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Abstract
In this paper, we study an iterative scheme for two different types of resolvents of a
monotone operator defined on a Banach space. These resolvents are generalizations
of resolvents of a monotone operator in a Hilbert space. We obtain iterative
approximations of a zero point of a monotone operator generated by the shrinking
projection method with errors in a Banach space. Using our result, we discuss some
applications.
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1 Introduction
Let H be a real Hilbert space and let A ⊂ H × H be a maximal monotone operator. Then
the zero point problem is to find u ∈ H such that

 ∈ Au. (.)

Such a u ∈ H is called a zero point (or a zero) of A. The set of zero points of A is denoted
by A–. This problem is connected with many problems in Nonlinear Analysis and Op-
timization, that is, convex minimization problems, variational inequality problems, equi-
librium problems and so on. A well-known method for solving (.) is the proximal point
algorithm: x ∈ H and

xn+ = Jrn xn, n = , , . . . , (.)

where {rn} ⊂ ],∞[ and Jrn = (I + rnA)–. This algorithm was first introduced by Martinet
[]. In , Rockafellar [] proved that if lim infn rn >  and A– �= ∅, then the sequence
{xn} defined by (.) converges weakly to a solution of the zero point problem. Later, many
researchers have studied this problem; see [–] and others.

On the other hand, Kimura [] introduced the following iterative scheme for finding a
fixed point of nonexpansive mappings by the shrinking projection method with error in a
Hilbert space:
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Theorem . (Kimura []) Let C be a bounded closed convex subset of a Hilbert space
H with D = diam C = supx,y∈C ‖x – y‖ < ∞, and let T : C → H be a nonexpansive mapping
having a fixed point. Let {εn} be a nonnegative real sequence such that ε = lim supn εn < ∞.
For a given point u ∈ H , generate an iterative sequence {xn} as follows: x ∈ C such that
‖x – u‖ < ε, C = C,

Cn+ =
{

z ∈ C : ‖z – Txn‖ ≤ ‖z – xn‖
} ∩ Cn,

xn+ ∈ Cn+ such that ‖u – xn+‖ ≤ d(u, Cn+) + ε
n+

for all n ∈N. Then

lim sup
n→∞

‖xn – Txn‖ ≤ ε.

Further, if ε = , then {xn} converges strongly to PF(T)u ∈ F(T).

We remark that the original result of the theorem above deals with a family of nonexpan-
sive mappings, and the shrinking projection method was first introduced by Takahashi et
al. []. This result was extended to more general Banach spaces by Kimura [] (see also
Ibaraki and Kimura []).

In this paper, we study the shrinking projection method with error introduced by Kimura
[] (see also [, ]). We obtain an iterative approximation of a zero point of a monotone
operator generated by the shrinking projection method with errors in a Banach space.
Using our result, we discuss some applications.

2 Preliminaries
Let E be a real Banach space with its dual E∗. The normalized duality mapping J from E
into E∗ is defined by

Jx =
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖ =

∥∥x∗∥∥}

for each x ∈ E. We also know the following properties: see [, ] for more details.
() Jx �= ∅ for each x ∈ E;
() if E is reflexive, then J is surjective;
() if E is smooth, then the duality mapping J is single valued.
() if E is strictly convex, then J is one-to-one and satisfies that 〈x – y, x∗ – y∗〉 >  for

each x, y ∈ E with x �= y, x∗ ∈ Jx and y∗ ∈ Jy;
() if E is reflexive, smooth, and strictly convex, then the duality mapping J∗ : E∗ → E is

the inverse of J , that is, J∗ = J–;
() if E uniformly smooth, then the duality mapping J is uniformly norm to norm

continuous on each bounded set of E.
Let E be a reflexive and strictly convex Banach space and let C be a nonempty closed

convex subset of E. It is well known that for each x ∈ E there exists a unique point z ∈ C
such that ‖x – z‖ = min{‖x – y‖ : y ∈ C}. Such a point z is denoted by PCx and PC is called
the metric projection of E onto C. The following result is well known; see, for instance,
[].
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Lemma . Let E be a reflexive, smooth, and strictly convex Banach space, let C be a
nonempty closed convex subset of E, let PC be the metric projection of E onto C, let x ∈ E
and let x ∈ C. Then x = PCx if and only if

〈
x – y, J(x – x)

〉 ≥ 

for all y ∈ C.

Let C be a nonempty closed convex subset of a smooth Banach space E. A mapping
T : C → E is said to be of type (P) [] if

〈
Tx – Ty, J(x – Tx) – J(y – Ty)

〉 ≥ 

for each x, y ∈ C. A mapping T : C → E is said to be of type (Q) [, ] if

〈
Tx – Ty, (Jx – JTx) – (Jy – JTy)

〉 ≥ 

for each x, y ∈ C. We denote by F(T) the set of fixed points of T . A point p in C is said
to be an asymptotic fixed point of T if C contains a sequence {xn} such that xn ⇀ p and
xn – Txn → . The set of all asymptotic fixed points of T is denoted by F̂(T). It is clear that
if T : C → E is of type (P) and F(T) is nonempty, then

〈
Tx – p, J(x – Tx)

〉 ≥  (.)

for each x ∈ C and p ∈ F(T). Let E be a reflexive, smooth, and strictly convex Banach
space and let C be a nonempty closed convex subset of E. It is well known that the metric
projection PC of E onto C is a mapping of type (P). We also know that if T : C → E is of
type (Q) and F(T) is nonempty, then

〈Tx – p, Jx – JTx〉 ≥  (.)

for each x ∈ C and p ∈ F(T).
The following results describe the relation between the set of fixed points and that of

asymptotic fixed points for each type of mapping.

Lemma . (Aoyama-Kohsaka-Takahashi []) Let E be a smooth Banach space, let C be
a nonempty closed convex subset of E and let T : C → E be a mapping of type (P). If F(T)
is nonempty, then F(T) is closed and convex and F(T) = F̂(T).

Lemma . (Kohsaka-Takahashi []) Let E be a strictly convex Banach space whose norm
is uniformly Gâteaux differentiable, let C be a nonempty closed convex subset of E and let
T : C → E be a mapping of type (Q). If F(T) is nonempty, then F(T) is closed and convex
and F(T) = F̂(T).

In , Tsukada [] proved the following theorem for the metric projections in a Ba-
nach space. For the exact definition of Mosco limit M-limn Cn, see [].
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Theorem . (Tsukada []) Let E be a reflexive and strictly convex Banach space and
let {Cn} be a sequence of nonempty closed convex subsets of E. If C = M-limn Cn exists and
is nonempty, then for each x ∈ E, {PCn x} converges weakly to PC x, where PCn is the metric
projection of E onto Cn. Moreover, if E has the Kadec-Klee property, the convergence is in
the strong topology.

One of the simplest example of the sequence {Cn} satisfying the condition in this theo-
rem above is a decreasing sequence with respect to inclusion; Cn+ ⊂ Cn for each n ∈ N.
In this case, M-lim Cn =

⋂∞
n= Cn (see [, , , ] for more details).

Let E be a smooth Banach space and consider the following function V : E × E → R

defined by

V (x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ (.)

for each x, y ∈ E. We know the following properties:
() (‖x‖ – ‖y‖) ≤ V (x, y) ≤ (‖x‖ + ‖y‖) for each x, y ∈ E;
() V (x, y) + V (y, x) = 〈x – y, Jx – Jy〉 for each x, y ∈ E;
() V (x, y) = V (x, z) + V (z, y) + 〈x – z, Jz – Jy〉 for each x, y, z ∈ E;
() if E is additionally assumed to be strictly convex, then V (x, y) =  if and only if x = y.

Lemma . (Kamimura-Takahashi []) Let E be a smooth and uniformly convex Banach
space and let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If
limn V (xn, yn) = , then limn ‖xn – yn‖ = .

The following results show the existence of mappings g
r

and gr , related to the convex
structures of a Banach space E. These mappings play important roles in our result.

Theorem . (Xu []) Let E be a Banach space, r ∈ ],∞[ and Br = {x ∈ E : ‖x‖ ≤ r}.
Then

(i) if E is uniformly convex, then there exists a continuous, strictly increasing, and
convex function g

r
: [, r] → [,∞[ with g

r
() =  such that

∥∥αx + ( – α)y
∥∥ ≤ α‖x‖ + ( – α)‖y‖ – α( – α)g

r

(‖x – y‖)

for all x, y ∈ Br and α ∈ [, ];
(ii) if E is uniformly smooth, then there exists a continuous, strictly increasing, and

convex function gr : [, r] → [,∞[ with gr() =  such that

∥∥αx + ( – α)y
∥∥ ≥ α‖x‖ + ( – α)‖y‖ – α( – α)gr

(‖x – y‖)

for all x, y ∈ Br and α ∈ [, ].

Theorem . (Kimura []) Let E be a uniformly smooth and uniformly convex Banach
space and let r > . Then the function g

r
and gr in Theorem . satisfies

g
r

(‖x – y‖) ≤ V (x, y) ≤ gr
(‖x – y‖)

for all x, y ∈ Br .
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3 Approximation theorem for the resolvents of type (P)
In this section, we discuss an iterative scheme of resolvents of a monotone operator de-
fined on a Banach space. Let E be a reflexive, smooth, and strictly convex Banach space.
An operator A ⊂ E × E∗ with domain D(A) = {x ∈ E : Ax �= ∅} and range R(A) =

⋃{Ax : x ∈
D(A)} is said to be monotone if 〈x – y, x∗ – y∗〉 ≥  for any (x, x∗), (y, y∗) ∈ A. A monotone
operator A is said to be maximal if A = B whenever B ⊂ E × E∗ is a monotone operator
such that A ⊂ B. We denote by A– the set {z ∈ D(A) :  ∈ Az}.

Let C be a nonempty closed convex subset of E, let r >  and let A ⊂ E × E∗ be a mono-
tone operator satisfying

D(A) ⊂ C ⊂ R
(
I + rJ–A

)
(.)

for r > . It is well known that if A is maximal monotone operator, then R(I +rJ–A) = E; see
[–]. Hence, if A is maximal monotone, then (.) holds for C = D(A). We also know
that D(A) is convex; see []. If A satisfies (.) for r > , we can define the resolvent (of
type (P)) Pr : C → D(A) of A by

Prx =
{

z ∈ E :  ∈ J(z – x) + rAz
}

(.)

for all x ∈ C. In other words, Prx = (I + rJ–A)–x for all x ∈ C. The Yosida approximation
Ar : C → E∗ is also defined Arx = J(x – Prx)/r for all x ∈ C. We know the following; see, for
instance, [, , ]:

() Pr is mapping of type (P) from C into D(A);
() (Prx, Arx) ∈ A for all x ∈ C;
() ‖Arx‖ ≤ |Ax| := inf{‖x∗‖ : x∗ ∈ Ax} for all x ∈ D(A);
() F(Pr) = A–.

We obtain an approximation theorem for a zero point of a monotone operator in a smooth
and uniformly convex Banach space by using the resolvent of type (P).

Theorem . Let E be a smooth and uniformly convex Banach space and let A ⊂ E ×
E∗ be a monotone operator with A– �= ∅. Let {rn} be a positive real sequence such that
lim infn rn > , let C be a nonempty bounded closed convex subset of E satisfying

D(A) ⊂ C ⊂ R
(
I + rnJ–A

)

for all n ∈ N and let r ∈ ],∞[ such that C ⊂ Br . Let {δn} be a nonnegative real sequence
and let δ = lim supn δn. For a given point u ∈ E, generate a sequence {xn} by x = x ∈ C,
C = C, and

yn = Prn xn,

Cn+ =
{

z ∈ C :
〈
yn – z, J(xn – yn)

〉 ≥ 
} ∩ Cn,

xn+ ∈ {
z ∈ C : ‖u – z‖ ≤ d(u, Cn+) + δn+

} ∩ Cn+,

for all n ∈N. Then

lim sup
n→∞

‖xn – yn‖ ≤ g–
r

(δ).

Moreover, if δ = , then {xn} converges strongly to PA–u.
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Proof Since Cn includes A– �= ∅ for all n ∈ N, {Cn} is a sequence of nonempty closed
convex subsets and, by definition, it is decreasing with respect to inclusion. Let pn = PCn u
for all n ∈ N. Then, by Theorem ., we see that {pn} converges strongly to p = PC u,
where C =

⋂∞
n= Cn. Since xn ∈ Cn and d(u, Cn) = ‖u – pn‖, we see that

‖u – xn‖ ≤ ‖u – pn‖ + δn

for every n ∈N \ {}. From Theorem .(i), we see that for α ∈ ], [,

‖pn – u‖ ≤ ∥∥αpn + ( – α)xn – u
∥∥

≤ α‖pn – u‖ + ( – α)‖xn – u‖ – α( – α)g
r

(‖pn – xn‖
)

and thus

αg
r

(‖pn – xn‖
) ≤ ‖xn – u‖ – ‖pn – u‖ ≤ δn.

As α → , we see that g
r
(‖pn –xn‖) ≤ δn and thus ‖pn –xn‖ ≤ g–

r
(δn). Using the definition

of pn, we see that pn+ ∈ Cn+ and thus

〈
yn – pn+, J(xn – yn)

〉 ≥ ,

or equivalently,

〈
xn – pn+, J(xn – yn)

〉 ≥ ‖xn – yn‖.

Hence we obtain

‖xn – yn‖ ≤ ‖xn – pn+‖ ≤ ‖xn – pn‖ + ‖pn – pn+‖ ≤ g–
r

(δn) + ‖pn – pn+‖

for every n ∈N \ {}. Since limn pn = p and lim supn δn = δ, we see that

lim sup
n→∞

‖xn – yn‖ ≤ g–
r

(δ).

For the latter part of the theorem, suppose that δ = . Then we see that

lim sup
n→∞

‖xn – yn‖ ≤ g–
r

() = 

and

lim sup
n→∞

g
r

(‖xn – pn‖
) ≤ lim sup

n→∞
δn = .

Therefore, we obtain

lim
n→∞‖xn – yn‖ =  and lim

n→∞‖xn – pn‖ = .
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Hence, we also obtain

lim
n→∞ xn = p and lim

n→∞ yn = p. (.)

So, from

‖yn – Pr yn‖ = r‖Ar yn‖ ≤ r|Ayn| ≤ r

∥∥∥∥
J(xn – yn)

rn

∥∥∥∥ = r

∥∥∥∥
xn – yn

rn

∥∥∥∥.

and lim infn rn > , we see that limn ‖yn – Pr yn‖ = . Then, by Lemma . and (.), we ob-
tain xn → p ∈ F̂(Pr ) = F(Pr ) = A–. Since A– ⊂ C, we get p = PC u = PA–u, which
completes the proof. �

4 Approximation theorem for the resolvents of type (Q)
We next consider an iterative scheme of resolvents of a monotone operator which is dif-
ferent type of Section , in a Banach space. Let C be a nonempty closed convex subset of
a reflexive, smooth, and strictly convex Banach space E, let r >  and let A ⊂ E × E∗ be a
monotone operator satisfying

D(A) ⊂ C ⊂ J–R(J + rA) (.)

for r > . It is well known that if A is maximal monotone operator, then J–R(J +rA) = E; see
[–]. Hence, if A is maximal monotone, then (.) holds for C = D(A). We also know
that D(A) is convex; see []. If A satisfies (.) for r > , then we can define the resolvent
(of type (Q)) Qr : C → D(A) of A by

Qrx = {z ∈ E : Jx ∈ Jz + rAz} (.)

for all x ∈ C. In other words, Qrx = (J + rA)–Jx for all x ∈ C. We know the following; see,
for instance, [, ]:

() Qr is mapping of type (Q) from C into D(A);
() (Jx – JQrx)/r ∈ AQrx for all x ∈ C;
() F(Qr) = A–.

Before our result, we need the following lemma.

Lemma . Let E be a reflexive, smooth, and strictly convex Banach space, and let A ⊂
E × E∗ be a monotone operator. Let r >  and C be a closed convex subset of E satisfying
(.) for r > . Then the following holds:

V (x, Qrx) + V (Qrx, x) ≤ r
〈
x – Qrx, x∗〉

for all (x, x∗) ∈ A.

Proof Let (x, x∗) ∈ A. Since (Jx – JQrx)/r ∈ AQrx, we see that

 ≤
〈
x – Qrx, x∗ –

Jx – JQrx
r

〉
,
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〈
x – Qrx,

Jx – JQrx
r

〉
≤ 〈

x – Qrx, x∗〉,

〈x – Qrx, Jx – JQrx〉 ≤ r
〈
x – Qrx, x∗〉.

From the property of V , we see that

V (x, Qrx) + V (Qrx, x) = 〈x – Qrx, Jx – JQrx〉 ≤ r
〈
x – Qrx, x∗〉

for all (x, x∗) ∈ A. �

We obtain an approximation theorem for a zero point of a monotone operator in a
smooth and uniformly convex Banach space by using the resolvent of type (Q).

Theorem . Let E be a uniformly smooth and uniformly convex Banach space and let
A ⊂ E × E∗ be a monotone operator with A– �= ∅. Let {rn} be a positive real numbers such
that lim infn rn > , let C be a nonempty bounded closed convex subset of E satisfying

D(A) ⊂ C ⊂ J–R(J + rnA)

for all n ∈ N and let r ∈ ],∞[ such that C ⊂ Br . Let {δn} be a nonnegative real sequence
and let δ = lim supn δn. For a given point u ∈ E, generate a sequence {xn} by x = x ∈ C,
C = C, and

yn = Qrn xn,

Cn+ =
{

z ∈ C : 〈yn – z, Jxn – Jyn〉 ≥ 
} ∩ Cn,

xn+ ∈ {
z ∈ C : ‖u – z‖ ≤ d(u, Cn+) + δn+

} ∩ Cn+,

for all n ∈N. Then

lim sup
n→∞

‖xn – yn‖ ≤ g–
r

(
gr

(
g–

r
(δ)

))
.

Moreover, if δ = , then {xn} converges strongly to PA–u.

Proof Since Cn includes A– �= ∅ for all n ∈ N, {Cn} is a sequence of nonempty closed
convex subsets and, by definition, it is decreasing with respect to inclusion. Let pn = PCn u
for all n ∈ N. Then, by Theorem ., we see that {pn} converges strongly to p = PC u,
where C =

⋂∞
n= Cn. Since xn ∈ Cn and d(u, Cn) = ‖u – pn‖, we see that

‖u – xn‖ ≤ ‖u – pn‖ + δn

for every n ∈N \ {}. From Theorem .(i), we see that for α ∈ ], [,

‖pn – u‖ ≤ ∥∥αpn + ( – α)xn – u
∥∥

≤ α‖pn – u‖ + ( – α)‖xn – u‖ – α( – α)g
r

(‖pn – xn‖
)
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and thus

αg
r

(‖pn – xn‖
) ≤ ‖xn – u‖ – ‖pn – u‖ ≤ δn.

As α → , we see that g
r
(‖pn – xn‖) ≤ δn and thus ‖pn – xn‖ ≤ g–

r
(δn). Using the definition

of pn, we see that pn+ ∈ Cn+ and thus

〈yn – pn+, Jxn – Jyn〉 ≥ .

From the property of the function V , we see that

 ≤ 〈yn – pn+, Jxn – Jyn〉
= 〈pn+ – yn, Jyn – Jxn〉
= V (pn+, xn) – V (pn+, yn) – V (yn, xn)

≤ V (pn+, xn) – V (yn, xn).

By Theorem ., we obtain

V (yn, xn) ≤ V (pn+, xn)

= V (pn+, pn) + V (pn, xn) + 〈pn+ – pn, Jpn – Jxn〉
≤ V (pn+, pn) + gr

(‖pn – xn‖
)

+ 〈pn+ – pn, Jpn – Jxn〉
≤ V (pn+, pn) + gr

(
g–

r
(δn)

)
+ 〈pn+ – pn, Jpn – Jxn〉.

Since lim supn δn = δ and pn → p, we see that

lim sup
n→∞

V (yn, xn) ≤ gr
(
g–

r
(δ)

)
.

Therefore, by Theorem ., we see that

lim sup
n→∞

‖xn – yn‖ ≤ lim sup
n→∞

g–
r

(
V (yn, xn)

) ≤ g–
r

(
gr

(
g–

r
(δ)

))
.

For the latter part of the theorem, suppose that δ = . Then we see that

lim sup
n→∞

‖xn – yn‖ ≤ g–
r

(
gr

(
g–

r
()

))
= 

and

lim sup
n→∞

g
r

(‖xn – pn‖
) ≤ lim sup

n→∞
δn = .

Therefore, we obtain

lim
n→∞‖xn – yn‖ =  and lim

n→∞‖xn – pn‖ = .



Ibaraki Fixed Point Theory and Applications  (2016) 2016:48 Page 10 of 14

Hence, we also obtain

lim
n→∞ xn = p and lim

n→∞ yn = p. (.)

Since E is uniformly smooth, the duality mapping J is uniformly norm-to-norm continu-
ous on each bounded subset on E. Therefore, we obtain

lim
n→∞‖Jxn – Jyn‖ = . (.)

From Lemma . we see that

V (yn, Qr yn) ≤ V (yn, Qr yn) + V (Qr yn, yn) ≤ r
〈
yn – Qr yn, x∗〉

for all x∗ ∈ Ayn. From yn, Qr yn ∈ D(A) ⊂ C ⊂ Br and (Jxn – Jyn)/rn ∈ Ayn, we see that

V (yn, Qr yn) ≤ r

〈
yn – Qr yn,

Jxn – Jyn

rn

〉

≤ r‖yn – Qr yn‖
∥∥∥∥

Jxn – Jyn

rn

∥∥∥∥

≤ r
(‖yn‖ + ‖Qr yn‖

)
∥∥∥∥

Jxn – Jyn

rn

∥∥∥∥

= rr
∥∥∥∥

Jxn – Jyn

rn

∥∥∥∥.

Since lim infn rn >  and (.), we obtain

lim sup
n→∞

V (yn, Qr yn) ≤ .

This implies limn V (yn, Qr yn) = . From Theorem ., we see that

lim
n→∞‖yn – Qr yn‖ = .

Then, by Lemma . and (.), we see that xn → p ∈ F̂(Qr ) = F(Qr ) = A–. Since A– ⊂
C, we get p = PC u = PA–u, which completes the proof. �

5 Applications
In this section, we give some applications of Theorems . and .. We first study the
convex minimization problem: Let E be a reflexive, smooth, and strictly convex Banach
space with its dual E∗ and let f : E → ]–∞,∞] be a proper lower semicontinuous convex
function. Then the subdifferential ∂f of f is defined as follows:

∂f (x) =
{

x∗ ∈ E∗ : f (x) +
〈
y – x, x∗〉 ≤ f (y),∀y ∈ E

}

for all x ∈ E. By Rockafellar’s theorem [, ], the subdifferential ∂f ⊂ E × E∗ is maximal
monotone. It is easy to see that (∂f )– = argmin{f (x) : x ∈ E}. It is also known that, see,
for instance, [, , ],
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D(∂f ) ⊂ D(f ) ⊂ D(∂f ). (.)

As a direct consequence of Theorems . and ., we can show the following corollaries.

Corollary . Let E be a smooth and uniformly convex Banach space, let f : E → ]–∞,∞]
be a proper lower semicontinuous convex function with D(f ) being bounded, and let r ∈
],∞[ such that D(f ) ⊂ Br . Let {δn} be a nonnegative real sequence and let δ = lim supn δn.
For a given point u ∈ E, generate a sequence {xn} by x = x ∈ D(f ), C = D(f ), and

yn = argmin
y∈E

{
f (y) +


rn

‖y – xn‖
}

,

Cn+ =
{

z ∈ D(f ) :
〈
yn – z, J(xn – yn)

〉 ≥ 
} ∩ Cn,

xn+ ∈ {
z ∈ D(f ) : ‖u – z‖ ≤ d(u, Cn+) + δn+

} ∩ Cn+,

for all n ∈N, where {rn} ⊂ ],∞[ such that lim infn rn > . If (∂f )– is nonempty, then

lim sup
n→∞

‖xn – yn‖ ≤ g–
r

(δ).

Moreover, if δ = , then {xn} converges strongly to P(∂f )–u.

Proof Put C = D(f ). Since the subdifferential ∂f ⊂ E × E∗ is maximal monotone, we have
E = R(I + r∂f ) for all r >  and hence, from (.), we see that

D(∂f ) ⊂ D(∂f ) = D(f ) = C ⊂ E = R(I + r∂f )

for all r > .
Fix r >  and z ∈ C. Let Pr be the resolvent (of type (P)) of ∂f , then we also know that

Prz = argmin
y∈E

{
f (y) +


r

‖y – z‖
}

.

Therefore, we obtain the desired result by Theorem .. �

Corollary . Let E be a uniformly smooth and uniformly convex Banach space, let f :
E → ]–∞,∞] be a proper lower semicontinuous convex function with D(f ) being bounded
and let r ∈ ],∞[ such that D(f ) ⊂ Br . Let {δn} be a nonnegative real sequence and let δ =
lim supn δn. For a given point u ∈ E, generate a sequence {xn} by x = x ∈ D(f ), C = D(f ), and

yn = argmin
y∈E

{
f (y) +


rn

‖y‖ –

rn

〈y, Jxn〉
}

,

Cn+ =
{

z ∈ D(f ) : 〈yn – z, Jxn – Jyn〉 ≥ 
} ∩ Cn,

xn+ ∈ {
z ∈ D(f ) : ‖u – z‖ ≤ d(u, Cn+) + δn+

} ∩ Cn+,

for all n ∈N, where {rn} ⊂ ],∞[ such that lim infn rn > . If (∂f )– is nonempty, then

lim sup
n→∞

‖xn – yn‖ ≤ g–
r

(
gr

(
g–

r
(δ)

))
.

Moreover, if δ = , then {xn} converges strongly to P(∂f )–u.
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Proof Fix r >  and z ∈ C. Let Qr be the resolvent (of type (Q)) of ∂f , then we also know
that

Qrz = argmin
y∈E

{
f (y) +


r

‖y‖ –

r
〈y, Jz〉

}
.

In the same way as Corollary ., we obtain the desired result by Theorem .. �

Next, we study the approximation of fixed points for mappings of type (P) and (Q). Be-
fore show our applications, we need the following results.

Lemma . ([]) Let E be a reflexive, smooth, and strictly convex Banach space, let C be
a nonempty subset of E, let T : C → E be a mapping, and let AT ⊂ E × E∗ be an operator
defined by AT = J(T– – I). Then T is of mapping of type (P) if and only if AT is monotone.
In this case T = (I + J–AT )–.

Lemma . ([]) Let E be a reflexive, smooth, and strictly convex Banach space, let C be a
nonempty subset of E and let T : C → E be a mapping, and let AT ⊂ E × E∗ be an operator
defined by AT = JT– – J . Then T is a mapping of type (Q) if and only if AT is monotone. In
this case T = (J + AT )–J .

As a direct consequence of Theorems . and ., we can show the following corollaries.

Corollary . Let E be a smooth and uniformly convex Banach space, let C be a bounded
closed convex subset of E. Let T : C → C be a mapping of type (P) with F(T) being nonempty
and let r ∈ ],∞[ such that C ⊂ Br . Let {δn} be a nonnegative real sequence and let δ =
lim supn δn. For a given point u ∈ E, generate a sequence {xn} by x = x ∈ C, C = C, and

Cn+ =
{

z ∈ C :
〈
Txn – z, J(xn – Txn)

〉 ≥ 
} ∩ Cn,

xn+ ∈ {
z ∈ C : ‖u – z‖ ≤ d(u, Cn+) + δn+

} ∩ Cn+,

for all n ∈N, where {rn} ⊂ (,∞) such that lim infn rn > . Then

lim sup
n→∞

‖xn – Txn‖ ≤ g–
r

(δ).

Moreover, if δ = , then {xn} converges strongly to PF(T)u.

Proof Put AT = J(T– – I) and rn =  for all n ∈ N. From Lemma ., we see that T is the
resolvent (of type (P)) of AT for  and

D(AT ) = R(T) ⊂ C = D(T) = R
(
I + J–AT

)
.

Therefore, we obtain the desired result by Theorem .. �

Corollary . Let E be a uniformly smooth and uniformly convex Banach space, let C be a
bounded closed convex subset of E. Let T : C → C be a mapping of type (Q) with F(T) being
nonempty and let r ∈ ],∞[ such that C ⊂ Br . Let {δn} be a nonnegative real sequence and
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let δ = lim supn δn. For a given point u ∈ E, generate a sequence {xn} by x = x ∈ C, C = C,
and

Cn+ =
{

z ∈ C : 〈Txn – z, Jxn – JTxn〉 ≥ 
} ∩ Cn,

xn+ ∈ {
z ∈ C : ‖u – z‖ ≤ d(u, Cn+) + δn+

} ∩ Cn+,

for all n ∈N. Then

lim sup
n→∞

‖xn – Txn‖ ≤ g–
r

(
gr

(
g–

r
(δ)

))
.

Moreover, if δ = , then {xn} converges strongly to PF(T)u.

Proof In the same way as Corollary ., we obtain the desired result by Lemma . and
Theorem .. �
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