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Abstract
Very recently, Roldán-López-de-Hierro and Shahzad introduced the notion of
R-contractions as an extension of several notions given by different researchers (for
instance, R-contractions generalize Meir-Keeler contractions, Z-contractions -
involving simulation functions - by Khojasteh et al., manageable contractions by Du
and Khojasteh, Geraghty’s contractions, Banach contractions, etc.). In this manuscript,
we use R-functions to present existence and uniqueness coincidence (and common
fixed) point results under a contractivity condition that extend some celebrated
contractive mappings. In our main theorems, we employ a binary relation on the
metric space, which does not have to be a partial order. Finally, we illustrate our
technique with an example in which other previous statements cannot be applied: in
fact, we show how to apply our main results to a new kind of contractivity conditions
which cannot be expressed in separate variables.
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1 Introduction
Taking into account its applications to several fields of study, fixed point theory has
demonstrated to be a powerful branch of nonlinear analysis. All results in this area are
inspired on the Banach contractive mapping principle, introduced in . The way in
which the most recent results generalize the initial theorem are diverse. Some manuscripts
presented very general contractivity conditions (see [–]), especially using auxiliary func-
tions (see [–]), other papers were developed in abstract metric spaces (see [–]), some
contributions involved additional structures like partial orders (see [, ]) and even mul-
tidimensional fixed/coincidence points were introduced (see [–]).

Among other techniques, there are two basic ways in order to improve the original
Banach theorem.

() On the one hand, most of authors have introduced contractivity conditions each
time weaker. Thus, there are fewer requirements for checking that a mapping is
contractive.

() On the other hand, several assumptions as regards the analytic and geometric
elements that are considered in the statements have been appearing. For instance,
there are many results in which the metric space is not necessarily complete (this
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condition has been replaced by the completeness of an appropriate subset) and,
even more, we do not need to consider a metric space (many results have been
demonstrated by using quasi-metric spaces and pseudo-quasi-metric spaces).

Following the first line of research, in recent times, Khojasteh et al. [] introduced
the notion of Z-contraction by using a new class of auxiliary functions called simulation
functions. This kind of functions have attracted much attention because they are useful
to express a great family of contractivity conditions that were well known in the field of
fixed point theory. Immediately afterward, Roldán-López-de-Hierro et al. [] extended
the family of simulation functions by avoiding a symmetric condition that was implicitly
considered in the original definition.

Very recently, inspired by Z-contractions, Roldán-López-de-Hierro and Shahzad []
introduced the notion of R-contractions as an extension of several notions given by differ-
ent researchers. R-contractions do not only extend the class of Z-contractions but they
also generalize manageable contractions by Du and Khojasteh, Geraghty’s contractions,
Banach contractions, etc. Furthermore, these authors succeeded in proving that Meir-
Keerler contractions are also R-contractions. Like Z-contractions are based in manage-
able functions, the key piece of an R-contraction is its associated underlying R-function,
which satisfies two independent conditions involving sequences of nonnegative real num-
bers. R-functions have only two arguments, in such way that they are appropriate in order
to study contractivity conditions that only involve two elements: the distance between two
points and the distance between their images by a self-mapping. Many contractivity con-
ditions were introduced in the past by using these two terms but, in general, they always
were conditions in separate variables (that is, these terms were the arguments of different
auxiliary functions).

In , Turinici [] gave an initial result for guaranteeing existence of fixed points by
involving a new algebraic structure: a partial order on the metric space. However, the most
celebrated results in this line of research, with applications to matrix equations, were given
by Ran and Reurings [], and, later, by Nieto and Rodríguez-López []. Following these
results, the contractivity condition does not need to hold for all pairs of points: it must
only be satisfied by points that are related through the partial order. Thus, the continuity
of the involved contractive mapping cannot be derived from the contractivity condition
(as in the Banach theorem): in fact, Nieto and Rodríguez-López replaced such condition
by the regularity of the partially ordered ambient metric space (which is a condition about
the behavior of nondecreasing convergent sequences).

In this manuscript, we use R-functions to present existence and uniqueness coincidence
(and common fixed) point results under a contractivity condition that extend some cele-
brated contractive mappings. In our main theorems, we employ a binary relation on the
metric space that does not have to be either a partial order nor a transitive relation. Thus,
we restrict very much the set of pairs of point for which the contractivity condition must
hold. Furthermore, we replace the assumption as regards the completeness of the metric
space by precompleteness of an appropriate subspace. Moreover, in our main results, we
do not assume the existence of a point that serves as initial condition: we suppose a weaker
condition about the existence of a Picard-Jungck sequence. Finally, we illustrate our tech-
nique with an example in which other previous statements (like the Dutta and Choudhury
theorem, among others) cannot be applied: in fact, we show how to apply our main results
to a new kind of contractivity conditions which cannot be expressed in separate variables.
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2 Preliminaries
Let us introduce here basic notions and fundamental results. From now on, N = {, , ,
, . . .} stands for the set of all nonnegative integers, N∗ = N�{} and R denotes the set of
all real numbers. Henceforth, X stands for a nonempty set and T , g : X → X will denote
two self-mappings. For simplicity, we write Tx instead of T(x).

We will say that a point x ∈ X is a:
• fixed point of T if Tx = x (Fix(T) will denote the set of all fixed points of T );
• coincidence point of T and g if Tx = gx (Coin(T , g) will denote the set of all

coincidence points of T and g);
• point of coincidence of T and g if there exists z ∈ Coin(T , g) such that x = Tz;
• common fixed point of T and g if Tx = gx = x.
Inspired by [], given a point x ∈ X, a Picard-Jungck sequence of the pair (T , g) based

on x is a sequence {xn}n∈N ⊆ X such that gxn+ = Txn for all n ∈N.
The mappings T and g are commuting if Tgx = gTx for all x ∈ X. A pair {T , g} is weakly

compatible if Tgx = gTx for all x ∈ X such that Tx = gx.
A binary relation on X is a nonempty subset S of X × X. For simplicity, we denote xS y

if (x, y) ∈ S (in some cases, we also use the symbol ≺ to denote a binary relation on X
because the notation x ≺ y can be more usual for the reader). We say that x and y are
S-comparable if xS y or yS x. A binary relation S on X is reflexive if xS x for all x ∈ X;
it is transitive if xS z for all x, y, z ∈ X such that xS y and yS z; and it is antisymmetric if
xS y and yS x imply x = y. A preorder (or a quasiorder) is a reflexive and transitive binary
relation. And a partial order is an antisymmetric preorder.

The notion of a metric space and the concepts of a convergent sequence and a Cauchy
sequence in a metric space can be found, for instance, in []. We will write {xn} → x when
a sequence {xn}n∈N of points of X converges to x ∈ X in the metric space (X, d). A metric
space (X, d) is complete if every Cauchy sequence in X converges to some point of X. The
limit of a convergent sequence in a metric space is unique. If (X, d) is a metric space, we
denote the range of d by

ran(d) =
{

d(x, y) : x, y ∈ X
} ⊆ [,∞).

We say that a sequence {xn} ⊆ X is asymptotically regular on (X, d) if {d(xn, xn+)} → .
In a metric space (X, d), a mapping T : X → X is continuous at a point z ∈ X if {Txn} →

Tz for all sequence {xn} in X such that {xn} → z. T is continuous if it is continuous at every
point of X.

Definition  A metric space (X, d) endowed with a binary relation S is S-nondecreasing-
regular if for all S-nondecreasing sequence {xn} ⊆ X such that {xn} → u ∈ X, it follows
that xn S u for all n ∈ N.

Lemma  (Roldán et al. [], Lemma , Berzig et al. [], Lemma ) Let (X, d) be a metric
space and let {xn} ⊆ X be a sequence. If {xn} is not Cauchy in (X, d), then there exist ε > 
and two subsequences {xn(k)} and {xm(k)} of {xn} such that

k ≤ n(k) < m(k) < n(k + ) and d(xn(k), xm(k)–) ≤ ε < d(xn(k), xm(k)) for all k ∈N.
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Furthermore, if {d(xn, xn+)} → , then

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)–, xm(k)–) = ε.

The following notion was introduced in [].

Definition  (Roldán-López-de-Hierro and Shahzad []) Let D ⊆R be a nonempty sub-
set and let � : D × D → R be a function. We say that � is an R-function if it satisfies the
following two conditions.

(�) If {an} ⊂ (,∞)∩D is a sequence such that �(an+, an) >  for all n ∈ N, then {an} → .
(�) If {an}, {bn} ⊂ (,∞) ∩ D are two sequences converging to the same limit L ≥  and

verifying that L < an and �(an, bn) >  for all n ∈N, then L = .

We denote by RD the family of all R-functions whose domain is D × D.

In some cases, given a function � : D × D →R, we will also consider the following prop-
erties.

(�) If {an}, {bn} ⊂ (,∞) ∩ D are two sequences such that {bn} →  and �(an, bn) >  for
all n ∈N, then {an} → .

(�) If {an}, {bn} ⊂ [,∞) ∩ D are two sequences such that {bn} →  and �(an, bn) >  for
all n ∈N, then {an} → .

Notice that (�) ⇒ (�).

Proposition 
. If a function � : D × D →R verifies �(t, s) ≤ s – t for all t, s ∈ D ∩ (,∞), then (�)

holds.
. If a function � : D × D →R verifies �(t, s) ≤ s – t for all t, s ∈ D ∩ [,∞), then (�)

and (�) holds.

Proposition  If � ∈ RD, then �(t, t) ≤  for all t ∈ (,∞) ∩ D.

Definition  (Roldán-López-de-Hierro and Shahzad []) Let (X, d) be a metric space
and let T : X → X be a mapping. We will say that T is an R-contraction if there exists an
R-function � : D × D →R such that ran(d) ⊆ D and

�
(
d(Tx, Ty), d(x, y)

)
>  for all x, y ∈ X such that x = y. ()

In such a case, we will say that T is an R-contraction with respect to �.

In [], the authors give a wide range of R-functions and R-contractions. In fact, Meir-
Keeler contractions [, ], Z-contractions [, ], manageable contractions [], and
Geraghty contractions [] are particular cases of R-contractions. Another example is the
following one.

Theorem  (Roldán-López-de-Hierro and Shahzad []) Let ψ ,ϕ : [,∞) → [,∞) be
two functions such that ψ is nondecreasing and continuous from the right, ϕ is lower semi-
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continuous and ϕ–({}) = {}. Let �ψ ,ϕ : [,∞) × [,∞) →R be the function defined by

�ψ ,ϕ(t, s) = ψ(s) – ϕ(s) – ψ(t) for all t, s ∈ [,∞).

Then �ψ ,ϕ is an R-function on [,∞). Furthermore, �ψ ,ϕ satisfies condition (�).

As a consequence of the previous result and their main theorems, the authors obtained
the following consequence.

Corollary  (Roldán-López-de-Hierro and Shahzad []) Let (X, d) be a complete metric
space and let T : X → X be a self-mapping. Assume that there exist two functions ψ ,φ :
[,∞) → [,∞) such that

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
for all x, y ∈ X.

If ψ is nondecreasing and continuous from the right, ϕ is lower semi-continuous, and
ϕ–({}) = {}, then T has a unique fixed point.

The previous statement generalizes the well-known Dutta and Choudhury theorem.

Theorem  (Dutta and Choudhury [], Theorem .) Let (X, d) be a complete metric
space and let T : X → X be a self-mapping satisfying the inequality

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, y)

)
– φ

(
d(x, y)

)
for all x, y ∈ X,

where ψ ,ϕ : [,∞) → [,∞) are both continuous and monotone nondecreasing functions
with ψ(t) =  = φ(t) if, and only if, t = .

Then T has a unique fixed point.

3 Binary relations on a set
Throughout this section, T and g will always denote self-mappings on X and S will be a
binary relation on X. Recall that we will write xS∗ y when xS y and x = y. We introduce
some properties that a binary relation can verify.

Definition  Given a nonempty subset A ⊆ X, we will say that the binary relation S is:
• transitive on A if xS z for all x, y, z ∈ A such that xS y and yS z;
• transitive if it is transitive on X ;
• g-transitive if it is transitive on g(X) (that is, gxS gy and gyS gz imply gxS gz);
• (T , g)-transitive if gxS Ty for all x, y ∈ X such that gxS gy and gyS Ty;
• (T , g)-compatible if Tx = Ty for all x, y ∈ X such that gx = gy and gxS gy;
• g-closed if gxS gy for all x, y ∈ X such that xS y.

Proposition  Every transitive binary relation is g-transitive and (T , g)-transitive, what-
ever T and g .

The following examples show that the notions of g-transitivity and (T , g)-transitivity
properly extend the notion of transitivity throughout independent notions.
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Example  Let X = {, , } and let us define the self-mappings T and g and the binary
relation S as follows:

Tx = ; gx =

{
, if x = ,
, if x ∈ {, }; xS y ⇔

{
x = y or
(x, y) ∈ {(, ), (, )}.

We claim thatS is g-transitive but it is neither (T , g)-transitive nor transitive. Let x, y, z ∈ X
be such that gxS gy and gyS gz. Therefore, gx ≤ gy and gy ≤ gz, so gx ≤ gz. Moreover,
gx, gz ∈ {, }. Therefore, gxS gz, which implies that S is g-transitive. To prove that S is
not (T , g)-transitive, let x =  and y = . Then gx = S  = gy and gy = S  = Ty.
However, gx S Ty because  S . Hence, S is not (T , g)-compatible. By Proposition , S
cannot be transitive.

Example  Let X = {, , } and let us define the self-mappings T and g and the binary
relation S as follows:

Tx = ; gx = x; xS y ⇔
{

x = y or
(x, y) ∈ {(, ), (, )}.

We claim that S is (T , g)-transitive but it is neither g-transitive nor transitive. Let x, y ∈ X
be such that gxS gy and gyS Ty = . Then y = gy ∈ {, }. From gxS gy it follows that x ≤ y,
so x ∈ {, }. Anyway, gxS  = Ty, soS is (T , g)-transitive. However, if we take x = , y = ,
and z = , we have gx = S  = gy and gy = S  = gz, but it is false that gx S gz

because  S . Hence, S is neither g-transitive nor transitive.

Despite the above examples, there are some relationships between g-transitivity and
(T , g)-transitivity.

Proposition  If S is g-transitive and T(X) ⊆ g(X), then S is (T , g)-transitive.

Proof Let x, y ∈ X be such that gxS gy and gyS Ty. Since Ty ∈ T(X) ⊆ g(X), there is z ∈ X
such that Ty = gz. Hence gxS gy and gyS gz. As S is g-transitive, then gxS gz, so gxS Ty.
This proves that S is (T , g)-transitive. �

The following example shows that g-transitivity and (T , g)-transitivity do not imply any
of the properties that a partial order satisfies.

Example  Let X = [,∞) and let define T , g : X → X by gx = x +  and Tx = x +  for all
x ∈ X. Let S be the binary relation on X given by xS y if

 ≤ x ≤ y or (x, y) ∈ {
(, ), (, ), (, )

}
.

Then S is neither reflexive (  S ), nor transitive (S  and S , but   S ) nor anti-
symmetric (S  and S , but  = ). However, S is g-transitive, (T , g)-transitive, and
(T , g)-compatible.

Definition  We say that T is (g,S)-nondecreasing if TxS Ty for all x, y ∈ X such that
gxS gy.
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Proposition  If S is reflexive and antisymmetric, and T is (g,S)-nondecreasing, then S
is (T , g)-compatible.

Proof Let x, y ∈ X be such that gx = gy and gxS gy. As S is reflexive, gxS gy and gyS gx.
Since T is (g,S)-nondecreasing, TxS Ty and TyS Tx. As S is antisymmetric, Tx = Ty. �

Proposition  If g is injective, then any binary relation S is (T , g)-compatible, what-
ever T .

Proof Let x, y ∈ X be such that gx = gy and gxS gy. As g is injective, x = y, so Tx = Ty. �

Definition  We will write T(X) ⊆S g(X) if for all x ∈ X there exists y ∈ X such that
Tx = gy and gxS gy.

Clearly, if T(X) ⊆S g(X), then T(X) ⊆ g(X).

Definition  A subset A of a metric space (X, d) is precomplete if each Cauchy sequence
{an} ⊆ A is convergent to a point of X.

Remark 
. The empty subset is precomplete.
. Every complete subset of X is precomplete.
. Every subset of a complete metric space is also precomplete.

Example  Although X = (, ), endowed with the Euclidean metric, is not complete,
and A = (, ) is not complete, the set A is precomplete.

Proposition  If A ⊆ B ⊆ X and B is precomplete, then A is also precomplete.

Remark  If T(X) ⊆ g(X) and one of X, or g(X) or T(X) is complete, then T(X) is pre-
complete.

When a binary relation S is not symmetric, we can consider ‘right-notions’ and ‘left-
notions’ depending on the character of the involved sequences. For instance, ‘right-notions’
corresponds to definitions in which a sequence {xn} ⊆ X satisfies xn S xm for all n, m ∈ N

with n < m, and ‘left-notions’ are associated to condition xn S xm with n > m. In this paper,
we consider the first ones, and we introduce right-regularity, (O,S)-right-compatibility,
(T , g,S)-right-Picard-Jungck sequences and S-right-continuity. However, we will omit the
term ‘right’.

Definition  Let T , g : X → X be two mappings, let {xn}n≥ ⊆ X be a sequence and let
S be a binary relation on X. We say that {xn} is a:

• (T , g)-Picard-Jungck sequence if

gxn+ = Txn for all n ∈N ()

(in such a case, we say that {xn} is based on the initial point x);
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• (T , g,S)-Picard-Jungck sequence if it is a (T , g)-Picard-Jungck sequence and

gxn S gxm for all n, m ∈ N such that n < m. ()

The following result shows some sufficient conditions in order to guarantee the exis-
tence of a (T , g,S)-Picard-Jungck sequence.

Proposition  Suppose that the binary relation S is g-transitive or (T , g)-transitive.
. If TX ⊆ g(X), T is (g,S)-nondecreasing and there exists a point x ∈ X such that

gx S Tx, then there exists a (T , g,S)-Picard-Jungck sequence on X based on x.
. If T(X) ⊆S g(X), then there exists a (T , g,S)-Picard-Jungck sequence on X based on

each arbitrary point x ∈ X .

Proof Step . We claim that there exists a sequence {xn} ⊆ X such that gxn+ = Txn and
gxn S gxn+ for all n ∈N.

() Since Tx ∈ T(X) ⊆ g(X), we can find x ∈ X such that Tx = gx. As Tx ∈ T(X) ⊆
g(X), there is x ∈ X such that Tx = gx. Moreover, as gx S Tx = gx and T is (g,S)-
nondecreasing, Tx S Tx, which means that gx S gx. By induction, we can consider a
sequence {xn} ⊆ X such that gxn+ = Txn and gxn S gxn+ for all n ∈N.

() Let x ∈ X be a point. Since Tx ∈ T(X) ⊆S g(X), there is x ∈ X verifying Tx = gx

and gx S gx. Repeating this argument, from Tx ∈ T(X) ⊆S g(X) it follows that there is
x ∈ X satisfying Tx = gx and gx S gx. By induction, Step  holds.

Step . {xn} is a (T , g,S)-Picard-Jungck sequence. On the one hand, assume that S is
g-transitive. Then, for all n, m ∈N such that n < m,

gxn S gxn+, gxn+ S gxn+, . . . , gxm– S gxm ⇒ gxn S gxm.

On the other hand, assume that S is (T , g)-transitive. Given n ∈N, we observe that

gxn S gxn+, gxn+ S gxn+ = Txn+ ⇒ gxn S Txn+ = gxn+.

Repeating this argument,

gxn S gxn+, gxn+ S gxn+ = Txn+ ⇒ gxn S Txn+ = gxn+.

By induction, gxn S gxn+m for all n ∈N and all m ∈N
∗. �

The same proof is valid when the binary relation is omitted.

Proposition  If TX ⊆ g(X), then there exists a (T , g)-Picard-Jungck sequence on X based
on each x ∈ X.

From now on, let (X, d) be a metric space.

Definition  The map T : X → X is S-continuous if {Txn} → Tu for all sequence {xn} ⊆
X such that {xn} → u ∈ X and xn S xm for all n, m ∈N with n < m.
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Remark  If T : X → X is continuous and X is endowed with a binary relation S , then
T is S-continuous.

Definition  If A is a subset of a metric space (X, d) endowed with a binary relation S ,
we say that A is (d,S)-regular if for all sequence {xn} ⊆ X such that {xn} → u ∈ X and
xn S xm for all n, m ∈N with n < m, we have xn S u for all n ∈N.

The following definition extends some ideas that can be found on [–].

Definition  If (X, d) is a metric space and S is a binary relation on X, two mappings
T , g : X → X are (O,S)-compatible if

lim
n→∞ d(gTxn, Tgxn) = 

provided that {xn}n∈N is a sequence in X such that gxn S gxm for all n < m and

lim
n→∞ Txn = lim

n→∞ gxn ∈ X.

Clearly, commutativity implies (O,S)-compatibility.

4 Some coincidence point theorems under (R,S)-contractivity conditions
In this section, we employ a binary relation S to present some coincidence point results
under R-contractivity conditions. If � denotes an R-function, we will consider the follow-
ing three classes of contractivity conditions.

(C) �(d(Tx, Ty), d(gx, gy)) >  for all x, y ∈ X such that TxS∗ Ty and gxS∗ gy.
(C) �(d(Tx, Ty), d(gx, gy)) >  for each x, y ∈ X verifying gxS∗ gy.
(C) �(d(Tx, Ty), d(gx, gy)) >  for each x, y ∈ X satisfying x = y and gxS gy.

Obviously, (C) ⇒ (C) ⇒ (C) because the only difference between them is the kind
of points for which the inequality holds. The contractivity condition can also be useful to
prove some properties of the binary relation.

Proposition  Suppose that � : D×D →R is a function for which (C) holds, and assume
that �(t, ) ≤  for all t > . Then S is (T , g)-compatible.

Proof Let x, y ∈ X be such that gx = gy and gxS gy. By contradiction, assume that Tx =
Ty. Then, necessarily, x = y. Let t = d(Tx, Ty) ∈ (,∞) ∩ ran(d) ⊆ (,∞) ∩ D. By (C),
�(d(Tx, Ty), d(gx, gy)) = �(t, ) > , which contradicts �(t, ) ≤ . Thus Tx = Ty. �

4.1 Coincidence point theorems under S-continuity
The first main result of the present manuscript is the following one, in which we use the
weaker contractivity condition.

Theorem  Let S be a binary relation on a metric space (X, d) and let T , g : X → X be
two S-continuous mappings such that T(X) is precomplete. Suppose that conditions (A)
and (B) holds.

(A) There is on X a (T , g,S)-Picard-Jungck sequence.
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(B) There is an R-function � ∈ RD such that ran(d) ⊆ D and

�
(
d(Tx, Ty), d(gx, gy)

)
>  for all x, y ∈ X such that TxS∗ Ty and gxS∗ gy. ()

In addition to this, suppose, at least, one of the following assumptions holds.
(a) The pair (T , g) is (O,S)-compatible; or
(b) T and g are commuting.
Then T and g have a coincidence point. In fact, if {xn} is any (T , g,S)-Picard-Jungck

sequence, either {gxn} contains a coincidence point of T and g , or {gxn} converges to a coin-
cidence point of T and g .

We must point out the weakness of all hypotheses in the previous theorem because the
following conditions, which we can find in many previous results in this field, are stronger.

• If T and g are continuous, then T and g are S-continuous.
• If there is a subset A such that T(X) ⊆ A ⊆ X and A is precomplete or complete, then

T(X) is precomplete. In particular, if one of T(X), or g(X), or X is complete, then T(X)
is precomplete.

• By Proposition , hypothesis (A) is guaranteed under the following conditions.

(A′) S is (T , g)-transitive (or g-transitive), TX ⊆ g(X), T is (g,S)-nondecreasing and
there exists a point x ∈ X such that gx S Tx.

(A′′) S is (T , g)-transitive (or g-transitive) and T(X) ⊆S g(X).

Proof By hypothesis (A), we can find a (T , g,S)-Picard-Jungck sequence {xn}n≥ on X,
that is, a sequence verifying gxn+ = Txn and gxn S gxm for all n < m, n, m ∈ N. If there
exists some n ∈ N such that gxn+ = gxn , then xn is a coincidence point of T and g .
Assume that gxn = gxn+ for all n ∈ N. Hence gxn S∗ gxn+ and Txn S∗ Txn+ for all n ∈ N.
Let {an} ⊂ (,∞) be the sequence defined by an = d(gxn, gxn+) >  for all n ∈N. Using the
contractivity condition (),

�(an+, an) = �
(
d(gxn+, gxn+), d(gxn, gxn+)

)

= �
(
d(Txn, Txn+), d(gxn, gxn+)

)
> 

for all n ∈ N. Applying (�) we deduce that {d(gxn, gxn+)} = {an} → , that is, {gxn} is an
asymptotically regular sequence.

Next we prove that {gxn} is Cauchy reasoning by contradiction. If it is not Cauchy, then
there are ε >  and two subsequences {gxn(k)} and {gxm(k)} of {gxn} such that

k ≤ n(k) < m(k), d(gxn(k), gxm(k)–) ≤ ε < d(gxn(k), gxm(k)) for all k ∈N,

lim
k→∞

d(gxn(k), gxm(k)) = lim
k→∞

d(gxn(k)–, gxm(k)–) = ε.

As the sequences {d(gxn(k), gxm(k))} and {d(gxn(k)–, gxm(k)–)} converge to ε > , there exists
k ∈N such that

d(gxn(k), gxm(k)) >  and d(gxn(k)–, gxm(k)–) > 
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for all k ≥ k. In particular, d(Txn(k)–, Txm(k)–) = d(gxn(k), gxm(k)) >  for all k ≥ k, which
implies that

Txn(k)– S∗ Txm(k)– and gxn(k)– S∗ gxm(k)– for all k ≥ k.

Let L = ε > , {ak = d(gxn(k), gxm(k))}k≥k → L and {bk = d(gxn(k)–, gxm(k)–)}k≥k → L.
Since L = ε < d(gxn(k), gxm(k)) = ak and

�(ak , bk) = �
(
d(gxn(k), gxm(k)), d(gxn(k)–, gxm(k)–)

)

= �
(
d(Txn(k)–, Txm(k)–), d(gxn(k)–, gxm(k)–)

)
> 

for all k ≥ k, condition (�) guarantees that ε = L = , which is a contradiction. As a
result, the sequence {gxn} is Cauchy. Since {gxn+ = Txn} ⊆ T(X) and T(X) is precomplete,
there exists z ∈ X such that {gxn} → z. Furthermore, as T and g are S-continuous and
gxn S gxm for all n < m, then {Tgxn} → Tz and {ggxn} → gz. Next, we consider two cases.

Case (a). Assume the (O,S)-compatibility of the pair (T , g). Taking into account that
gxn S gxm for all n < m and {Txn = gxn+} → z, the (O, S)-compatibility of (T , g) yields

lim
n→∞ d(gTxn, Tgxn) = .

Notice that

d(Tz, gz) = d
(

lim
n→∞ Tgxn, lim

n→∞ ggxn+

)
= lim

n→∞ d(Tgxn, gTxn) = ,

so Tz = gz and z is a coincidence point of T and g .
Case (b). Assume that T and g are commuting. Then Case (a) is applicable because com-

mutativity implies (O,S)-compatibility. �

The following consequence is obtained by using the binary relation xS y for all x, y ∈ X.

Corollary  Let (X, d) be a metric space and let T , g : X → X be two continuous mappings
such that T(X) is precomplete. Suppose that conditions (A) and (B) holds.

(A) There exists on X a (T , g)-Picard-Jungck sequence.
(B) There exists an R-function � ∈ RD such that ran(d) ⊆ D and

�
(
d(Tx, Ty), d(gx, gy)

)
>  for all x, y ∈ X such that Tx = Ty and gx = gy.

Additionally, assume that the pair (T , g) is O-compatible or T and g are commuting.
Then T and g have, at least, a coincidence point. In fact, if {xn} is any (T , g)-Picard-

Jungck sequence, either {gxn} contains a coincidence point of T and g , or {gxn} converges to
a coincidence point of T and g .

In the following result, we denote by ≺ a transitive binary relation (for instance, a pre-
order or a partial order), which is not necessarily reflexive. In this case, we replace hypoth-
esis (A) by (A′) by virtue of Proposition  and the new condition (C).
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Corollary  Let (X, d) be a metric space endowed with a binary relation ≺ and let
T , g : X → X be two ≺-continuous mappings such that T(X) is precomplete. Suppose that
conditions (A) and (B) holds.

(A′) TX ⊆ g(X), T is (g,≺)-nondecreasing and there exists a point x ∈ X such that gx ≺
Tx.

(B) There exists an R-function � ∈ RD such that ran(d) ⊆ D and

�
(
d(Tx, Ty), d(gx, gy)

)
>  for all x, y ∈ X such that Tx ≺ Ty and gx ≺ gy.

(C) The binary relation ≺ is transitive (or g-transitive, or (T , g)-transitive).

Additionally, assume that the pair (T , g) is (O,S)-compatible or T and g are commuting.
Then T and g have, at least, a coincidence point. In fact, if {xn} is any (T , g,≺)-Picard-

Jungck sequence, either {gxn} contains a coincidence point of T and g , or {gxn} converges to
a coincidence point of T and g .

If g = IX is the identity mapping on X, then we derive the following result.

Corollary  Let S be a binary relation on a metric space (X, d) and let T : X → X be an
S-continuous mapping such that T(X) is precomplete. Suppose that conditions (A) and (B)
holds.

(A) There exists on X a Picard sequence {xn+ = Txn} such that xn S xm for all n, m ∈N such
that n < m.

(B) There exists an R-function � ∈ RD such that ran(d) ⊆ D and

�
(
d(Tx, Ty), d(x, y)

)
>  for all x, y ∈ X such that xS∗ y and TxS∗ Ty.

Then T has, at least, a fixed point.

4.2 Coincidence point theorems under S-regularity and condition (C2)
In the following result, the contractivity condition is stronger because we do not assume
that TxS∗ Ty and gxS∗ gy. However, the following result is applicable even if T and g are
not S-continuous.

Theorem  Let S be a binary relation on a metric space (X, d) such that X (or g(X)) is
(d,S)-regular, and let T , g : X → X be two mappings. Suppose that conditions (A) and (B)
hold.

(A) There exists on X a (T , g,S)-Picard-Jungck sequence.
(B) There exists an R-function � ∈ RD such that (�) holds, ran(d) ⊆ D and

�
(
d(Tx, Ty), d(gx, gy)

)
>  for all x, y ∈ X such that gxS∗ gy. ()

In addition to this, suppose, at least, one of the following assumptions holds.
(c) (g(X), d) is complete;
(d) (X, d) is complete and g(X) is closed;
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(e) (X, d) is complete, the pair (T , g) is (O,S)-compatible, S is g-closed and g is injective
on g(X) and S-continuous.

Then T and g have, at least, a coincidence point.

Proof Since () ⇒ (), the proof of Theorem  can be followed, point by point, to prove
that the sequence {gxn}, which satisfies gxn = gxn+ for all n ∈ N, is a Cauchy sequence.
Next, we distinguish some cases.

Case (c). Assume that g(X) is complete. Since g(X) is complete, there exists u ∈ g(X)
such that {gxn} → u. As u ∈ g(X), then g–(u) is not empty. We are going to show that any
point z ∈ g–(u) is a coincidence point of T and g . Indeed, let z ∈ X be an arbitrary point
such that gz = u. Since gxn S gxn+ for all n ∈ N and {gxn} → gz, the (d,S)-regularity of X
(or g(X)) yields gxn S gz for all n ∈ N. If there exists some n ∈ N such that gxn = gz, then
gxn+ = gz. Therefore, the set {n ∈N : gxn = gz} is not finite. As a consequence, there exists
a subsequence {gxn(k)} of {gxn} such that

d(gxn(k), gz) >  for all k ∈N.

In particular, gxn(k) S∗ gz for all k ∈N. Applying the contractivity condition (),

�
(
d(Txn(k), Tz), d(gxn(k), gz)

)
>  for all k ∈N. ()

Let M = {k ∈N : Txn(k) = Tz}.
Subcase (c.). Assume that M is finite. In this case, there exists k ∈N such that Txn(k) =

Tz for all k ≥ k. Let {ak = d(Txn(k), Tz)}k≥k and {bk = d(gxn(k), gz)}k≥k . Then ak >  and
bk >  for all k ≥ k. Moreover, {bk} → . As () means that �(ak , bk) >  for all k ≥ k,
condition (�) implies that {ak} → . It follows that {gxn(k)+ = Txn(k)} → Tz. As this is a
subsequence of {gxn} and {gxn} → gz, we conclude that Tz = gz, that is, z is a coincidence
point of T and g .

Subcase (c.). Assume that M is not finite. In this case, there exists a subsequence {Txn′(k)}
of {Txn(k)} such that Txn′(k) = Tz for all k ∈N. Since gxn′(k)+ = Txn′(k) = Tz for all k ∈N, and
{gxn} → gz, we also conclude that Tz = gz, that is, z is a coincidence point of T and g .

Case (d). Assume that g(X) is closed and (X, d) is complete. In this case, we can apply
item (c) because any closed subsets of complete spaces are also complete.

Case (e). Assume that (X, d) is complete, the pair (T , g) is (O,S)-compatible, S is
g-closed and g is injective on g(X) and S-continuous. The completeness of X guarantees
that there is u ∈ X satisfying {gxn} → u. As g is S-continuous and gxn S gxm for all n < m,
then {ggxm} → gu. Moreover, the (O,S)-compatibility of (T , g) leads to

lim
n→∞ d(gu, Tgxn) = lim

n→∞ d(ggxn+, Tgxn) = lim
n→∞ d(gTxn, Tgxn) = .

Hence {Tgxn} → gu. We are going to show that {Tgxn} has a subsequence converging to
Tu, and this will also finish the proof (because, in such a case, Tu = gu). Let us consider
M = {n ∈ N : Tgxn = Tu}. If M is not finite, then there is a partial subsequence {gxn(k)} of
{gxn} such that Tgxn(k) = Tu for all k ∈ N. As {Tgxn} → gu, then Tu = gu, and the proof is
finished. On the contrary, assume that M is finite. In such a case, there exists n ∈ N such
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that Tgxn = Tu for all n ≥ n. For simplicity, we will assume that

Tgxn = Tu for all n ∈N.

Since X is (d,S)-regular, {gxn} → u and gxn S gxm for all n < m, then gxn S u for all n ∈N.
Moreover, as S is g-closed, then ggxn S gu for all n ∈ N. We must consider two cases de-
pending on M′ = {n ∈N : gxn = u}.

Subcase (e.). Assume that M′ is finite. In this case, there exists n ∈ N such that gxn = u
for all n ≥ n. Then ggxn = gu for all n ≥ n because g is injective. Hence ggxn S∗ gu for all
n ≥ n. Let {an} and {bn} be the sequences of positive real numbers given by

an = d(Tgxn, Tu) >  and bn = d(ggxn, gu) >  for all n ≥ n.

Clearly, {bn} → . Applying the contractivity condition (),

�(an, bn) = �
(
d(Tgxn, Tu), d(ggxn, gu)

)
>  for all n ≥ n.

By (�), we deduce that {an} → , which implies that {Tgxn} → Tu.
Subcase (e.). Assume that M′ is not finite. In this case, there exists a subsequence {gxn(k)}

of {gxn} such that gxn(k) = u for all k ∈N. Hence {Tgxn(k)} → Tu. �

If xS y for all x, y ∈ X, we derive the following consequence.

Corollary  Given two maps T , g : X → X in a metric space (X, d), assume that condi-
tions (A) and (B) hold.

(A) There is on X a (T , g)-Picard-Jungck sequence.
(B) There exists an R-function � ∈ RD such that (�) holds, ran(d) ⊆ D and

�
(
d(Tx, Ty), d(gx, gy)

)
>  for all x, y ∈ X such that gx = gy.

In addition to this, suppose, at least, one of the following assumptions holds.
(c) (g(X), d) is complete;
(d) (X, d) is complete and g(X) is closed;
(e) (X, d) is complete, g is injective on g(X) and continuous, and the pair (T , g) is

O-compatible.
Then T and g have, at least, a coincidence point.

In the following result, we denote by ≺ a transitive binary relation (for instance, a pre-
order or a partial order), which is not necessarily reflexive.

Corollary  Let (X, d) be a metric space endowed with a binary relation ≺ such that X
(or g(X)) is (d,≺)-nondecreasing-regular, and let T , g : X → X be two mappings. Assume
that conditions (A) and (B) hold.

(A) TX ⊆ g(X), T is (g,≺)-nondecreasing and there exists a point x ∈ X such that gx ≺
Tx.
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(B) There exists an R-function � ∈ RD such that (�) holds, ran(d) ⊆ D, and

�
(
d(Tx, Ty), d(gx, gy)

)
>  for all x, y ∈ X such that gxS∗ gy.

(C) The binary relation ≺ is transitive (or g-transitive, or (T , g)-transitive).

In addition to this, suppose, at least, one of the following assumptions holds.
(c) (g(X), d) is complete;
(d) (X, d) is complete and g(X) is closed;
(e) (X, d) is complete, the pair (T , g) is (O,≺)-compatible, g is ≺-nondecreasing, and g is

injective on g(X) and S-continuous.
Then T and g have, at least, a coincidence point.

Furthermore, if g = IX is the identity mapping on X, then we derive the following fixed
point result.

Corollary  Let (X, d) be a complete, (d,S)-regular metric space endowed with a binary
relation S and let T : X → X be a mapping. Assume that conditions (A) and (B) hold.

(A) There is on X a Picard sequence {xn+ = Txn} such that xn S xm for all n, m ∈N such that
n < m.

(B) There exists an R-function � ∈ RD such that (�) holds, ran(d) ⊆ D, and

�
(
d(Tx, Ty), d(x, y)

)
>  for all x, y ∈ X such that xS∗ y.

Then T has, at least, a fixed point.

4.3 Coincidence point theorems under S-regularity and condition (C3)
If we assume that the contractivity condition is more restrictive, we can avoid the injec-
tivity of g in condition (e) in Theorem .

Theorem  Let S be a binary relation on a metric space (X, d) and let T , g : X → X be
two mappings. Assume that conditions (A) and (B) hold.

(A) There is on X a (T , g,S)-Picard-Jungck sequence.
(B) There exists an R-function � ∈ RD such that (�) holds, ran(d) ⊆ D, and

�
(
d(Tx, Ty), d(gx, gy)

)
>  for each x, y ∈ X such that x = y and gxS gy. ()

(e′) (X, d) is complete, S is g-closed, (T , g) is (O,S)-compatible, g is S-continuous and X is
(d,S)-regular.

Then T and g have, at least, a coincidence point.

Proof Since () ⇒ (), the proof of Theorem  can be followed, point by point, to de-
duce that {gxn} is Cauchy. The completeness of (X, d) implies the existence of u ∈ X such
that {gxn} → u. Since gxn S gxm for each n < m and g is S-continuous, then {ggxm} → gu.
Furthermore, from the (O,S)-compatibility of the pair (T , g),

lim
n→∞ d(gu, Tgxn) = lim

n→∞ d(ggxn+, Tgxn) = lim
n→∞ d(gTxn, Tgxn) = .
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Hence {Tgxn} → gu. Let us consider M = {n ∈ N : Tgxn = Tu}. If M is not finite, then there
is a subsequence {gxn(k)} of {gxn} such that Tgxn(k) = Tu for all k ∈N. As {Tgxn} → gu, then
Tu = gu, and the proof is finished. On the other case, if M is finite, there is n ∈ N such
that Tgxn = Tu for each n ≥ n. For simplicity, we will assume that

Tgxn = Tu for all n ∈N.

The proof will be finished if we prove that {Tgxn} → Tu. Indeed, the (d,S)-regularity of X
yields {gxn} → u and gxn S gxm for each n < m, so gxn S u for all n ∈N. In addition, as S is
g-closed, ggxn S gu for each n ∈N. Let {an} and {bn} be the sequences of nonnegative real
numbers given by

an = d(Tgxn, Tu) and bn = d(ggxn, gu) for all n ∈N.

Clearly, {bn} → . Applying the contractivity condition (),

�(an, bn) = �
(
d(Tgxn, Tu), d(ggxn, gu)

)
>  for all n ∈N.

By (�), we deduce that {an} → , which implies that {Tgxn} → Tu. �

The reader may particularize the previous results to the cases: () xS y for all x, y ∈ X;
() ≺ is a transitive binary relation on X; () g is the identity mapping on X.

5 Common fixed point theorems under (R,S)-contractivity conditions
In this section, we study when the existence of a coincidence point can help us to derive
the existence and uniqueness of coincidence (or common fixed) points. Before that, we
describe an assumption that we will use in the main results of this section. Given x, y ∈
Coin(T , g), we will say that assumption (Axy) holds if the following property is verified:

(Axy) there is a (T , g)-Picard-Jungck sequence {zn} ⊆ X such that, for all n ∈ N, gzn is
S-comparable, at the same time, to gx and to gy.

The following result shows that this condition can be guaranteed under some usual
properties.

Lemma  If x, y ∈ Coin(T , g), TX ⊆ g(X), T is (g,S)-nondecreasing and there exists a
point z ∈ X such that gz S Tz and gz are S-comparable, at the same time, to gx and to
gy, then property (Axy) holds.

Proof Suppose, for instance, that gxS gz and gyS gz (the order of the arguments is not
important). Let {zn} be a (T , g)-Picard-Jungck sequence on X based on z (it exists by
Proposition ). As T is (g,S)-nondecreasing, then TxS Tz and TyS Tz, which means
that gxS gz and gyS gz. Repeating this argument by induction, property (Axy) holds.

�

In the following result, we take advantage of property (Axy) in order to give a first step
about the uniqueness of the coincidence point.

Lemma  Under the hypotheses of Theorem  (or Theorem ), let x, y ∈ Coin(T , g) be
two coincidence points of T and g . In addition to this, suppose, at least, one of the following
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assumptions holds.
(p) gx and gy are S-comparable.
(q) Property (Axy) holds and S is (T , g)-compatible.
Then gx = gy.

Proof Taking into account that () ⇒ (), we can use the contractivity condition ().
(a) Reasoning by contradiction, assume that gx = gy. As gx and gy are S-comparable, we

can suppose, without loss of generality, that gxS gy. As Tx = gx and Ty = gy, we observe
that gxS∗ gy and TxS∗ Ty. By (),

�
(
d(gx, gy), d(gx, gy)

)
= �

(
d(Tx, Ty), d(gx, gy)

)
> ,

which contradicts Proposition .
(b) Let {zn} ⊆ X be a Picard-Jungck sequence such that, for all n ∈ N, gzn is S-compa-

rable, at the same time, to gx and to gy. We are going to show that, in any case, {gzn} → gx
and {gzn} → gy, so we will deduce gx = gy. We only reason using gx, but the same ar-
guments are valid for gy. By hypothesis, gxS gzn or gzn S gx for all n ∈ N. If there exists
n ∈ N such that gx = gzn , the (T , g)-compatibility of S implies that Tx = Tzn . Then
gx = Tx = Tzn = gzn+. Repeating this argument, gx = gzn for all n ≥ n, and, therefore,
{gzn} → gx. In other case, if gzn = gx for each n ∈ N, Tzn = gxn+ = gx = Tx for all n ∈ N,
so gzn S∗ gx and Tzn S∗ Tx (or, in the opposite case, gxS∗ gzn and TxS∗ Tzn). Using the
contractivity condition (), it follows that, for all n ∈N,

�
(
d(gzn+, gx), d(gzn, gx)

)
= �

(
d(Tzn, Tx), d(gzn, gx)

)
> .

If {an = d(gzn, gx)}, condition (�) guarantees that {an} → , so {gzn} → gx. Similarly,
{gzn} → gy, so gx = gy. �

Theorem  Under the hypotheses of Theorem  (or Theorem ), suppose that, for all
distinct coincidence points x, y ∈ Coin(T , g), at least, one of the following conditions holds.

(a) gx and gy are S-comparable.
(b) Property (Axy) holds and S is (T , g)-compatible.
Hence T and g have a unique point of coincidence.
If we additionally assume that g (or T ) is injective on Coin(T , g), then T and g have a

unique coincidence point.

Proof By Theorem  (or Theorem ), the set of all coincidence points of T and g is
nonempty, so T and g have, at least, a point of coincidence. Let ω and ω′ be two points of
coincidence of T and g . By definition, there are two coincidence points x, y ∈ Coin(T , g)
such that ω = Tx = gx and ω′ = Ty = gy. Thus, it follows from Lemma  that ω = gx = gy =
ω′, so T and g have a unique point of coincidence.

Additionally, assume that g (or T ) is injective on Coin(T , g), and let x, y ∈ Coin(T , g)
be two arbitrary coincidence points of T and g . In order to prove that x = y, assume that
x = y. By Lemma , Tx = gx = gy = Ty. And as g (or T ) is injective on Coin(T , g), then x = y,
which contradicts the fact that x = y. Thus, x = y and T and g have a unique coincidence
point. �
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Theorem  Under the hypotheses of Theorem , assume that T and g are weakly com-
patible (or commuting). Then T and g have a unique common fixed point.

Proof Let x ∈ X be a coincidence point of T and g , and let define ω = gx. Since Tx =
gx and T and g are weakly compatible, Tgx = gTx, so Tω = Tgx = gTx = gω. Then ω

is another coincidence point of T and g . By Theorem , gx = gω, so ω = gx = gω. In
particular, ω = gω = Tω, so ω is a common fixed point of T and g .

The uniqueness of the common fixed point follows from the fact that any common fixed
point is a point of coincidence, and Theorem  guarantees that there exists a unique point
of coincidence. �

6 A new kind of coincidence point theorems involving R-functions
In the past, the Dutta and Choudhury contractivity condition

ψ̃
(
d(Tx, Ty)

) ≤ ψ̃
(
d(gx, gy)

)
– φ̃

(
d(gx, gy)

)
for all x, y ∈ X

has been widely studied. If φ = ψ̃ and ψ = ψ̃ – φ̃, this condition can be equivalently ex-
pressed as

φ
(
d(Tx, Ty)

) ≤ ψ
(
d(gx, gy)

)
for all x, y ∈ X,

where ψ < φ in (,∞). For instance, if

ψ(t) = t and φ(t) =
t

 + t for all t ∈ [,∞),

then the previous contractivity condition is equivalent to

d(Tx, Ty) ≤ d(gx, gy) –
d(gx, gy)

 + d(gx, gy) =
d(gx, gy)

 + d(gx, gy) for all x, y ∈ X.

In this section we are going to show that R-functions permit us to include some terms
in this contractivity conditions depending both on d(gx, gy) and on d(Tx, Ty) in order to
obtain more general inequalities that also guarantee the existence and uniqueness of the
coincidence point.

Definition  We will denote by � the set of all (ψ ,φ,ϕ), where ψ ,φ,ϕ : [,∞) → [,∞)
are functions, such that the following properties hold.

(�) If {an} ⊂ (,∞) is a sequence such that φ(an+) < ψ(an) + ϕ(anan+) for all n ∈N, then
{an} → .

(�) If {an}, {bn} ⊂ (,∞) are two sequences converging to the same limit L ≥  and veri-
fying that L < an and φ(an) < ψ(bn) + ϕ(anbn) for all n ∈N, then L = .

In condition (�), the term ϕ(anan+) can be replaced in different ways, depending on
the researcher’s interest.

Example  If ψ and φ are altering distance functions such that ψ < φ, and ϕ(t) =  for
all t ∈ [,∞), then (ψ ,φ,ϕ) ∈ �.
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Example  If ψ is an altering distance function, φ is a lower semi-continuous function
such that ψ < φ and φ–({}) = {}, and ϕ(t) =  for all t ∈ [,∞), then (ψ ,φ,ϕ) ∈ �.

The following properties are given in order to show Example .

Proposition  If a ∈ [,∞) and b ∈ (,∞) are real numbers such that

a ≤ b

 + b +
√

ab
( + ab)

, ()

then a < b.

Proof If a = , it is obvious because b > . Assume that a > . The case a = b is impossible
because

b = a ≤ b

 + b +
√

ab
( + ab)

=
b

 + b +
b

( + b)
=

b(b + )
(b + )

is equivalent to  ≤ , which is false. Hence, a = b. In order to prove that a < b, assume that
b < a and we will get a contradiction. Let us consider the function f : [,∞) → R given,
for all t ∈ [,∞), by

f (t) = t –
(

b

 + b +
√

tb
( + tb)

)
= t –

√
b


·

√
t

 + tb
–

b

 + b .

Notice that

f (b) = b –
b

 + b –
b

( + b)
=

b
( + b)

> .

Inequality () means that f (a) ≤ . By simple calculation,

f ′(t) =  +
√

b


· tb – √
t( + tb)

for all t > .

If t ≥ b, then

f ′(t) =  +
tb

√
b


√

t( + tb)
–

√
b


√

t( + tb)

>  –
√

b

√

t( + tb)
=


√

t( + tb) –
√

b

√

t( + tb)

≥ 
√

t –
√

b

√

t( + tb)
≥ 

√
b –

√
b


√

t( + tb)
=


√

b

√

t( + tb)
> .

As a consequence, f ′(t) >  for all t ≥ b implies that f is strictly increasing in [b,∞). In
particular, if we assume that b < a, then f (b) < f (a), but this is a contradiction because
f (b) >  and f (a) ≤ . �
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Proposition  For all x ≥ , there exists a unique solution sx of the equation

sx =
x

 + x +
√sxx

( + sxx)
. ()

This solution verifies sx ≤ x and, if x > , then  < sx < x. Furthermore, x –  ≤ sx < x and
limx→∞ sx

x = .

Proof If x = , the unique solution of equation () is s = . Henceforth, assume that x > 
is fixed.

Step . Existence of solution. Let us consider the function f : [,∞) → R given, for all
t ∈ [,∞), by

f (t) = t –
x


·
√

t
 + t

.

Clearly, f is continuous in [,∞), f () =  and limt→∞ f (t) = ∞. Hence, the image of f
contains the interval [,∞). As x/( + x) ∈ [,∞), there exists px ∈ (,∞) such that
f (px) = x/( + x). Let sx = px/x ∈ (,∞). Then

sxx –
x√sxx

( + sxx)
= px –

x√px

( + px)
= f (px) =

x

 + x ,

which implies that sx is a solution of equation ().
By Proposition , any solution sx of equation () satisfies  < sx < x. As we have just

seen, to find a solution sx of equation () is equivalent to find a solution px = sxx of equation
f (p) = x/( + x).

Step . Uniqueness of the solution. Notice that, for all t > ,

f ′(t) =  –
x( – t)


√

t(t + )
=


√

t(t + ) – x( – t)

√

t(t + )
=


√

t(t + ) + x(t – )

√

t(t + )
.

If t ≥ , then f ′(t) > . If  < t < , then

f ′(t) =  ⇔ 
√

t(t + ) = x( – t) ⇔ 
√

t(t + )

 – t
= x.

Let us consider the function h : (, ) →R given, for all t ∈ (, ), by

h(t) =

√

t(t + )

 – t
.

Since

h′(t) =
(t + )( + t – t)√

t(t – )
>  for all t ∈ (, ),

the function h is strictly increasing in (, ), and the equation

h(t) =

√

t(t + )

 – t
= x
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has, at most, a unique solution tx ∈ (, ), that is, tx is the unique zero of f ′. Taking into
account that f () =  and limt→+ f ′(t) = –∞, the function f is strictly decreasing in (, tx),
taking negative values, and it is strictly increasing in (tx,∞). In particular, the equation
f (p) = x/( + x) must have a unique solution, so equation () can only have a unique
solution.

Step . x –  ≤ sx. If x ≤ , then x –  ≤  < sx. Assume that x > . Then

x – sx = x –
(

x

 + x +
√sxx

( + sxx)

)
=

x
 + x –

√sxx
( + sxx)

=
x( + sxx) – ( + x)√sxx

( + sxx)( + x)
.

Hence

x – sx ≤  ⇔ x( + sxx) – ( + x)√sxx
( + sxx)( + x)

≤ 

⇔ x( + sxx) –
(
 + x)√sxx ≤ ( + sxx)

(
 + x)

⇔ x + xsx –
(
 + x)√sxx ≤ sxx + x + sxx + 

⇔ –
(
 + x)√sxx ≤ sxx(x – ) + x(x – ) + sxx + .

As x > , the previous inequality holds. �

Next we show a non-trivial example of functions ψ , φ, and ϕ such that (ψ ,φ,ϕ) ∈ �.

Example  We claim that if

φ(t) = t, ψ(t) =
t

 + t and ϕ(t) =
√

t
( + t)

for all t ∈ [,∞),

then (ψ ,φ,ϕ) ∈ �. To prove it, let {an} ⊂ (,∞) be a sequence such that φ(an+) < ψ(an) +
ϕ(anan+) for all n ∈N, that is,

an+ ≤ a
n

 + a
n

+
√anan+

( + anan+)
for all n ∈ N. ()

By Proposition , an+ ≤ an for all n ∈N. Then {an} is convergent, and there is L ≥  such
that {an} → L. Letting n → ∞ in (), we deduce that

L ≤ L

 + L +
L

( + L)
=

L + L
( + L)

, ()

which implies that L ≤ . Hence, L =  and condition (�) holds.
Next, assume that {an}, {bn} ⊂ (,∞) are two sequences converging to the same limit

L ≥  and verifying that L < an and φ(an) < ψ(bn) + ϕ(anbn) for all n ∈ N. Then

an ≤ b
n

 + b
n

+
√

anbn

( + anbn)
for all n ∈N.
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Letting n → ∞ in the previous inequality, we derive again inequality (), which implies
that L ≤ , so L =  and condition (�) also holds. As a result, (ψ ,φ,ϕ) ∈ �.

Functions in � permit us to introduce a new kind of R-functions.

Lemma  If (ψ ,φ,ϕ) ∈ �, then the function �ψ ,φ,ϕ : [,∞) × [,∞) → [,∞), given by

�ψ ,φ,ϕ(t, s) = ψ(s) – φ(t) + ϕ(ts) for all t, s ∈ [,∞),

is an R-function.

Obviously, �ψ ,φ,ϕ is an R-function that, in general, cannot be decomposed as ψ(s) – φ(t).
Obviously, the same property can be studied in an appropriate subset A ⊆ [,∞).

Proof It follows from

φ(an+) < ψ(an) + ϕ(anan+) ⇔ �ψ ,φ,ϕ(an+, an) >  and

φ(an) < ψ(bn) + ϕ(anbn) ⇔ �ψ ,φ,ϕ(an, bn) > 

for each n ∈ N. Then (�) is equivalent to (�) and (�) is equivalent to (�) when A =
[,∞). �

Example  If ψ , φ, and ϕ are defined as in Example , then the corresponding
R-function �ψ ,φ,ϕ given in Lemma  verifies conditions (�) and (�). For instance, let us
show condition (�). Assume that {an}, {bn} ⊂ [,∞) are two sequences such that {bn} → 
and �ψ ,φ,ϕ(an, bn) >  for all n ∈N. This inequality is equivalent to

an ≤ b
n

 + b
n

+
√

anbn

( + anbn)
for all n ∈N.

By Proposition ,  ≤ an ≤ bn for all n ∈N. Therefore, {bn} →  implies {an} → .

The following corollary is a particular case of Theorem  using the described functions
ψ , φ, and ϕ. Notice that the new contractivity condition has not been studied in the past.
This is only an example of how using R-functions in order to establish new contractivity
conditions.

Corollary  Let S be a binary relation on a metric space (X, d) such that X (or g(X)) is
(d,S)-regular, and let T , g : X → X be two mappings. Assume that conditions (A) and (B)
hold.

(A) There is on X a (T , g,S)-Picard-Jungck sequence.
(B) For all x, y ∈ X such that gxS∗ gy, we have

d(Tx, Ty) ≤ d(gx, gy)

 + d(gx, gy) +
√

d(Tx, Ty)d(gx, gy)
( + d(Tx, Ty)d(gx, gy))

. ()

In addition to this, suppose, at least, one of the following assumptions holds.
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(c) (g(X), d) is complete;
(d) (X, d) is complete and g(X) is closed;
(e) (X, d) is complete, g is injective on g(X) and S-continuous, S is g-closed, and the pair

(T , g) is (O,S)-compatible.
Then T and g have, at least, a coincidence point.

Proof It follows from Theorem  using the R-function �ψ ,φ,ϕ described in Lemma  and
the triple (ψ ,φ,ϕ) of Example . �

Example  Let X = [, ] ∪ {n,  · n, sn}∞n= where sn denotes the unique solution of
equation () for x = n for some n ∈ N. Then X is a complete subset of R endowed with
the Euclidean metric. Let us consider on X the binary relation S given by

xS y ⇔ (
x, y ∈ [, ] or (x, y) =

(
n,  · n) for some n ∈N

)
.

Let T and g be the self-maps on X given by

gx = x and Tx =

{
, if x ∈ [, ] ∪ {n + ,  · n, sn}∞n=,
sn , if x ∈ {n}∞n=.

Let x, y ∈ X be such that gxS∗ gy, that is, xS∗ y. If x, y ∈ [, ], then d(Tx, Ty) = d(, ) = ,
so () holds. Assume that (x, y) = (n,  · n) for some n ∈ N. Then

d(Tx, Ty) = d
(
T

(
n), T

(
 · n)) = d(sn , ) = sn ,

d(gx, gy) = d
(
n,  · n) = n.

In particular,

d(Tx, Ty) ≤ d(gx, gy)

 + d(gx, gy) +
√

d(Tx, Ty)d(gx, gy)
( + d(Tx, Ty)d(gx, gy))

⇔ sn ≤ (n)

 + (n) +
√

sn · n

( + sn · n)
,

which is true because sn is the unique solution of equation () for x = n. Hence, the
equality is reached. As a consequence, () holds. As X is (d,S)-regular, Corollary  is
applicable.

We cannot use the contractivity condition

d(Tx, Ty) ≤ d(gx, gy) –
d(gx, gy)

 + d(gx, gy) =
d(gx, gy)

 + d(gx, gy)

in the previous example because the equality

d(Tx, Ty) =
d(gx, gy)

 + d(gx, gy) +
√

d(Tx, Ty)d(gx, gy)
( + d(Tx, Ty)d(gx, gy))
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is reached for some points of the space. Therefore, Corollary  and the Dutta and
Choudhury Theorem  are not applicable. Also notice that

lim
n→∞

d(T(n), T( · n))
d(g(n), g( · n))

= lim
n→∞

sn

n = ,

so we cannot apply any contractivity condition of the type d(Tx, Ty) ≤ λd(gx, gy) for some
λ ∈ [, ).
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18. Khojasteh, F, Shukla, S, Radenović, S: A new approach to the study of fixed point theory for simulation functions.

Filomat 29(6), 1189-1194 (2015)
19. Roldán-López-de-Hierro, AF, Karapınar, E, Roldán-López-de-Hierro, C, Martínez-Moreno, J: Coincidence point

theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 275, 345-355 (2015)
20. Roldán-López-de-Hierro, AF, Shahzad, N: New fixed point theorem under R-contractions. Fixed Point Theory Appl.

2015, Article ID 98 (2015)
21. Turinici, M: Abstract comparison principles and multivariable Gronwall-Bellman inequalities. J. Math. Anal. Appl. 117,

100-127 (1986)
22. Jungck, G: Commuting mappings and fixed points. Am. Math. Mon. 83, 261-263 (1976)
23. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. Dover, New York (2005)



Roldán-López-de-Hierro and Shahzad Fixed Point Theory and Applications  (2016) 2016:55 Page 25 of 25

24. Roldán, A, Martínez-Moreno, J, Roldán, C, Karapınar, E: Multidimensional fixed-point theorems in partially ordered
complete partial metric spaces under (ψ ,ϕ)-contractivity conditions. Abstr. Appl. Anal. 2013, Article ID 634371
(2013)

25. Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969)
26. Karapınar, E, Roldán, A, Martínez-Moreno, J, Roldán, C: Meir-Keeler type multidimensional fixed point theorems in

partially ordered metric spaces. Abstr. Appl. Anal. 2013, Article ID 406026 (2013)
27. Du, W-S, Khojasteh, F: New results and generalizations for approximate fixed point property and their applications.

Abstr. Appl. Anal. 2014, Article ID 581267 (2014)
28. Choudhury, BS, Kundu, A: A coupled coincidence point result in partially ordered metric spaces for compatible

mappings. Nonlinear Anal. 73, 2524-2531 (2010)
29. Luong, NV, Thuan, NX: Coupled points in ordered generalized metric spaces and application to integrodifferential

equations. Comput. Math. Appl. 62(11), 4238-4248 (2011)
30. Hung, NM, Karapınar, E, Luong, NV: Coupled coincidence point theorem for O-compatible mappings via implicit

relation. Abstr. Appl. Anal. 2012, Article ID 796964 (2012)


	Common ﬁxed point theorems under (R,S)-contractivity conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Binary relations on a set
	Some coincidence point theorems under  ( R,S )-contractivity conditions
	Coincidence point theorems under S-continuity
	Coincidence point theorems under S-regularity and condition (C2)
	Coincidence point theorems under S-regularity and condition (C3)

	Common ﬁxed point theorems under  ( R,S ) -contractivity conditions
	A new kind of coincidence point theorems involving R-functions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


