RESEARCH

Open Access

Approximation of a zero point of monotone operators with nonsummable errors

Takanori Ibaraki*

^{*}Correspondence: ibaraki@ynu.ac.jp Department of Mathematics Education, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan

Springer

Abstract

In this paper, we study an iterative scheme for two different types of resolvents of a monotone operator defined on a Banach space. These resolvents are generalizations of resolvents of a monotone operator in a Hilbert space. We obtain iterative approximations of a zero point of a monotone operator generated by the shrinking projection method with errors in a Banach space. Using our result, we discuss some applications.

MSC: 47H05; 47H09; 47J25

Keywords: resolvent; monotone operator; metric projection

1 Introduction

Let *H* be a real Hilbert space and let $A \subset H \times H$ be a maximal monotone operator. Then the zero point problem is to find $u \in H$ such that

$$0 \in Au. \tag{1.1}$$

Such a $u \in H$ is called a zero point (or a zero) of A. The set of zero points of A is denoted by $A^{-1}0$. This problem is connected with many problems in Nonlinear Analysis and Optimization, that is, convex minimization problems, variational inequality problems, equilibrium problems and so on. A well-known method for solving (1.1) is the proximal point algorithm: $x_1 \in H$ and

$$x_{n+1} = J_{r_n} x_n, \quad n = 1, 2, \dots,$$
 (1.2)

where $\{r_n\} \subset [0, \infty[$ and $J_{r_n} = (I + r_n A)^{-1}$. This algorithm was first introduced by Martinet [1]. In 1976, Rockafellar [2] proved that if $\liminf_n r_n > 0$ and $A^{-1}0 \neq \emptyset$, then the sequence $\{x_n\}$ defined by (1.2) converges weakly to a solution of the zero point problem. Later, many researchers have studied this problem; see [3–9] and others.

On the other hand, Kimura [10] introduced the following iterative scheme for finding a fixed point of nonexpansive mappings by the shrinking projection method with error in a Hilbert space:

Theorem 1.1 (Kimura [10]) Let *C* be a bounded closed convex subset of a Hilbert space *H* with *D* = diam *C* = sup_{*x,y*∈*C*} $||x - y|| < \infty$, and let *T* : *C* → *H* be a nonexpansive mapping having a fixed point. Let $\{\epsilon_n\}$ be a nonnegative real sequence such that $\epsilon_0 = \limsup_n \epsilon_n < \infty$. For a given point $u \in H$, generate an iterative sequence $\{x_n\}$ as follows: $x_1 \in C$ such that $||x_1 - u|| < \epsilon_1, C_1 = C$,

$$C_{n+1} = \left\{ z \in C : \|z - Tx_n\| \le \|z - x_n\| \right\} \cap C_n,$$

$$x_{n+1} \in C_{n+1} \quad such \ that \quad \|u - x_{n+1}\|^2 \le d(u, C_{n+1})^2 + \epsilon_{n+1}^2$$

for all $n \in \mathbb{N}$. Then

 $\limsup_{n\to\infty}\|x_n-Tx_n\|\leq 2\epsilon_0.$

Further, if $\epsilon_0 = 0$ *, then* $\{x_n\}$ *converges strongly to* $P_{F(T)}u \in F(T)$ *.*

We remark that the original result of the theorem above deals with a family of nonexpansive mappings, and the shrinking projection method was first introduced by Takahashi *et al.* [11]. This result was extended to more general Banach spaces by Kimura [12] (see also Ibaraki and Kimura [13]).

In this paper, we study the shrinking projection method with error introduced by Kimura [10] (see also [12, 14]). We obtain an iterative approximation of a zero point of a monotone operator generated by the shrinking projection method with errors in a Banach space. Using our result, we discuss some applications.

2 Preliminaries

Let *E* be a real Banach space with its dual E^* . The normalized duality mapping *J* from *E* into E^* is defined by

$$Jx = \left\{ x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2 \right\}$$

for each $x \in E$. We also know the following properties: see [15, 16] for more details.

- (1) $Jx \neq \emptyset$ for each $x \in E$;
- (2) if *E* is reflexive, then *J* is surjective;
- (3) if E is smooth, then the duality mapping J is single valued.
- (4) if *E* is strictly convex, then *J* is one-to-one and satisfies that ⟨x − y, x* − y*⟩ > 0 for each x, y ∈ E with x ≠ y, x* ∈ Jx and y* ∈ Jy;
- (5) if *E* is reflexive, smooth, and strictly convex, then the duality mapping $J_* : E^* \to E$ is the inverse of *J*, that is, $J_* = J^{-1}$;
- (6) if *E* uniformly smooth, then the duality mapping *J* is uniformly norm to norm continuous on each bounded set of *E*.

Let *E* be a reflexive and strictly convex Banach space and let *C* be a nonempty closed convex subset of *E*. It is well known that for each $x \in E$ there exists a unique point $z \in C$ such that $||x - z|| = \min\{||x - y|| : y \in C\}$. Such a point *z* is denoted by $P_C x$ and P_C is called the metric projection of *E* onto *C*. The following result is well known; see, for instance, [16].

Lemma 2.1 Let *E* be a reflexive, smooth, and strictly convex Banach space, let *C* be a nonempty closed convex subset of *E*, let P_C be the metric projection of *E* onto *C*, let $x \in E$ and let $x_0 \in C$. Then $x_0 = P_C x$ if and only if

$$\langle x_0 - y, J(x - x_0) \rangle \ge 0$$

for all $y \in C$.

Let *C* be a nonempty closed convex subset of a smooth Banach space *E*. A mapping $T: C \rightarrow E$ is said to be of type (P) [17] if

$$\langle Tx - Ty, J(x - Tx) - J(y - Ty) \rangle \ge 0$$

for each $x, y \in C$. A mapping $T : C \to E$ is said to be of type (Q) [17, 18] if

$$\langle Tx - Ty, (Jx - JTx) - (Jy - JTy) \rangle \ge 0$$

for each $x, y \in C$. We denote by F(T) the set of fixed points of T. A point p in C is said to be an asymptotic fixed point of T if C contains a sequence $\{x_n\}$ such that $x_n \rightharpoonup p$ and $x_n - Tx_n \rightarrow 0$. The set of all asymptotic fixed points of T is denoted by $\hat{F}(T)$. It is clear that if $T : C \rightarrow E$ is of type (P) and F(T) is nonempty, then

$$\langle Tx - p, J(x - Tx) \rangle \ge 0 \tag{2.1}$$

for each $x \in C$ and $p \in F(T)$. Let *E* be a reflexive, smooth, and strictly convex Banach space and let *C* be a nonempty closed convex subset of *E*. It is well known that the metric projection P_C of *E* onto *C* is a mapping of type (P). We also know that if $T : C \to E$ is of type (Q) and F(T) is nonempty, then

$$\langle Tx - p, Jx - JTx \rangle \ge 0 \tag{2.2}$$

for each $x \in C$ and $p \in F(T)$.

The following results describe the relation between the set of fixed points and that of asymptotic fixed points for each type of mapping.

Lemma 2.2 (Aoyama-Kohsaka-Takahashi [19]) Let *E* be a smooth Banach space, let *C* be a nonempty closed convex subset of *E* and let $T : C \to E$ be a mapping of type (*P*). If F(T) is nonempty, then F(T) is closed and convex and $F(T) = \hat{F}(T)$.

Lemma 2.3 (Kohsaka-Takahashi [18]) Let E be a strictly convex Banach space whose norm is uniformly Gâteaux differentiable, let C be a nonempty closed convex subset of E and let $T: C \rightarrow E$ be a mapping of type (Q). If F(T) is nonempty, then F(T) is closed and convex and $F(T) = \hat{F}(T)$.

In 1984, Tsukada [20] proved the following theorem for the metric projections in a Banach space. For the exact definition of Mosco limit M-lim_{*n*} C_n , see [21]. **Theorem 2.4** (Tsukada [20]) Let *E* be a reflexive and strictly convex Banach space and let {*C_n*} be a sequence of nonempty closed convex subsets of *E*. If *C*₀ = M-lim_n *C_n* exists and is nonempty, then for each $x \in E$, {*P_{Cn}x*} converges weakly to *P_{C0}x*, where *P_{Cn}* is the metric projection of *E* onto *C_n*. Moreover, if *E* has the Kadec-Klee property, the convergence is in the strong topology.

One of the simplest example of the sequence $\{C_n\}$ satisfying the condition in this theorem above is a decreasing sequence with respect to inclusion; $C_{n+1} \subset C_n$ for each $n \in \mathbb{N}$. In this case, M-lim $C_n = \bigcap_{n=1}^{\infty} C_n$ (see [7, 12, 21, 22] for more details).

Let *E* be a smooth Banach space and consider the following function $V : E \times E \rightarrow \mathbb{R}$ defined by

$$V(x, y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2$$
(2.3)

for each $x, y \in E$. We know the following properties:

- (1) $(||x|| ||y||)^2 \le V(x, y) \le (||x|| + ||y||)^2$ for each $x, y \in E$;
- (2) $V(x, y) + V(y, x) = 2\langle x y, Jx Jy \rangle$ for each $x, y \in E$;
- (3) $V(x,y) = V(x,z) + V(z,y) + 2\langle x z, Jz Jy \rangle$ for each $x, y, z \in E$;
- (4) if *E* is additionally assumed to be strictly convex, then V(x, y) = 0 if and only if x = y.

Lemma 2.5 (Kamimura-Takahashi [23]) Let *E* be a smooth and uniformly convex Banach space and let $\{x_n\}$ and $\{y_n\}$ be sequences in *E* such that either $\{x_n\}$ or $\{y_n\}$ is bounded. If $\lim_n V(x_n, y_n) = 0$, then $\lim_n ||x_n - y_n|| = 0$.

The following results show the existence of mappings \underline{g}_r and \overline{g}_r , related to the convex structures of a Banach space *E*. These mappings play important roles in our result.

Theorem 2.6 (Xu [24]) Let *E* be a Banach space, $r \in]0, \infty[$ and $B_r = \{x \in E : ||x|| \le r\}$. *Then*

(i) if E is uniformly convex, then there exists a continuous, strictly increasing, and convex function g_x: [0,2r] → [0,∞[with g_y(0) = 0 such that

$$\left\|\alpha x + (1-\alpha)y\right\|^2 \le \alpha \|x\|^2 + (1-\alpha)\|y\|^2 - \alpha(1-\alpha)\underline{g}_r(\|x-y\|)$$

for all $x, y \in B_r$ *and* $\alpha \in [0, 1]$ *;*

(ii) if *E* is uniformly smooth, then there exists a continuous, strictly increasing, and convex function $\overline{g}_r : [0, 2r] \to [0, \infty[$ with $\overline{g}_r(0) = 0$ such that

$$\|\alpha x + (1 - \alpha)y\|^{2} \ge \alpha \|x\|^{2} + (1 - \alpha)\|y\|^{2} - \alpha(1 - \alpha)\overline{g}_{r}(\|x - y\|)$$

for all $x, y \in B_r$ and $\alpha \in [0, 1]$.

Theorem 2.7 (Kimura [12]) Let *E* be a uniformly smooth and uniformly convex Banach space and let r > 0. Then the function g_{u} and \overline{g}_{r} in Theorem 2.6 satisfies

$$g_{u}(||x-y||) \leq V(x,y) \leq \overline{g}_{r}(||x-y||)$$

for all $x, y \in B_r$.

3 Approximation theorem for the resolvents of type (P)

In this section, we discuss an iterative scheme of resolvents of a monotone operator defined on a Banach space. Let *E* be a reflexive, smooth, and strictly convex Banach space. An operator $A \subset E \times E^*$ with domain $D(A) = \{x \in E : Ax \neq \emptyset\}$ and range $R(A) = \bigcup \{Ax : x \in D(A)\}$ is said to be monotone if $\langle x - y, x^* - y^* \rangle \ge 0$ for any $(x, x^*), (y, y^*) \in A$. A monotone operator *A* is said to be maximal if A = B whenever $B \subset E \times E^*$ is a monotone operator such that $A \subset B$. We denote by $A^{-1}0$ the set $\{z \in D(A) : 0 \in Az\}$.

Let *C* be a nonempty closed convex subset of *E*, let r > 0 and let $A \subset E \times E^*$ be a monotone operator satisfying

$$D(A) \subset C \subset R(I + rJ^{-1}A) \tag{3.1}$$

for r > 0. It is well known that if A is maximal monotone operator, then $R(I + rJ^{-1}A) = E$; see [25–27]. Hence, if A is maximal monotone, then (3.1) holds for $C = \overline{D(A)}$. We also know that $\overline{D(A)}$ is convex; see [28]. If A satisfies (3.1) for r > 0, we can define the resolvent (of type (P)) $P_r : C \to D(A)$ of A by

$$P_r x = \{ z \in E : 0 \in J(z - x) + rAz \}$$
(3.2)

for all $x \in C$. In other words, $P_r x = (I + rJ^{-1}A)^{-1}x$ for all $x \in C$. The Yosida approximation $A_r : C \to E^*$ is also defined $A_r x = J(x - P_r x)/r$ for all $x \in C$. We know the following; see, for instance, [15, 17, 19]:

- (1) P_r is mapping of type (P) from *C* into D(A);
- (2) $(P_r x, A_r x) \in A$ for all $x \in C$;
- (3) $||A_r x|| \le |Ax| := \inf\{||x^*|| : x^* \in Ax\}$ for all $x \in D(A)$;
- (4) $F(P_r) = A^{-1}0$.

We obtain an approximation theorem for a zero point of a monotone operator in a smooth and uniformly convex Banach space by using the resolvent of type (P).

Theorem 3.1 Let *E* be a smooth and uniformly convex Banach space and let $A \subset E \times E^*$ be a monotone operator with $A^{-1}0 \neq \emptyset$. Let $\{r_n\}$ be a positive real sequence such that $\liminf_n r_n > 0$, let *C* be a nonempty bounded closed convex subset of *E* satisfying

 $D(A) \subset C \subset R(I + r_n J^{-1} A)$

for all $n \in \mathbb{N}$ and let $r \in]0, \infty[$ such that $C \subset B_r$. Let $\{\delta_n\}$ be a nonnegative real sequence and let $\delta_0 = \limsup_n \delta_n$. For a given point $u \in E$, generate a sequence $\{x_n\}$ by $x_1 = x \in C$, $C_1 = C$, and

$$y_n = P_{r_n} x_n,$$

$$C_{n+1} = \left\{ z \in C : \left\{ y_n - z, J(x_n - y_n) \right\} \ge 0 \right\} \cap C_n,$$

$$x_{n+1} \in \left\{ z \in C : \|u - z\|^2 \le d(u, C_{n+1})^2 + \delta_{n+1} \right\} \cap C_{n+1},$$

for all $n \in \mathbb{N}$. Then

 $\limsup_{n\to\infty} \|x_n-y_n\| \leq \underline{g}_r^{-1}(\delta_0).$

Moreover, if $\delta_0 = 0$ *, then* $\{x_n\}$ *converges strongly to* $P_{A^{-1}0}u$ *.*

Proof Since C_n includes $A^{-1}0 \neq \emptyset$ for all $n \in \mathbb{N}$, $\{C_n\}$ is a sequence of nonempty closed convex subsets and, by definition, it is decreasing with respect to inclusion. Let $p_n = P_{C_n}u$ for all $n \in \mathbb{N}$. Then, by Theorem 2.4, we see that $\{p_n\}$ converges strongly to $p_0 = P_{C_0}u$, where $C_0 = \bigcap_{n=1}^{\infty} C_n$. Since $x_n \in C_n$ and $d(u, C_n) = ||u - p_n||$, we see that

$$||u - x_n||^2 \le ||u - p_n||^2 + \delta_n$$

for every $n \in \mathbb{N} \setminus \{1\}$. From Theorem 2.6(i), we see that for $\alpha \in [0, 1[$,

$$\|p_n - u\|^2 \le \|\alpha p_n + (1 - \alpha)x_n - u\|^2$$

$$\le \alpha \|p_n - u\|^2 + (1 - \alpha)\|x_n - u\|^2 - \alpha (1 - \alpha)g_r(\|p_n - x_n\|)$$

and thus

$$\alpha \underline{g}_r(\|p_n-x_n\|) \leq \|x_n-u\|^2 - \|p_n-u\|^2 \leq \delta_n.$$

As $\alpha \to 1$, we see that $\underline{g}_r(\|p_n - x_n\|) \le \delta_n$ and thus $\|p_n - x_n\| \le \underline{g}_r^{-1}(\delta_n)$. Using the definition of p_n , we see that $p_{n+1} \in C_{n+1}$ and thus

$$\langle y_n-p_{n+1},J(x_n-y_n)\rangle\geq 0,$$

or equivalently,

$$\langle x_n-p_{n+1},J(x_n-y_n)\rangle \geq ||x_n-y_n||^2.$$

Hence we obtain

$$||x_n - y_n|| \le ||x_n - p_{n+1}|| \le ||x_n - p_n|| + ||p_n - p_{n+1}|| \le g_r^{-1}(\delta_n) + ||p_n - p_{n+1}||$$

for every $n \in \mathbb{N} \setminus \{1\}$. Since $\lim_{n} p_n = p_0$ and $\limsup_{n} \delta_n = \delta_0$, we see that

$$\limsup_{n\to\infty} \|x_n-y_n\| \leq \underline{g}_r^{-1}(\delta_0).$$

For the latter part of the theorem, suppose that $\delta_0 = 0$. Then we see that

 $\limsup_{n\to\infty} \|x_n - y_n\| \le \underline{g}_r^{-1}(0) = 0$

and

$$\limsup_{n\to\infty}\underline{g}_r(\|x_n-p_n\|)\leq\limsup_{n\to\infty}\delta_n=0.$$

Therefore, we obtain

$$\lim_{n\to\infty} \|x_n-y_n\| = 0 \quad \text{and} \quad \lim_{n\to\infty} \|x_n-p_n\| = 0.$$

Hence, we also obtain

$$\lim_{n \to \infty} x_n = p_0 \quad \text{and} \quad \lim_{n \to \infty} y_n = p_0. \tag{3.3}$$

So, from

$$||y_n - P_{r_1}y_n|| = r_1||A_{r_1}y_n|| \le r_1|Ay_n| \le r_1\left\|\frac{J(x_n - y_n)}{r_n}\right\| = r_1\left\|\frac{x_n - y_n}{r_n}\right\|.$$

and $\liminf_n r_n > 0$, we see that $\lim_n \|y_n - P_{r_1}y_n\| = 0$. Then, by Lemma 2.2 and (3.3), we obtain $x_n \to p_0 \in \hat{F}(P_{r_1}) = F(P_{r_1}) = A^{-1}0$. Since $A^{-1}0 \subset C_0$, we get $p_0 = P_{C_0}u = P_{A^{-1}0}u$, which completes the proof.

4 Approximation theorem for the resolvents of type (Q)

We next consider an iterative scheme of resolvents of a monotone operator which is different type of Section 3, in a Banach space. Let *C* be a nonempty closed convex subset of a reflexive, smooth, and strictly convex Banach space *E*, let r > 0 and let $A \subset E \times E^*$ be a monotone operator satisfying

$$D(A) \subset C \subset J^{-1}R(J + rA) \tag{4.1}$$

for r > 0. It is well known that if A is maximal monotone operator, then $J^{-1}R(J + rA) = E$; see [25–27]. Hence, if A is maximal monotone, then (4.1) holds for $C = \overline{D(A)}$. We also know that $\overline{D(A)}$ is convex; see [28]. If A satisfies (4.1) for r > 0, then we can define the resolvent (of type (Q)) $Q_r : C \to D(A)$ of A by

$$Q_r x = \{z \in E : Jx \in Jz + rAz\}$$

$$\tag{4.2}$$

for all $x \in C$. In other words, $Q_r x = (J + rA)^{-1} J x$ for all $x \in C$. We know the following; see, for instance, [17, 18]:

- (1) Q_r is mapping of type (Q) from *C* into D(A);
- (2) $(Jx JQ_r x)/r \in AQ_r x$ for all $x \in C$;
- (3) $F(Q_r) = A^{-1}0$.

Before our result, we need the following lemma.

Lemma 4.1 Let *E* be a reflexive, smooth, and strictly convex Banach space, and let $A \subset E \times E^*$ be a monotone operator. Let r > 0 and *C* be a closed convex subset of *E* satisfying (4.1) for r > 0. Then the following holds:

$$V(x, Q_r x) + V(Q_r x, x) \le 2r \langle x - Q_r x, x^* \rangle$$

for all $(x, x^*) \in A$.

Proof Let $(x, x^*) \in A$. Since $(Jx - JQ_rx)/r \in AQ_rx$, we see that

$$0\leq \left(x-Q_rx,x^*-\frac{Jx-JQ_rx}{r}\right),$$

$$\left\langle x - Q_r x, \frac{Jx - JQ_r x}{r} \right\rangle \le \left\langle x - Q_r x, x^* \right\rangle,$$
$$\left\langle x - Q_r x, Jx - JQ_r x \right\rangle \le r \left\langle x - Q_r x, x^* \right\rangle.$$

From the property of *V*, we see that

$$V(x, Q_r x) + V(Q_r x, x) = 2\langle x - Q_r x, Jx - JQ_r x \rangle \le 2r \langle x - Q_r x, x^* \rangle$$

for all $(x, x^*) \in A$.

We obtain an approximation theorem for a zero point of a monotone operator in a smooth and uniformly convex Banach space by using the resolvent of type (Q).

Theorem 4.2 Let *E* be a uniformly smooth and uniformly convex Banach space and let $A \subset E \times E^*$ be a monotone operator with $A^{-1}0 \neq \emptyset$. Let $\{r_n\}$ be a positive real numbers such that $\liminf_n r_n > 0$, let *C* be a nonempty bounded closed convex subset of *E* satisfying

 $D(A) \subset C \subset J^{-1}R(J + r_n A)$

for all $n \in \mathbb{N}$ and let $r \in [0, \infty[$ such that $C \subset B_r$. Let $\{\delta_n\}$ be a nonnegative real sequence and let $\delta_0 = \limsup_n \delta_n$. For a given point $u \in E$, generate a sequence $\{x_n\}$ by $x_1 = x \in C$, $C_1 = C$, and

$$y_n = Q_{r_n} x_n,$$

$$C_{n+1} = \{ z \in C : \langle y_n - z, J x_n - J y_n \rangle \ge 0 \} \cap C_n,$$

$$x_{n+1} \in \{ z \in C : ||u - z||^2 \le d(u, C_{n+1})^2 + \delta_{n+1} \} \cap C_{n+1}.$$

for all $n \in \mathbb{N}$. Then

$$\limsup_{n\to\infty} \|x_n - y_n\| \leq \underline{g}_r^{-1}(\overline{g}_r(\underline{g}_r^{-1}(\delta_0))).$$

Moreover, if $\delta_0 = 0$ *, then* $\{x_n\}$ *converges strongly to* $P_{A^{-1}0}u$ *.*

Proof Since C_n includes $A^{-1}0 \neq \emptyset$ for all $n \in \mathbb{N}$, $\{C_n\}$ is a sequence of nonempty closed convex subsets and, by definition, it is decreasing with respect to inclusion. Let $p_n = P_{C_n}u$ for all $n \in \mathbb{N}$. Then, by Theorem 2.4, we see that $\{p_n\}$ converges strongly to $p_0 = P_{C_0}u$, where $C_0 = \bigcap_{n=1}^{\infty} C_n$. Since $x_n \in C_n$ and $d(u, C_n) = ||u - p_n||$, we see that

 $||u - x_n||^2 \le ||u - p_n||^2 + \delta_n$

for every $n \in \mathbb{N} \setminus \{1\}$. From Theorem 2.6(i), we see that for $\alpha \in]0,1[$,

$$\|p_n - u\|^2 \le \|\alpha p_n + (1 - \alpha)x_n - u\|^2$$

$$\le \alpha \|p_n - u\|^2 + (1 - \alpha)\|x_n - u\|^2 - \alpha (1 - \alpha)\underline{g}_r(\|p_n - x_n\|)$$

and thus

$$\alpha \underline{g}_r(\|p_n-x_n\|) \leq \|x_n-u\|^2 - \|p_n-u\|^2 \leq \delta_n.$$

As $\alpha \to 1$, we see that $\underline{g}_r(\|p_n - x_n\|) \le \delta_n$ and thus $\|p_n - x_n\| \le \underline{g}_r^{-1}(\delta_n)$. Using the definition of p_n , we see that $p_{n+1} \in C_{n+1}$ and thus

$$\langle y_n - p_{n+1}, Jx_n - Jy_n \rangle \geq 0.$$

From the property of the function V, we see that

$$0 \le 2\langle y_n - p_{n+1}, Jx_n - Jy_n \rangle$$

= $2\langle p_{n+1} - y_n, Jy_n - Jx_n \rangle$
= $V(p_{n+1}, x_n) - V(p_{n+1}, y_n) - V(y_n, x_n)$
 $\le V(p_{n+1}, x_n) - V(y_n, x_n).$

By Theorem 2.7, we obtain

$$V(y_n, x_n) \le V(p_{n+1}, x_n)$$

= $V(p_{n+1}, p_n) + V(p_n, x_n) + 2\langle p_{n+1} - p_n, Jp_n - Jx_n \rangle$
 $\le V(p_{n+1}, p_n) + \overline{g}_r(||p_n - x_n||) + 2\langle p_{n+1} - p_n, Jp_n - Jx_n \rangle$
 $\le V(p_{n+1}, p_n) + \overline{g}_r(\underline{g}_r^{-1}(\delta_n)) + 2\langle p_{n+1} - p_n, Jp_n - Jx_n \rangle.$

Since $\limsup_n \delta_n = \delta_0$ and $p_n \to p_0$, we see that

$$\limsup_{n\to\infty} V(y_n,x_n) \leq \overline{g}_r(\underline{g}_r^{-1}(\delta_0)).$$

Therefore, by Theorem 2.7, we see that

$$\limsup_{n\to\infty} \|x_n - y_n\| \le \limsup_{n\to\infty} \underline{g}_r^{-1} (V(y_n, x_n)) \le \underline{g}_r^{-1} (\overline{g}_r (\underline{g}_r^{-1}(\delta_0))).$$

For the latter part of the theorem, suppose that $\delta_0 = 0$. Then we see that

$$\limsup_{n\to\infty} \|x_n - y_n\| \le \underline{g}_r^{-1}(\overline{g}_r(\underline{g}_r^{-1}(0))) = 0$$

and

$$\limsup_{n\to\infty}\underline{g}_r(\|x_n-p_n\|)\leq\limsup_{n\to\infty}\delta_n=0.$$

Therefore, we obtain

$$\lim_{n\to\infty} \|x_n-y_n\|=0 \quad \text{and} \quad \lim_{n\to\infty} \|x_n-p_n\|=0.$$

Hence, we also obtain

$$\lim_{n \to \infty} x_n = p_0 \quad \text{and} \quad \lim_{n \to \infty} y_n = p_0. \tag{4.3}$$

Since E is uniformly smooth, the duality mapping J is uniformly norm-to-norm continuous on each bounded subset on E. Therefore, we obtain

$$\lim_{n \to \infty} \|Jx_n - Jy_n\| = 0. \tag{4.4}$$

From Lemma 4.1 we see that

$$V(y_n, Q_{r_1}y_n) \le V(y_n, Q_{r_1}y_n) + V(Q_{r_1}y_n, y_n) \le 2r_1 \langle y_n - Q_{r_1}y_n, x^* \rangle$$

for all $x^* \in Ay_n$. From y_n , $Q_{r_1}y_n \in D(A) \subset C \subset B_r$ and $(Jx_n - Jy_n)/r_n \in Ay_n$, we see that

$$V(y_n, Q_{r_1}y_n) \le 2r_1 \left\langle y_n - Q_{r_1}y_n, \frac{Jx_n - Jy_n}{r_n} \right\rangle$$

$$\le 2r_1 \|y_n - Q_{r_1}y_n\| \left\| \frac{Jx_n - Jy_n}{r_n} \right\|$$

$$\le 2r_1 (\|y_n\| + \|Q_{r_1}y_n\|) \left\| \frac{Jx_n - Jy_n}{r_n} \right\|$$

$$= 4r_1 r \left\| \frac{Jx_n - Jy_n}{r_n} \right\|.$$

Since $\liminf_n r_n > 0$ and (4.4), we obtain

$$\limsup_{n\to\infty} V(y_n, Q_{r_1}y_n) \leq 0$$

This implies $\lim_{n} V(y_n, Q_{r_1}y_n) = 0$. From Theorem 2.5, we see that

$$\lim_{n\to\infty}\|y_n-Q_{r_1}y_n\|=0.$$

Then, by Lemma 2.3 and (4.3), we see that $x_n \to p_0 \in \hat{F}(Q_{r_1}) = F(Q_{r_1}) = A^{-1}0$. Since $A^{-1}0 \subset C_0$, we get $p_0 = P_{C_0}u = P_{A^{-1}0}u$, which completes the proof.

5 Applications

In this section, we give some applications of Theorems 3.1 and 4.2. We first study the convex minimization problem: Let *E* be a reflexive, smooth, and strictly convex Banach space with its dual E^* and let $f : E \to]-\infty, \infty]$ be a proper lower semicontinuous convex function. Then the subdifferential ∂f of f is defined as follows:

$$\partial f(x) = \left\{ x^* \in E^* : f(x) + \left\langle y - x, x^* \right\rangle \le f(y), \forall y \in E \right\}$$

for all $x \in E$. By Rockafellar's theorem [29, 30], the subdifferential $\partial f \subset E \times E^*$ is maximal monotone. It is easy to see that $(\partial f)^{-1}0 = \operatorname{argmin}\{f(x) : x \in E\}$. It is also known that, see, for instance, [15, 27, 28],

$$D(\partial f) \subset D(f) \subset \overline{D(\partial f)}.$$
(5.1)

As a direct consequence of Theorems 3.1 and 4.2, we can show the following corollaries.

Corollary 5.1 Let *E* be a smooth and uniformly convex Banach space, let $f : E \to]-\infty, \infty]$ be a proper lower semicontinuous convex function with D(f) being bounded, and let $r \in$ $]0, \infty[$ such that $D(f) \subset B_r$. Let $\{\delta_n\}$ be a nonnegative real sequence and let $\delta_0 = \limsup_n \delta_n$. For a given point $u \in E$, generate a sequence $\{x_n\}$ by $x_1 = x \in \overline{D(f)}$, $C_1 = \overline{D(f)}$, and

$$y_n = \operatorname*{argmin}_{y \in E} \left\{ f(y) + \frac{1}{2r_n} \|y - x_n\|^2 \right\},\$$

$$C_{n+1} = \left\{ z \in \overline{D(f)} : \langle y_n - z, J(x_n - y_n) \rangle \ge 0 \right\} \cap C_n,\$$

$$x_{n+1} \in \left\{ z \in \overline{D(f)} : \|u - z\|^2 \le d(u, C_{n+1})^2 + \delta_{n+1} \right\} \cap C_{n+1},\$$

for all $n \in \mathbb{N}$, where $\{r_n\} \subset [0, \infty[$ such that $\liminf_n r_n > 0$. If $(\partial f)^{-1}0$ is nonempty, then

$$\limsup_{n\to\infty}\|x_n-y_n\|\leq \underline{g}_r^{-1}(\delta_0).$$

Moreover, if $\delta_0 = 0$, then $\{x_n\}$ converges strongly to $P_{(\partial f)^{-1}0}u$.

Proof Put $C = \overline{D(f)}$. Since the subdifferential $\partial f \subset E \times E^*$ is maximal monotone, we have $E = R(I + r\partial f)$ for all r > 0 and hence, from (5.1), we see that

$$D(\partial f) \subset \overline{D(\partial f)} = \overline{D(f)} = C \subset E = R(I + r\partial f)$$

for all r > 0.

Fix r > 0 and $z \in C$. Let P_r be the resolvent (of type (P)) of ∂f , then we also know that

$$P_r z = \operatorname*{argmin}_{y \in E} \left\{ f(y) + \frac{1}{2r} \|y - z\|^2 \right\}.$$

Therefore, we obtain the desired result by Theorem 3.1.

Corollary 5.2 Let *E* be a uniformly smooth and uniformly convex Banach space, let $f : E \to]-\infty, \infty]$ be a proper lower semicontinuous convex function with D(f) being bounded and let $r \in]0, \infty[$ such that $D(f) \subset B_r$. Let $\{\delta_n\}$ be a nonnegative real sequence and let $\delta_0 = \lim \sup_n \delta_n$. For a given point $u \in E$, generate a sequence $\{x_n\}$ by $x_1 = x \in \overline{D(f)}, C_1 = \overline{D(f)}$, and

$$y_{n} = \operatorname*{argmin}_{y \in E} \left\{ f(y) + \frac{1}{2r_{n}} \|y\|^{2} - \frac{1}{r_{n}} \langle y, Jx_{n} \rangle \right\},\$$

$$C_{n+1} = \left\{ z \in \overline{D(f)} : \langle y_{n} - z, Jx_{n} - Jy_{n} \rangle \ge 0 \right\} \cap C_{n},\$$

$$x_{n+1} \in \left\{ z \in \overline{D(f)} : \|u - z\|^{2} \le d(u, C_{n+1})^{2} + \delta_{n+1} \right\} \cap C_{n+1},$$

for all $n \in \mathbb{N}$, where $\{r_n\} \subset [0, \infty[$ such that $\liminf_n r_n > 0$. If $(\partial f)^{-1}0$ is nonempty, then

 $\limsup_{n\to\infty} \|x_n-y_n\| \leq \underline{g}_r^{-1}(\overline{g}_r(\underline{g}_r^{-1}(\delta_0))).$

Moreover, if $\delta_0 = 0$, then $\{x_n\}$ converges strongly to $P_{(\partial f)^{-1}0}u$.

Proof Fix r > 0 and $z \in C$. Let Q_r be the resolvent (of type (Q)) of ∂f , then we also know that

$$Q_r z = \operatorname*{argmin}_{y \in E} \left\{ f(y) + \frac{1}{2r} \|y\|^2 - \frac{1}{r} \langle y, Jz \rangle \right\}.$$

In the same way as Corollary 5.1, we obtain the desired result by Theorem 4.2. $\hfill \Box$

Next, we study the approximation of fixed points for mappings of type (P) and (Q). Before show our applications, we need the following results.

Lemma 5.3 ([17]) Let *E* be a reflexive, smooth, and strictly convex Banach space, let *C* be a nonempty subset of *E*, let $T : C \to E$ be a mapping, and let $A_T \subset E \times E^*$ be an operator defined by $A_T = J(T^{-1} - I)$. Then *T* is of mapping of type (*P*) if and only if A_T is monotone. In this case $T = (I + J^{-1}A_T)^{-1}$.

Lemma 5.4 ([31]) Let *E* be a reflexive, smooth, and strictly convex Banach space, let *C* be a nonempty subset of *E* and let $T : C \to E$ be a mapping, and let $A_T \subset E \times E^*$ be an operator defined by $A_T = JT^{-1} - J$. Then *T* is a mapping of type (*Q*) if and only if A_T is monotone. In this case $T = (J + A_T)^{-1}J$.

As a direct consequence of Theorems 3.1 and 4.2, we can show the following corollaries.

Corollary 5.5 Let *E* be a smooth and uniformly convex Banach space, let *C* be a bounded closed convex subset of *E*. Let $T : C \to C$ be a mapping of type (*P*) with *F*(*T*) being nonempty and let $r \in]0, \infty[$ such that $C \subset B_r$. Let $\{\delta_n\}$ be a nonnegative real sequence and let $\delta_0 = \limsup_n \delta_n$. For a given point $u \in E$, generate a sequence $\{x_n\}$ by $x_1 = x \in C$, $C_1 = C$, and

$$C_{n+1} = \{ z \in C : \langle Tx_n - z, J(x_n - Tx_n) \rangle \ge 0 \} \cap C_n,$$
$$x_{n+1} \in \{ z \in C : ||u - z||^2 \le d(u, C_{n+1})^2 + \delta_{n+1} \} \cap C_{n+1}$$

for all $n \in \mathbb{N}$, where $\{r_n\} \subset (0, \infty)$ such that $\liminf_n r_n > 0$. Then

$$\limsup_{n\to\infty} \|x_n - Tx_n\| \le \underline{g}_r^{-1}(\delta_0).$$

Moreover, if $\delta_0 = 0$ *, then* $\{x_n\}$ *converges strongly to* $P_{F(T)}u$ *.*

Proof Put $A_T = J(T^{-1} - I)$ and $r_n = 1$ for all $n \in \mathbb{N}$. From Lemma 5.3, we see that *T* is the resolvent (of type (P)) of A_T for 1 and

$$D(A_T) = R(T) \subset C = D(T) = R(I + J^{-1}A_T).$$

Therefore, we obtain the desired result by Theorem 3.1.

Corollary 5.6 Let *E* be a uniformly smooth and uniformly convex Banach space, let *C* be a bounded closed convex subset of *E*. Let $T : C \to C$ be a mapping of type (*Q*) with *F*(*T*) being nonempty and let $r \in [0, \infty[$ such that $C \subset B_r$. Let $\{\delta_n\}$ be a nonnegative real sequence and

let $\delta_0 = \limsup_n \delta_n$. *For a given point* $u \in E$ *, generate a sequence* $\{x_n\}$ *by* $x_1 = x \in C$ *,* $C_1 = C$ *, and*

$$C_{n+1} = \{ z \in C : \langle Tx_n - z, Jx_n - JTx_n \rangle \ge 0 \} \cap C_n,$$

$$x_{n+1} \in \{ z \in C : ||u - z||^2 \le d(u, C_{n+1})^2 + \delta_{n+1} \} \cap C_{n+1},$$

for all $n \in \mathbb{N}$. Then

$$\limsup_{n\to\infty} \|x_n - Tx_n\| \leq \underline{g}_r^{-1}(\overline{g}_r(\underline{g}_r^{-1}(\delta_0))).$$

Moreover, if $\delta_0 = 0$, then $\{x_n\}$ converges strongly to $P_{F(T)}u$.

Proof In the same way as Corollary 5.5, we obtain the desired result by Lemma 5.4 and Theorem 4.2. \Box

Competing interests

The author declares to have no competing interests.

Acknowledgements

The author is supported by Grant-in-Aid for Young Scientific (B) No. 24740075 from the Japan Society for the Promotion of Science.

Received: 30 November 2015 Accepted: 29 March 2016 Published online: 11 April 2016

References

- 1. Martinet, B: Régularsation d'inéquations variationnelles par approximations successives. Rev. Francaise Informat. Recherche Opérationnelles **4**, 154-158 (1970) (in French)
- 2. Rockafellar, RT: Monotone operators and proximal point algorithm. SIAM J. Control Optim. 14, 877-898 (1976)
- 3. Lions, PL: Une méthode itérative de résolution d'une inéquation variationnelle. Isr. J. Math. 31, 204-208 (1978)
- 4. Güler, O: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403-419 (1991)
- 5. Ibaraki, T: Strong convergence theorems for zero point problems and equilibrium problems in a Banach space. In: Nonlinear Analysis and Convex Analysis I, pp. 115-126. Yokohama Publishers, Yokohama, Japan (2013)
- Kamimura, S, Takahashi, W: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226-240 (2000)
- 7. Kimura, Y, Takahashi, W: On a hybrid method for a family of relatively nonexpansive mappings in a Banach space. J. Math. Anal. Appl. **357**, 356-363 (2009)
- 8. Ohsawa, S, Takahashi, W: Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces. Arch. Math. 81, 439-445 (2003)
- Solodov, MV, Svaiter, BF: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program., Ser. A 87, 189-202 (2000)
- 10. Kimura, Y: Approximation of a common fixed point of a finite family of nonexpansive mappings with nonsummable errors in a Hilbert space. J. Nonlinear Convex Anal. **15**, 429-436 (2014)
- 11. Takahashi, W, Takeuchi, Y, Kubota, R: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. **341**, 276-286 (2008)
- 12. Kimura, Y: Approximation of a fixed point of nonlinear mappings with nonsummable errors in a Banach space. In: Maligranda, L, Kato, M, Suzuki, T (eds.) Proceedings of the International Symposium on Banach and Function Spaces IV, (Kitakyushu, Japan), pp. 303-311 (2014)
- 13. Ibaraki, T, Kimura, Y: Approximation of a fixed point of generalized firmly nonexpansive mappings with nonsummable errors. Linear Nonlinear Anal. (to appear)
- 14. Kimura, Y: Approximation of a fixed point of nonexpansive mapping with nonsummable errors in a geodesic space.
- In: Proceedings of the 10th International Conference on Fixed Point Theory and Its Applications, pp. 157-164 (2012)
 Barbu, V: Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei Republicii Socialiste România, Bucharest (1976)
- Takahashi, W: Nonlinear Functional Analysis Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama, Japan (2000)
- 17. Aoyama, K, Kohsaka, F, Takahashi, W: Three generalizations of firmly nonexpansive mappings: their relations and continuity properties. J. Nonlinear Convex Anal. **10**, 131-147 (2009)
- Kohsaka, F, Takahashi, W: Existence and approximation of fixed points of firmly nonexpansive type mappings in Banach spaces. SIAM J. Optim. 19, 824-835 (2008)
- 19. Aoyama, K, Kohsaka, F, Takahashi, W: Strong convergence theorems for a family of mappings of type (P) and applications. In: Proceedings of Asian Conference on Nonlinear Analysis and Optimization, pp. 1-17. Yokohama Publishers, Yokohama, Japan (2009)

- 20. Tsukada, M: Convergence of best approximations in a smooth Banach space. J. Approx. Theory 40, 301-309 (1984)
- 21. Mosco, U: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510-585 (1969)
- 22. Beer, G: Topologies on Closed and Closed Convex Sets. Kluwer Academic, Dordrecht (1993)
- Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938-945 (2002)
- 24. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138 (1991)
- 25. Browder, FE: Nonlinear maximal monotone operators in Banach space. Math. Ann. 175, 89-113 (1968)
- 26. Rockafellar, RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970)
- 27. Takahashi, W: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama, Japan (2000) (in Japanese)
- 28. Rockafellar, RT: On the virtual convexity of the domain and range of a nonlinear maximal monotone operator. Math. Ann. 185, 81-90 (1970)
- 29. Rockafellar, RT: Characterization of the subdifferentials of convex functions. Pac. J. Math. 17, 497-510 (1966)
- 30. Rockafellar, RT: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209-216 (1970)
- Kohsaka, F, Takahashi, W: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. (Basel) 91, 166-177 (2008)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com