Fixed point theorems have found a lot of applications in dynamical systems in higher di-
mensions. They are used for proving the existence of the stable and unstable manifolds of
a hyperbolic fixed point, or the existence of local foliations in the presence of a dominated
splitting of the tangent bundle over an invariant set of a Ck self-map of a Riemannian
manifold. In this article we give a description of the global structure of the Julia sets J
and J+ of a dissipative hyperbolic Hénon map in C

 as the unique fixed point of a con-
tracting operator in an appropriate function space. This provides an alternative proof of
a well-known theorem of Hubbard and Oberste-Vorth [], which was one of the starting
points (along with [, ] and the works of Friedland and Milnor [], Bedford and Smillie
[–], Fornæss and Sibony [], etc.) of more than two decades of research in dynamics
in several complex variables. The proof that we give strengthens slightly the result of the
theorem, and some of the tools developed here have found further applications to the
study of Hénon maps with a semi-parabolic fixed point or cycle [] and their perturba-
tions [].

A complex Hénon map Hp,a : C → C
 is defined by Hp,a(x, y) = (p(x) + ay, ax), where p

is a monic polynomial of degree d ≥ . In this normalization the Hénon map has constant
Jacobian equal to –a, but any other representation would work. The Hénon map is a
biholomorphism whenever a �=  with inverse H–

p,a(x, y) = (y, x – p(y/a))/a. From the point
of view of dynamics, the interesting objects to study are the sets of points with bounded
forward and, respectively, backward orbits under the iterations of the Hénon map. Define
the invariant subsets as in [, ] and []:

K± =
{

(x, y) ∈C
 :

∥∥H◦n
p,a(x, y)

∥∥ remains bounded as n → ±∞}
,
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as well as K = K– ∩K+. Then let J± = ∂K± be the topological boundaries and let J = J– ∩ J+.
The sets J and J± are called the Julia sets of the Hénon map. Define the escaping sets
U± = C

 – K±. In this paper we will consider only dissipative maps Hp,a (that is, |a| < ). In
this situation, it is known that K– has no interior and so K– = J– [, ]. Understanding J±

on the other hand is a non-trivial task. If the Hénon map is hyperbolic and dissipative then
the interior of K+ consists of the basins of attraction of finitely many attractive periodic
points []. Each basin of attraction is a Fatou-Bieberbach domain (a proper subset of C,
biholomorphic to C

). The common boundary of the basins is the set J+.
Hubbard and Oberste-Vorth [] studied the structure of the Julia sets J , J+, and J– for

Hénon maps which are small perturbations of a hyperbolic polynomial p. Polynomials and
Hénon maps have some fundamental differences: polynomials are not injective whereas
Hénon maps are, polynomials and their rate of escape functions have finitely many crit-
ical points, on the other hand Hénon maps do not have any critical points in the usual
sense, but their associated rate of escape functions have infinitely many critical points.
Starting from the polynomial p, Hubbard and Oberste-Vorth created some objects that
carry bijective dynamics (projective and inductive limits), and used those to describe the
dynamics of the Hénon map on its Julia sets (see Theorem . in []). Their proof relies on
telescopes for hyperbolic polynomials and crossed mappings. We will give a new proof of
the theorem for the sets J and J+ in the language of a fixed point theorem. We will recover
the set J+ inside the bidisk Dr ×Dr as the image of the unique fixed point of a contracting
graph-transform operator in some function spaceF , which we define in Section . We will
complete the proof of the theorem in Section , when we establish conjugacies between
the Hénon map and certain model maps. We also obtain other new characterizations of
the Julia sets J and J+. The construction resembles the proof of the Hadamard-Perron the-
orem (see e.g. []). This approach has the advantage that it can be generalized to complex
Hénon maps with a semi-parabolic fixed point [], but the analysis in that case is much
more complex (due to the loss of hyperbolicity) and requires several delicate arguments.

2 Tools from one-dimensional dynamics
For a polynomial p of degree d ≥ , the filled Julia set of p is the set of points with bounded
forward orbit

Kp =
{

z ∈C :
∣∣p◦n(z)

∣∣ bounded as n → ∞}
.

The set Jp = ∂Kp is the Julia set of p. As usual, p◦n = p ◦ p ◦ · · · ◦ p denotes the nth iterate
of p. If Kp is connected (or equivalently Jp is connected) then there exists a unique analytic
isomorphism

ψp : C – D →C – Kp

such that ψp(z) = p(ψp(z)) and normalized so that ψp(z)/z →  as z → ∞. Furthermore,
if Jp is locally connected then the Riemann mapping ψp extends to the boundary S

 and
defines a continuous, surjective map γ : S → Jp. The boundary map γ is called the
Carathéodory loop. We refer to [] and [] for more details.

An external ray Rt is the image under the Riemann mapping ψp of the straight line
{reπ it , r > }. The Carathéodory loop is defined as γ (t) = limr↘ ψp(reπ it) and we say that
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the ray Rt lands at a point γ (t) ∈ Jp if this limit exists. The external ray R lands at the
β-fixed point of p. An equipotential for the polynomial p is the image under the Riemann
mapping ψp of the circle {reπ it , t ∈ R/Z} of radius r > .

A point x is called a critical point of p if p′(x) = , in which case c = p(x) is called a critical
value. We say that p is hyperbolic if p′ is expanding on a neighborhood of the Julia set.

Throughout this paper we assume that p is hyperbolic and has connected Julia set. In
this case, the filled Julia set Kp is connected and locally connected, and none of the critical
points of p belong to the Julia set Jp []. Moreover, all critical points of p are attracted
to attracting cycles, and the number of attracting cycles is bounded above by d – , by
the Fatou-Shishikura inequality. For each attracting cycle, we consider the union Vi of
sufficiently small disks centered around the points of the cycle, such that Vi is contained
in the immediate basin of attraction and p(Vi) is relatively compact in Vi. Set � =

⋃k
i= Vi,

where k is the number of attracting cycles. There exists a minimal iterate n ≥  such that
p–◦n(�) contains all critical values of p. So p–◦(n+)(�) belongs to the interior of the filled
Julia set Kp and contains all critical points of p.

Consider the set

U := C – p–◦n(�) –
{

z ∈C – Kp :
∣∣ψ–

p (z)
∣∣ ≥ R

}
()

for some large R > .
The set U ′ := p–(U) ⊂ U is relatively compact in U , and p : U ′ → U is a degree d cov-

ering map. Let μ be the Poincaré metric on U . The polynomial p : U ′ → U is strongly
expanding with respect to the metric μ. The construction of the sets U and U ′ is the same
as in [] and []. See Figure .

Choose R as in equation () and define the sequence of functions (equipotentials of the
polynomial p) γn : R/Z →C as follows:

γn+(t) = p–(γn(dt)
)

:= ψp
(
R/dn+

eπ it). ()

With this notation, γ–(R/Z) ⊂ ∂U and γ(R/Z) ⊂ ∂U ′.
Since the Julia set Jp is locally connected, the sequence of equipotentials γn converges in

the Poincaré metric of the set U to the Carathéodory loop γ of the polynomial p.
Let ρU be the density function of the Poincaré metric on U , μ(z, dz) = ρU (z)|dz|. The map

ρU is positive and C∞-smooth on U ′. Since U ′ is compactly contained in U , the Poincaré
metric of U is bounded below and above by the Euclidean metric on U ′. If we denote
m = infz∈U ′ ρU (z) and M = supz∈U ′ ρU (z) then

m
∣∣x – x′∣∣ ≤ dU

(
x, x′) ≤ M

∣∣x – x′∣∣ ()

Figure 1 A neighborhood U of the Julia set of
p(z) = z2 – 1. The attracting cycle is {–1, 0} and � is
a union of two small disks centered around the
points of this cycle. The set U (dark gray) is the
complement of � inside an equipotential of p,
while U′ = p–1(U) (light gray).
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for all x, x′ ∈ U ′. Consider now the constant C := (supU ′ |ρ ′
U (z)|)/(infU ′ ρU (z)). The follow-

ing lemmas will be useful later on.

Lemma . Let z be a point in U ′ and let δ be small enough so that z – δ is also a point
in U ′. Then |ρU (z) – ρU (z – δ)| ≤ |δ|CρU (z).

The proof of the lemma is immediate and is left to the reader.

Lemma . Let z and z be any two points in U ′, and let δ be small enough so that z – δ

and z – δ are still in U ′. Then dU (z – δ, z – δ) ≤ ( + |δ|C)dU (z, z).

Proof Let η be a curve connecting z and z, for which �(η) = dU (z, z). Then, if we trans-
late η by δ, we get a curve (not necessarily length minimizing) connecting z – δ to z – δ.
For small δ, we can assume that the new curve η – δ is still contained in U ′. Its length is
given by

�(η – δ) =
∫

η–δ

ρU (z)|dz| =
∫

η

ρU (z – δ)|dz|.

Using Lemma . we find that

∫

η

ρU (z – δ)|dz| ≤
∫

η

∣∣ρU (z – δ) – ρU (z)
∣∣|dz| +

∫

η

ρU (z)|dz|

≤
∫

η

|δ|CρU (z)|dz| +
∫

η

ρU (z)|dz| =
(
 + |δ|C)

�(η).

This shows that dU (z – δ, z – δ) ≤ �(η – δ) ≤ ( + |δ|C)�(η) = ( + |δ|C)dU (z, z). �

3 Construction of the neighborhood V
Throughout this paper we will interchangeably use H and Hp,a to denote the Hénon map.

By [], for r sufficiently large, the space C
 can be divided into three regions according

to the dynamics of the Hénon map: Dr ×Dr = {(x, y) ∈C
 : |x| ≤ r, |y| ≤ r},

W + =
{

(x, y) : |x| ≥ max
(|y|, r

)}
and W – =

{
(x, y) : |y| ≥ max

(|x|, r
)}

.

The sets J and K are contained in the polydisk Dr ×Dr . The escaping sets U+ and U– can
be described as union of backward iterates of W + and, respectively, forward iterates of
W – under the Hénon map: U+ =

⋃
k≥ H–◦k(W +) and U– =

⋃
k≥ H◦k(W –).

Let U ′ be the neighborhood of Jp previously constructed. Set V := U ′ × Dr for some
r > , chosen so that:

(i) H(V ) does not intersect the horizontal boundary of V , that is, |ax| < r for any
x ∈ U ′.

(ii) J ⊂ V . One can choose for instance r >  so that J ⊂Dr ×Dr as above. Notice that
J ∩Dr ×Dr = J ∩ V , by construction.

(iii) All points in H(V ) – Dr ×Dr belong to the escaping set U+. One can choose R
sufficiently large in equation () so that the circle ∂Dr is contained in the set U ′. By
part (i), any point in V that does not remain in Dr ×Dr under forward iteration of
H belongs to the set W +, which is contained in U+.
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Figure 2 A neighborhood V = U′ ×Dr of
J+ ∩ {|y| < r}. The Hénon map Hp,a is a small
perturbation of the polynomial p(z) = z2 – 1.

Furthermore, suppose |a| is small enough so that:
() r|a| < infx∈U ′ |p′(x)|.
() r|a| < dist(∂U ′, ∂U). In other words, the r|a|-neighborhood of U ′ is compactly

contained in U .
The set V is a neighborhood of the Julia set J+ restricted to C×Dr . See Figure .

Lemma . Let (x, y) ∈ V and (x′, y′) = H–(x, y). If |y′| < r then (x′, y′) ∈ V .

Proof The point (x′, y′) belongs to V iff x′ = y/a ∈ U ′ and |y′| = |(x – p(y/a))/a| < r. By
hypothesis we have |x – p(y/a)| < r|a|. The point x belongs to U ′ and |a| is chosen small
enough so that the disk of radius r|a| around x is in U . It follows that p(x′) ∈ U , hence
x′ ∈ U ′. Therefore (x′, y′) belongs to V . �

Proposition . Let (x, y), (x′, y′) be two points in V with H(x, y) = (x′, y′) and (ξ ,η) and
(ξ ′,η′) two tangent vectors such that DH(x,y)(ξ ,η) = (ξ ′,η′).

(a) If |ξ ′| < |η′| then |ξ | < |η|.
(b) If |ξ | > |η| then |ξ ′| > |η′|.

Proof A direct computation gives ξ ′ = p′(x)ξ + aη and η′ = aξ .
(a) If |ξ ′| < |η′| then |p′(x)||ξ | – |a||η| < |ξ ′| < |η′| = |a||ξ |, so |ξ |(|p′(x)| – |a|) < |a||η|.

The point (x, y) belongs to V , so x is bounded away from the critical points of p, in
fact we have |p′(x)| > r|a| where r > . Thus we get |ξ | < |η|.

(b) If |ξ | > |η| then |ξ ′| > |p′(x)|ξ | – |a||η| > (|p′(x)| – |a|)|ξ | > |a||ξ | = |η′|. �

We define two invariant families of cones Ch
(x,y) and Cv

(x,y) in the tangent bundle of V ,

Ch
(x,y) =

{
(ξ ,η) ∈ T(x,y)V :

∣∣(x, ξ )
∣∣
U >

∣∣(y,η)
∣∣
Dr

and |ξ | > |η|},

Cv
(x,y) =

{
(ξ ,η) ∈ T(x,y)V :

∣
∣(x, ξ )

∣
∣
U <

∣
∣(y,η)

∣
∣
Dr

and |ξ | < |η|},

where the lengths are measured with respect to the Poincaré metric on U and Dr , and
with respect to the Euclidean metric. The cone invariance with respect to the Euclidean
metric is shown in Proposition ., whereas the invariance with respect to the Poincaré
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metrics has already been proven in []. We only use it to study vertical-like curves, so we
will prove the part that we need at the end of Lemma ..

Definition . Let β = {(f (z), z), z ∈ Dr} ⊂ V be the graph of a holomorphic function
f : Dr → U ′. We say that β is a vertical-like disk if for all points (x, y) on β , the tangent
vectors to β at (x, y) belong to the vertical cone Cv

(x,y).

Lemma . If β is a vertical-like curve in V then H–(β) ∩ V is the union of d vertical-like
curves.

Proof By Lemma ., H–(β) ∩ V = H–(β) ∩ C × Dr . Since the curve β is vertical-like,
it is the graph of a holomorphic function f : Dr → U ′, hence β = {(f (z), z), z ∈ Dr}. The
function f contracts Poincaré length and |f ′(z)| < . Then

H–(β) =
{

H–(f (z), z
)

=
(
z, f (z) – p(z/a)

)
/a, z ∈Dr

}

is an analytic curve whose horizontal foldings do not belong to the strip C×Dr . Suppose
there is a folding inside C × Dr . Then, by Lemma ., the folding point is actually inside
V , hence its projection on the first coordinate z/a belongs to U ′ so it is bounded away
from the critical points of p (and the bound is independent of a). It follows that p′(z/a)
is bounded away from , so p′(z/a)

a gets arbitrarily large when |a| is small enough whereas
f ′(z) remains bounded, hence f ′(z) – p′(z/a)

a =  cannot have solutions inside Dr .
Therefore the degree of the projection of H–(β) on the second coordinate is constant

in C × Dr . It is easy to see that the degree of the projections is equal to the degree of
the polynomial p, by looking at the number of intersections of H–(β) with the x-axis. The
curve H(x-axis) = {(p(x), ax), x ∈C} has d connected components inside V , all horizontal-
like. The curve β is a vertical-like disk in V , hence β intersects H(x-axis) in exactly d
points, which implies that H–(β) intersects the x-axis in d points.

Thus H–(β) ∩ C × Dr is a union of d analytic curves βi, i = , , . . . , d – , which are all
contained in V , by Lemma .. The map pr : βi → Dr , pr(x, y) = y is a covering map of
degree one. By the Inverse Function Theorem, βi is the graph of a holomorphic function
x = φ(y) where φ : Dr → U ′. The map φ must also be injective, because pr : βi → U ′,
pr(x, y) = x is injective. By the Schwarz-Pick lemma, φ : Dr → U ′ is weakly contracting
in the Poincaré metrics of Dr and U ′, hence strongly contracting if we endow U ′ with the
Poincaré metric of U . By Lemma . we have |φ′(z)| <  for z ∈ Dr . It follows that βi is
vertical-like. �

4 A fixed point theorem
Consider the space of functions:

F =
{

f : S ×Dr → V : f (t, z) =
(
ϕt(z), z

)
, where f (t ×Dr) is vertical-like,

ϕt is analytic in z and continuous in t
}

.

We use the Kobayashi metric on V , which is simply the product of the Poincaré metric of
U and the Poincaré metric of the vertical disk Dr . On the function space F we consider
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the induced metric

d(f , g) = sup
t∈S

sup
z∈Dr

d
(
pr

(
f (t, z)

)
, pr

(
g(t, z)

))
.

The function space F is complete in the d-metric defined above.
Let γ be the equipotential of the polynomial p (see equation ()) that defines the outer

boundary of the set U ′.

Definition . We denote by f : S × Dr → V the map f(t, z) = (γ(t), z). The image of
the map f is a solid torus which represents the outer boundary of the set V .

For any fixed t ∈ S
, f(dt × Dr) is a vertical disk in V , so H– ◦ f(dt × Dr) ∩ V is

a union of d vertical-like disks, by Lemma .. Let Ct be the connected component of
H– ◦ f(dt × Dr) ∩ V that crosses the x-axis at (γ(t), ). Recall that γ is the equipoten-
tial of the polynomial p given by γ(t) = p–(γ(dt)), where the choice of the appropriate
inverse branch of p is made as in equation (). Notice that pr : Ct → Dr , pr(x, z) = z is a
degree one covering map, hence Ct is the graph of a holomorphic function x = ϕ

t (z). This
enables us to define a new function f : S × Dr → V as f(t, z) = (ϕ

t (z), z). Notice that f

is homotopic to f by construction since γ and γ are homotopic. Moreover, since |a| is
small, f(S × Dr) and f(S × Dr) are disjoint. Let δ̃ = d(f, f) > . Notice that when |a| is
small δ̃ is essentially the distance between ∂U ′ and ∂U ′′, where U ′′ = p–(U ′) � U ′.

Let now R : [, ] × Dr → V , R(, z) = f(, z), R(, z) = f(, z) be a homotopy of
vertical-like disks connecting f( × Dr) to f( × Dr), such that R(s, ) is a point on
the external ray of angle  of the polynomial p which connects γ() to γ(). As before,
H–(Im(R))∩V has d connected components. Denote by R the component that contains
f( ×Dr); R is a collection of vertical-like disks that can be parametrized as graphs over
the second coordinate, R(s, z) = (φ

s (z), z) for all s ∈ [, ]. Inductively, we can construct
a sequence of (approximative) external ray segments Rn(s, z) = (φn

s (z), z) by choosing the
component of H–(Im(Rn–)) ∩ V that has the appropriate ‘matching end’, i.e. for which
φn

(z) = φn–
 (z). The set R =

⋃
n≥ Rn will be our approximation for the external -D ray of

angle  for the Hénon map inside the set V .

Definition . Consider now the subspace of functions F ′ ⊂F ,

F ′ =
{

fn : S ×Dr → V : f(t, z) =
(
γ(t), z

)
, fn(t, z) = F ◦ fn–(t, z) for n ≥ 

}
,

where the graph transform F : F ′ →F ′ is defined as

F(f ) = f̃ ,

where f̃ and f are homotopic and f̃ |t×Dr is the reparametrization f̃ (t, z) = (ϕ̃t(z), z) of the
appropriate component of one of the d vertical-like disk components of

H–(f (dt ×Dr)
) ∩ V

as a graph of a function over the second coordinate, via the inverse function theorem.
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Proposition . The map F : F ′ →F ′ is well defined.

Proof Choose any function fn ∈ F ′, n ≥ . The image of the map fn is a solid torus T

contained in the set V . The set

T =
{

t ∈ S
, H–(fn(dt ×Dr)

) ∩ V
}

is also a solid torus in V , which is mapped by the Hénon map to a solid torus wrapped
around d times inside T. In the t-coordinate, the Hénon map behaves like angle multi-
plication by a factor of d, while in the z coordinate it acts like a strong contraction. For
each angle t ∈ S

, the set β = fn(dt ×Dr) is a vertical-like disk in V . By Lemma ., the set
L = H–(fn(dt × Dr)) ∩ V consists of d vertical-like disks that we can label as t + i/d, for
i = , , . . . , d – , and then parametrize as in Lemma . as graphs over the second coordi-
nate (ϕn+

t+i/d(z), z). A choice of labelings that makes the map continuous with respect to t is
unique once we decide what the -angle is for the new map. So we will call fn+(×Dr) the
unique component of H–(fn( × Dr)) ∩ V that belongs to the ‘external ray’ R. Then the
map fn+ = F ◦ fn is simply defined as fn+(t, z) = (ϕn+

t (z), z) and is continuous with respect
to t and analytic with respect to z. �

Theorem . The map F : F ′ → F ′ is a contraction in the metric defined on F and has
an unique fixed point f ∗.

Proof Consider any two functions fn, fk ∈ F ′. We show that there exists a constant K < 
such that, for any t ∈ S

:

sup
z∈Dr

dU
(
pr

(
F ◦ fn(t, z)

)
, pr

(
F ◦ fk(t, z)

)) ≤K sup
z∈Dr

dU
(
pr

(
fn(dt, z)

)
, pr

(
fk(dt, z)

))
.

Recall that fn(dt ×Dr), fk(dt ×Dr), F ◦ fn(t ×Dr), and F ◦ fk(t ×Dr) are vertical-like com-
plex disks in V = U ′ ×Dr , parametrized by the second coordinate, so there exist conformal
maps ψi,ϕi : Dr → U ′, for i ∈ {n, k}, such that fi(dt, z) = (ψi(z), z) and F ◦ fi(t, z) = (ϕi(z), z).
See Figure .

Let z be any point in Dr . Set x = ϕn(z), x′ = ϕk(z), and δ = az. Assume without loss of
generality that |δ| < δ̃. With these notations we find that

Hp,a(x, z) =
(
p(x) + δ, ax

)
=

(
ψn(ax), ax

)
,

Hp,a
(
x′, z

)
=

(
p
(
x′) + δ, ax′) =

(
ψk

(
ax′), ax′).

Figure 3 Complex fibers F ◦ fn and F ◦ fk and
their images under Hp,a .
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The points x, x′, p(x) + δ, and p(x′) + δ all belong to U ′. Since n, k ≥  and |δ| < δ̃, the
points p(x) and p(x′) also belong to U ′. The polynomial p : U ′ → U is strongly expanding
with respect to the Poincaré metric of U , i.e. there exists a constant ε <  (which depends
only on the distance between ∂U and ∂U ′) such that

dU
(
x, x′) ≤ εdU

(
p(x), p

(
x′)).

By Lemma ., for small δ, the following inequality holds:

dU
(
p(x), p

(
x′)) ≤ (

 + |δ|C)
dU

(
p(x) + δ, p

(
x′) + δ

)
.

Thus we get

dU
(
x, x′) ≤ ε

(
 + |δ|C)

dU
(
p(x) + δ, p

(
x′) + δ

)
. ()

We now link the right-hand side of equation () with the distance between fn(dt × Dr)
and fk(dt ×Dr). Notice that both fibers are vertical-like holomorphic disks, so the vertical
distance between any two points of the fiber is bigger than their horizontal distance. By
the Schwarz-Pick lemma, the holomorphic map ψn : Dr → U ′ is weakly contracting in
the Poincaré metrics of Dr and U ′, hence strongly contracting if we endow U ′ with the
Poincaré metric of U . It follows that

dU
(
p(x) + δ, p

(
x′) + δ

) ≤ sup
z∈Dr

dU
(
fn(dt, z), fk(dt, z)

)
+ dU

(
ψn(ax),ψn

(
ax′))

≤ sup
z∈Dr

dU
(
fn(dt, z), fk(dt, z)

)
+ dDr

(
ax, ax′). ()

The set Hp,a(V ) does not intersect the vertical boundary of V , so ax and ax′ belong to
some disk W compactly contained in Dr . There exist constants mr and Mr such that

mr
∣∣ax – ax′∣∣ ≤ dDr

(
ax, ax′) ≤ Mr

∣∣ax – ax′∣∣.

Following equation (), a similar comparison holds if we put on the set U ′ the Poincaré
metric of U . Since x, x′ ∈ U ′ we get

m
∣∣x – x′∣∣ ≤ dU

(
x, x′) ≤ M

∣∣x – x′∣∣.

Combining these two observations together with estimates () and () we find that

dU
(
x, x′) ≤ ε

(
 + |δ|C)(

sup
z∈Dr

dU
(
fn(dt, z), fk(dt, z)

)
+ |a|Mr

m
dU

(
x, x′)

)
,

which yields

dU
(
x, x′) ≤K sup

z∈Dr
dU

(
fn(dt, z), fk(dt, z)

)
,
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where

K :=
ε( + |δ|C)

 – ε|a|( + |δ|C) Mr
m

.

The constants ε, C, m, and Mr are independent of a. The factor δ is small enough such
that |δ| < |a|r. Since ε– > , there exists a >  so that  + |a|( + rC) + |a|rC Mr

m < ε–.
Hence K <  for all a with |a| < a. It follows that

sup
z∈Dr

dU
(
F ◦ fn(t, z), F ◦ fk(t, z)

) ≤K sup
z∈Dr

dU
(
fn(dt, z), fk(dt, z)

)

for all t ∈ S
. Taking the supremum after t ∈ S

, we get the desired contraction

d
(
F(fn), F(fk)

) ≤Kd(fn, fk), K < .

The existence and uniqueness of the fixed point f ∗ follows from the Banach fixed point
theorem. �

The following propositions describe the properties of the fixed point f ∗.

Proposition . For any fixed t ∈ S
, f ∗(t, z) = (ϕt(z), z), where the map ϕt : Dr → U ′ is

holomorphic, and either injective or constant.

Proof The fixed point f ∗ is obtained via the Banach fixed point theorem as the limit of
the sequence fn(t, z) = F◦n(f)(t, z) for n ≥  and f(t, z) = (γ(t), z). By the construction of
the function space, we can write fn(t, z) = (ϕn

t (z), z), where ϕn
t : Dr → U ′ are holomorphic

and injective for n ≥ . By Hurwitz’s theorem a uniform limit of holomorphic injective
mappings is holomorphic and either injective or constant. �

Proposition . The function f ∗ : S ×Dr → V is continuous with respect to t ∈ S
, holo-

morphic with respect to z ∈Dr and holomorphic with respect to the parameter a.

Proof As observed in the previous proposition, the map f ∗ is obtained as a uniform limit
of the sequence fn(t, z) = (ϕn

t (z), z), where ϕn
t (z) is continuous in t and holomorphic in z.

Thus f ∗ is continuous in t and holomorphic in z.
Clearly f(t, z) = (γ(t), z) does not depend on the parameter a. When |a| is small, each

function fn depends holomorphically on a. The construction of the metric space is uniform
in a and so the limit f ∗ is holomorphic with respect to a. �

We can now recover the Julia set J+ ∩ V as the image of the fixed point f ∗.

Lemma . J+ ∩ V =
⋂

n≥ H–◦n(V ).

Proof Let q be any point in
⋂

n≥ H–◦n(V ). Since all forward iterates of q remain in the
bounded set V , q cannot belong to the escaping set U+. When H is hyperbolic, the interior
of K+ consists of the basins of attraction of attractive periodic orbits []. However, the set
U ′ does not contain any attractive cycles of the polynomial p so the set V = U ′ ×Dr does
not contain any attractive cycles of the Hénon map H for small values of the Jacobian.
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Since all forward iterates of q remain in V , q cannot belong to the interior of K+. Hence
q ∈ J+.

Let now q be any point in J+ ∩V . The Julia set J is contained in V . When H is hyperbolic,
the Julia set J+ is the stable set of J , that is, W s(J) = J+ []. It follows that q must belong to
the stable manifold W s(y) of some point y ∈ J . So all forward iterates of q converge to the
orbit of y, which is contained in J , hence also in V . In particular no forward iterate of q
can exit V , hence q ∈ ⋂

n≥ H–◦n(V ). �

Lemma . Im(f ∗) = J+ ∩ V .

Proof It is easy to see that
⋂

n≥ H–◦n(V ) = Im(f ∗), by construction, and that f ∗ verifies the
relation H–(Im(f ∗)) ∩ V = Im(f ∗). By induction on n ≥  we get

H–◦(n+)(Im
(
f ∗)) ∩ H–◦n(V ) ∩ · · · ∩ H–(V ) ∩ V = Im

(
f ∗), ()

hence Im(f ∗) ⊂ ⋂
n≥ H–◦n(V ).

By Lemma . we have J+ ∩ V =
⋂

n≥ H–◦n(V ) =
⋂

n≥ H–◦n(V ∩ U+). The set J+ is the
topological boundary of the escaping set U+ and J+ ∩ V is the inner boundary of the set
V ∩ U+. Recall that f(t, z) = (γ(t), z). By construction, Im(f) is the outer boundary of
V and is entirely contained in U+. Moreover, the sequence fn : S × Dr → V , fn = Fn(f)
converges to the unique fixed point f ∗. The image fn(S ×Dr) is the outer boundary of the
set

⋂
≤k≤n H–◦k(V ∩ U+). Hence Im(f ∗) =

⋂
n≥ H–◦n(V ∩ U+). �

5 Characterizations of J and J+

Consider f ∗(t, z) = (ϕt(z), z), where ϕt(z) is continuous with respect to t ∈ S
 and analytic

with respect to z ∈ Dr and a. Let σ : S ×Dr → S
 ×Dr be given by

σ (t, z) =
(
dt, aϕt(z)

)
. ()

On the first coordinate this is the d-tupling map on the unit circle t �→ dt (mod ). We
chose to disregard the dependency on a in the definition of σ , to simplify notations. For
sufficiently small |a| >  the map σ is well defined, open, and injective (see Proposition .
in []). Moreover, the map σ has the following expansion with respect to the parameter a
(see Lemma . in []):

σ (t, z) =
(

dt, aγ (t) –
az

p′(γ (t))
+ O

(
a)

)
,

where γ is the Carathéodory loop of the polynomial p.

Theorem . Let p be a hyperbolic polynomial with connected Julia set. There exists a > 
such that if  < |a| < a then the diagram

S
 ×Dr

f ∗
––––––→ J+ ∩ V

σ

⏐⏐�
⏐⏐�Hp,a

S
 ×Dr

f ∗
––––––→ J+ ∩ V

commutes.
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Proof The existence of the fixed point f ∗ was established in Section . By Lemma ., the
image of f ∗ is the set J+ ∩ V . Consider the definition of σ from equation (). We just need
to verify the commutativity of the diagram. Since H ◦ f ∗(t ×Dr) is compactly contained in
f ∗(dt ×Dr) we get

H ◦ f ∗(t, z) =
(
p
(
ϕt(z)

)
+ az, aϕt(z)

)
=

(
ϕdt

(
aϕt(z)

)
, aϕt(z)

)
,

which is equal to f ∗ ◦ σ (t, z) as f ∗ ◦ σ (t, z) = f ∗(dt, aϕt(z)) = (ϕdt(aϕt(z)), aϕt(z)). The last
equality holds since f ∗(dt × Dr) is a vertical-like fiber and can be parametrized by the
second coordinate via the map ϕdt(·). �

Theorem . gives only a semi-conjugacy between H and σ , but we are able to identify
the equivalence classes of f ∗ explicitly using the fact that f ∗ is holomorphic with respect
to a and z and Hurwitz’s theorem (see Propositions .-. in []):

f ∗(t, z) = f ∗(t, z) if and only if γ (t) = γ (t) and z = z. ()

This induces a natural equivalence relation on S
 ×Dr : (t, z) ∼ (t, z) if and only if γ (t) =

γ (t). Notice that in one-dimension this corresponds to the equivalence relation induced
by the Thurston lamination on S

 (see []), which identifies the Julia set Jp to the quotient
S

/∼.
From equations () and () we have ϕt (z) = ϕt (z) and σ (t, z) = σ (t, z) whenever γ (t) =

γ (t). Therefore, the map σ descends to a map on S
 × Dr/∼. The space S

 × Dr/∼ is
naturally identified to Jp × Dr , so the map σ is conjugate to a map σp acting on Jp × Dr

of the form

σp(ζ , z) =
(

p(ζ ), aζ –
az

p′(ζ )
+ O

(
a)

)
.

Note that the map σp is analytic with respect to z, which implies that J+ ∩ V is an analytic
fiber bundle over Jp. We refer to Section  in [] for the complete details. We can further
conjugate σp to a map ψ : Jp ×Dr → Jp ×Dr of the form

ψ(ζ , z) =
(

p(ζ ), εζ –
εz

p′(ζ )

)
()

for some ε >  independent of a (see Lemmas . and . in []).
The Julia set J is the set of points from J+ that do not escape to infinity under backward

iterations of the Hénon map. By assumption (ii) from the construction of the neighbor-
hood V in Section , J ⊂ V . Thus J =

⋂
n≥ H◦n(J+ ∩ V ).

Let �+ =
⋂

n≥ σ ◦n(S ×Dr). The following is a direct consequence of Theorem . and
the discussion above.

Theorem . The Julia set J of the Hénon map is homeomorphic to the quotient of the
solenoid �+ by the equivalence relation ∼, which is further homeomorphic to the set
⋂

n≥ ψ◦n(Jp ×Dr).



Radu and Tanase Fixed Point Theory and Applications  (2016) 2016:43 Page 13 of 15

Define the (inductive limit) space J̌p as the quotient (Jp ×Dr) ×N/ ∼, where the equiva-
lence relation this time is defined by (x, n) ∼ (ψ(x), n+). The space J̌p comes with a natural
bijective map ψ̌ : J̌p → J̌p given by (x, n) �→ (ψ(x), n). One should think of the space J̌p as
an increasing union of sets homeomorphic to Jp ×Dr .

Theorem HOV (Hubbard, Oberste-Vorth []) Let p be a hyperbolic polynomial with con-
nected Julia set. There exists a >  such that if  < |a| < a then there exists a homeomor-
phism �+ that makes the diagram

J̌p
�+

––––––→ J+

ψ̌

⏐⏐�
⏐⏐�Hp,a

J̌p
�+

––––––→ J+

commute.

Proof We have already shown that there exists a homeomorphism �+ which makes the
following diagram commute:

Jp ×Dr
�+

––––––→ J+ ∩ V

ψ

⏐⏐�
⏐⏐�Hp,a

Jp ×Dr
�+

––––––→ J+ ∩ V

()

The map �+ is just a composition between the fixed point f ∗ and the homeomorphism
that conjugates σp to ψ . Taking the inductive limit on both sides of the diagram and using
Proposition . of [] completes the proof. By a small abuse of notation, we use �+ to
denote the map �̌+ induced on the inductive limit spaces. �

The map ψ can be conjugate to a map ψ ′ defined by ψ ′(ζ , z) = (p(ζ ), ζ – εz
p′(ζ ) ) by the

linear change of variables (ζ , z) �→ (ζ , εz). The map ψ ′ is in fact the model map used in [].
The difference comes from the fact that we are using the Hénon map normalized so that
it has Jacobian –a rather than a.

Let ζ ∈ Jp. Define the (projective limit) set Ĵp to be the set of pre-histories of a point
ζ ∈ Jp under the polynomial p:

Ĵp =
{

(ζ, ζ–, ζ–, . . .) : p(ζ–i) = ζ–i+ for all i ≥ 
}

.

The space Ĵp comes with a natural bijective map p̂ : Ĵp → Ĵp, given by

p̂
(
(ζ, ζ–, ζ–, . . .)

)
=

(
p(ζ), p(ζ–), p(ζ–), . . .

)
=

(
p(ζ), ζ, ζ–, . . .

)
.

Let ψ̂ be the map that associates to (ζ, ζ–, ζ–, . . .) ∈ Ĵp a point ζ ∗, the unique point of the
intersection

⋂
i≥ ψ◦i(ζ–i × Dr). Let � denote the composition of �+ from diagram ()

and ψ̂ .
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The map � is a homeomorphism from Ĵp to J , the Julia set of the Hénon map, which
makes the diagram

Ĵp
�––––––→ J

p̂
⏐⏐�

⏐⏐�Hp,a

Ĵp
�––––––→ J

()

commute. We have just obtained the same model for the Julia set J as in [], which is of
course homeomorphic to the model from Theorem .. The space Ĵp is a combinatorial
model, while the model in Theorem . is topological.

The following theorem gives another perspective on the Julia set J+, without using the
inductive limit space J̌p (see also Theorem . in [] and [] for other characterizations).

Theorem . Let p be a hyperbolic polynomial with connected Julia set. There exists a > 
such that for all parameters a with  < |a| < a there exists a semi-conjugacy � : Jp ×C → J+

which makes the diagram

Jp ×C
�––––––→ J+

ψ

⏐⏐
�

⏐⏐
�Hp,a

Jp ×C
�––––––→ J+

commute.

Proof Let (ζ , z) ∈ Jp ×C and let n be the first iterate such that ψ◦n(ζ , z) belongs to Jp ×Dr .
We define �(ζ , z) = H–◦n

p,a ◦ �+ ◦ ψ◦n(ζ , z), where �+ is the conjugating homeomorphism
from diagram (). It is easy to check that the map � is a surjective semi-conjugacy. The
map � is injective on Jp ×Dr , but not on Jp ×C. �
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