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Abstract
We prove a new fixed point theorem of Schauder type, which applies to
discontinuous operators in noncompact domains. In order to do so, we present a
modification of a recent Schauder-type theorem of Pouso. We apply our result to
second-order boundary value problems with discontinuous nonlinearities. We
include an example to illustrate our theory.
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1 Introduction
In the recent and interesting paper [], Pouso proved a novel version of Schauder’s theorem
for discontinuous operators in compact sets. Pouso used this tool to prove new results on
the existence of solutions of a widely studied second-order ordinary differential equation
(ODE) subject to Dirichlet boundary conditions (BCs), namely

u′′ = f (t, u), u() = u() = ,

where f is an L-bounded nonlinearity. The approach in [] relies on a careful use of ideas
of set-valued analysis and viability theory.

In this manuscript, we further develop the ideas of Pouso. First, we prove that a
Schauder-type theorem for discontinuous operators can be formulated for arbitrary
nonempty, closed, and convex (not necessarily bounded) subsets of a Banach space. Se-
cond, we apply our new result to prove the existence of solutions of a large class of dis-
continuous second-order ODEs subject to separated BCs, complementing the results of
[] and improving them also in the special case of Dirichlet BCs.

2 Schauder’s fixed point theorem for discontinuous operators
For completeness, we begin this section by recalling the classical Schauder fixed point
theorem.
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Theorem . ([], Theorem .A) Let K be a nonempty, closed, bounded, convex subset
of a Banach space X and suppose that T : K −→ K is a compact operator (that is, T is
continuous and maps bounded sets into precompact ones). Then T has a fixed point.

A well-known consequence of Theorem . is the following.

Corollary . ([], Corollary .) Let K be a nonempty, compact and convex subset of a
Banach space X, and T : K −→ K a continuous operator. Then T has a fixed point.

The main result in [] is an improvement of Corollary ., where the continuity of the
operator T is replaced by a weaker assumption. We briefly describe the main idea: given a
compact subset K of a Banach space X and an operator T : K −→ K , which can be discon-
tinuous, it is possible to construct a multivalued mapping T by ‘convexifying’ T as follows:

Tu :=
⋂

ε>

co
(
T

(
Bε(u) ∩ K

))
for every u ∈ K , (.)

where Bε(u) denotes the closed ball centered in u with radius ε, and co denotes the closed
convex hull. The operator T in (.) is an upper semicontinuous mapping with convex and
compact values (see [, ]), and therefore Kakutani’s fixed point theorem guarantees that
T has a fixed point in K . If we impose an extra assumption that, roughly speaking, states
that a fixed point of T must be a fixed point of T , then we obtain the desired result.

The following characterization sheds light on the definition of the multivalued opera-
tor T. It is formulated for compact subsets, but it works for arbitrary nonempty subsets of
a Banach space (see also [], Proposition .).

Proposition . Let K be a compact subset of a Banach space X , and T : K −→ K . Then
the following statements are equivalent:

() y ∈ Tu, where T is as in (.);
() for every ε >  and every ρ > , there exists a finite family of vectors ui ∈ Bε(u) ∩ K

and coefficients λi ∈ [, ] (i = , . . . , m) such that
∑

λi =  and

∥∥∥∥∥y –
m∑

i=

λiTui

∥∥∥∥∥ < ρ.

The variant of Schauder’s theorem in compact subsets given by Pouso is the following.

Theorem . ([], Theorem .) Let K be a nonempty, compact and convex subset of a
normed space X, and T : K −→ K . Furthermore, assume that

{u} ∩Tu ⊂ {Tu} for all u ∈ K ,

where T is as in (.). Then T has a fixed point.

Theorem . is very interesting and powerful; however, when we want to look for so-
lutions for a certain boundary value problem (BVP), the fact of working in a compact
domain could be quite restrictive. In order to overcome this difficulty, we first recall that
Theorem . admits the following extension to unbounded domains.
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Theorem . ([], Theorem ..) Let M be nonempty, closed and convex subset of a
Banach space X, and T : M −→ M a continuous operator. If T(M) is precompact, then T
has a fixed point.

Secondly, we recall the following result due to Bohnenblust and Karlin.

Theorem . ([], Corollary .) Let M be a nonempty, closed and convex subset of a
Banach space X and suppose that

(i) T : M → M is upper semicontinuous;
(ii) T(M) is relatively compact in X ;

(iii) T(u) is nonempty, closed, and convex for all u ∈ M.
Then T has a fixed point.

Now we introduce the main result in this section, which is an extension of Theorem .
to the case of discontinuous operators.

Theorem . Let M be a nonempty, closed, and convex subset of a Banach space X, and
T : M −→ M a mapping satisfying

(i) T(M) is relatively compact in X ;
(ii) {u} ∩Tu ⊂ {Tu} for all u ∈ M, where T is as in (.).
Then T has a fixed point in M.

Proof The multivalued operator T is upper semicontinuous with Tu nonempty, convex
and compact for each u ∈ M. Now we show that condition (i) implies thatT(M) is relatively
compact on X. Indeed, for each u ∈ M and all ε > , we have that

coT
(
Bε(u) ∩ M

) ⊂ coT(M),

and therefore T(M) is a closed subset of the compact set coT(M) (note that the closed
convex hull of a compact set in a Banach space is also compact; see, for example, [],
Theorem .).

Since T(M) is relatively compact, we obtain by application of Theorem . that T has a
fixed point. Finally, condition (ii) implies that the obtained fixed point of T is a fixed point
of T . �

Remark . Notice that if T is continuous thenTu = {Tu} for all u, and so previous results
regarding operator T actually generalize known results about single-valued operators.

3 Second-order BVPs with separated BCs
In this section, we apply the previous abstract result on fixed points for discontinuous
operators in order to look for W ,-solutions for the following singular second-order ODE
with separated BCs:

⎧
⎪⎨

⎪⎩

u′′(t) + g(t)f (t, u(t)) =  for almost every (a.e.) t ∈ I = [, ],
αu() – βu′() = ,
γ u() + δu′() = ,

(.)

where α,β ,γ , δ ≥  and 	 = γβ + αγ + αδ > .
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This kind of second-order BVPs have received a lot of attention in the literature. For
example, in the monograph [] the method of lower and upper solutions is used to look
for C-solutions in the case of continuous nonlinearities and W ,-solutions in the case
of Carathéodory ones. This method is also applied in [] to a continuous ϕ-Laplacian
problem with separated BCs. On the other hand, a monotone method is applied in [] in
order to look for extremal solutions for a functional problem with derivative dependence
in the nonlinearity. As a main novelty of the present work, we allow the nonlinearity f
to have a countable number of discontinuities with respect to its spatial variable, and we
require no monotonicity conditions. Moreover, the function g can be singular.

To apply our new fixed point theorem to the BVP (.), we recall that u ∈ W ,(I) is
a solution of (.) if (and only if ) u is a solution of the following Hammerstein integral
equation:

u(t) =
∫ 


k(t, s)g(s)f

(
s, u(s)

)
ds, (.)

whenever the integral in (.) has sense and where k is the corresponding Green function,
which is given by (see, for example, [])

k(t, s) =

	

{
(γ + δ – γ t)(β + αs) if  ≤ s ≤ t ≤ ,
(β + αt)(γ + δ – γ s) if  ≤ t < s ≤ .

(.)

It is known [] that k is nonnegative. Furthermore, note that k is continuous (and there-
fore bounded) in the square [, ] × [, ] and that its partial derivatives ∂k

∂t and ∂k
∂s can

be discontinuous on the diagonal t = s. However, these partial derivatives are essentially
bounded on the square.

In the sequel, we consider the Banach space X = C(I) of continuously differentiable
functions defined on I with the norm

‖u‖ = sup
t∈I

∣∣u(t)
∣∣ + sup

t∈I

∣∣u′(t)
∣∣.

Lemma . Assume that:

(H) g ∈ L(I);
(H) there exist R >  and HR ∈ L∞(I) such that for a.e. t ∈ I and all u ∈ [–R, R] we have

|f (t, u)| ≤ HR(t);
(H) the following estimate holds:

‖HR‖L∞ (M + M) ≤ R,

where

M = sup
t∈I

∫ 


k(t, s)

∣∣g(s)
∣∣ds, M = sup

t∈I

∫ 



∣∣∣∣
∂k
∂t

(t, s)g(s)
∣∣∣∣ds; (.)

(H) for each u ∈ BR = {u ∈ X : ‖u‖ ≤ R} the composition t ∈ I �−→ f (t, u(t)) is a measurable
function.
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Then the operator T : BR −→ X given by

Tu(t) =
∫ 


k(t, s)g(s)f

(
s, u(s)

)
ds

is well defined and maps BR into itself.

Remark . Since k is the Green’s function related to a homogeneous second-order BVP,
Tu ∈ W ,(I) for all u, so, in particular, (Tu)′ is absolutely continuous (then Tu ∈ X), and
(Tu)′′ exists almost everywhere on I . This will be used later in our argumentations.

Proof of Lemma . Let R >  given by condition (H). First, note that the kernel k has
the form (.). Therefore, for each t ∈ [, ], k(t, ·) is a continuous function, and for s �= t,
the function s ∈ [, ] → ∂k

∂t (t, s) is well defined and integrable. Then, conditions (H), (H)
and (H) imply that for u ∈ BR the function Tu is well defined.

On the other hand, for u ∈ BR we have

‖Tu‖ ≤ sup
t∈I

∫ 


k(t, s)

∣∣g(s)
∣∣∣∣f

(
s, u(s)

)∣∣ds + sup
t∈I

∫ 



∣∣∣∣
∂k
∂t

(t, s)
∣∣∣∣
∣∣g(s)

∣∣∣∣f (s, u(s)
∣∣ds

≤ ‖HR‖∞(M + M),

and then condition (H) implies that ‖Tu‖ ≤ R. �

Lemma . Under the assumptions of Lemma ., T(BR) is relatively compact in X.

Proof We have shown in Lemma . that T(BR) ⊂ BR. Therefore, the set T(BR) is totally
bounded in X. Now, to see that T(BR) is equicontinuous, we only have to notice that, for
a.e. t ∈ I and every u ∈ BR, we have

∣∣(Tu)′′(t)
∣∣ ≤ ∣∣g(t)

∣∣HR(t),

which implies that

∣∣(Tu)′(t) – (Tu)′(s)
∣∣ ≤

∫ s

t

∣∣(Tu)′′(r)
∣∣dr ≤

∫ s

t

∣∣g(r)
∣∣HR(r) dr.

Then T(BR) is relatively compact in X. �

In a similar way as in Definition . of [], we introduce the admissible discontinuities
for our nonlinearities.

Definition . We say that γ : [a, b] ⊂ I −→ R, γ ∈ W ,([a, b]), is an admissible discon-
tinuity curve for the differential equation u′′(t) + g(t)f (t, u(t)) =  if one of the following
conditions holds:

(i) –γ ′′(t) = g(t)f (t,γ (t)) for a.e. t ∈ [a, b];
(ii) there exist ψ ∈ L([a, b]), ψ >  almost everywhere, and ε >  such that

either –γ ′′(t) + ψ(t) < g(t)f (t, y)

for a.e. t ∈ [a, b] and all y ∈ [
γ (t) – ε,γ (t) + ε

]
, (.)
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or –γ ′′(t) – ψ(t) > g(t)f (t, y)

for a.e. t ∈ [a, b] and all y ∈ [
γ (t) – ε,γ (t) + ε

]
. (.)

If (i) holds, then we say that γ is viable for the differential equation; if (ii) holds, we say
that γ is inviable.

The previous definition says, roughly speaking, that a time-dependent discontinuity
curve γ is admissible if one of the following holds: either γ solves the differential equation
on its domain, or, if it does not, the solutions are pushed ‘far away’ from γ .

To prove our main result on the existence of solutions for problem (.) by using ad-
missible discontinuity curves, we need some auxiliary theoretical results on integrable
functions. The reader can see their proofs in [].

Lemma . ([], Lemma .) Let a, b ∈R, a < b, and let g, h ∈ L(a, b), g ≥  a.e., and h > 
a.e. in (a, b).

For every measurable set J ⊂ (a, b) with m(J) > , there is a measurable set J ⊂ J with
m(J \ J) =  such that, for every τ ∈ J, we have

lim
t→τ+



∫
[τ,t]\J g(s) ds
∫ t
τ

h(s) ds
=  = lim

t→τ–


∫
[t,τ]\J g(s) ds
∫ τ

t h(s) ds
. (.)

Corollary . ([], Corollary .) Let a, b ∈R, a < b, and let h ∈ L(a, b) be such that h > 
a.e. in (a, b).

For every measurable set J ⊂ (a, b) with m(J) > , there is a measurable set J ⊂ J with
m(J \ J) =  such that, for all τ ∈ J, we have

lim
t→τ+



∫
[τ,t]∩J h(s) ds
∫ t
τ

h(s) ds
=  = lim

t→τ–


∫
[t,τ]∩J h(s) ds
∫ τ

t h(s) ds
. (.)

Corollary . ([], Corollary .) Let a, b ∈ R, a < b, and let f , fn : [a, b] −→ R be abso-
lutely continuous functions on [a, b] (n ∈N) such that fn → f uniformly on [a, b] and, for a
measurable set A ⊂ [a, b] with m(A) > , we have

lim
n→∞ f ′

n(t) = g(t) for a.a. t ∈ A.

If there exists M ∈ L(a, b) such that |f ′(t)| ≤ M(t) a.e. in [a, b] and also |f ′
n(t)| ≤ M(t) a.e.

in [a, b] (n ∈N), then f ′(t) = g(t) for a.a. t ∈ A.

Now we can show the main result in this section.

Theorem . Let f and g satisfy (H)-(H) and the following:

(H) there exist admissible discontinuity curves γn : In = [an, bn] −→R, n ∈N, such that for
a.e. t ∈ I the function f (t, ·) is continuous in [–R, R] \ ⋃

n:t∈In{γn(t)}.

Then problem (.) has at least one solution in BR.
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Proof We consider the multivalued operator T associated to T as in (.). Therefore, T
is upper semicontinuous with nonempty, convex and compact values and, as T , maps BR

into itself. Moreover, T(BR) is relatively compact in X by Lemma .. Therefore, if we
show that {u} ∩Tu ⊂ {Tu}, then we obtain by Theorem . that T has a fixed point in BR,
which corresponds to a solution of the BVP (.). This part of the proof now follows the
lines of [], Theorem ., but we include it for completeness and for highlighting the main
differences between the two results. Thus, we fix u ∈ BR and consider three cases.

Case : m({t ∈ In : u(t) = γn(t)}) =  for all n ∈N.
Then we have that f (t, ·) is continuous for a.e. t ∈ I , and therefore if uk → u in BR then

we obtain f (t, uk(t)) → f (t, u(t)) for a.e. t ∈ I . This, together with (H) and (H), implies
that Tuk converges uniformly to Tu in X. Then, T is continuous at u, and therefore we
obtain Tu = {Tu}.

Case : there exists n ∈ N such that γn is inviable and m({t ∈ In : u(t) = γn(t)}) > . We
will show that, in this case, u /∈ Tu.

To do this, assume that γn satisfies (.) (the other case is similar). Let ψ ∈ L(I) and
ε >  given by (.) and set

J =
{

t ∈ In : u(t) = γn(t)
}

, M(t) =
∣∣g(t)

∣∣HR(t).

Notice that (H) and (H) imply that M ∈ L(I), and so we deduce from Lemma . that
there is a measurable set J ⊂ J with m(J) = m(J) >  such that, for all τ ∈ J, we have

lim
t→τ+




∫

[τ,t]\J M(s) ds

(/)
∫ t
τ

ψ(s) ds
=  = lim

t→τ–



∫

[t,τ]\J M(s) ds
(/)

∫ τ
t ψ(s) ds

. (.)

By Corollary . there exists J ⊂ J with m(J \ J) =  such that, for all τ ∈ J, we have

lim
t→τ+



∫
[τ,t]∩J

ψ(s) ds
∫ t
τ

ψ(s) ds
=  = lim

t→τ–


∫
[t,τ]∩J

ψ(s) ds
∫ τ

t ψ(s) ds
. (.)

Let us now fix a point τ ∈ J. From (.) and (.) we deduce that there exist t– < τ

and t+ > τ, t± sufficiently close to τ, such that the following inequalities are satisfied:


∫

[τ,t+]\J
M(s) ds <




∫ t+

τ

ψ(s) ds, (.)

∫

[τ,t+]∩J
ψ(s) ds ≥

∫

[τ,t+]∩J

ψ(s) ds >



∫ t+

τ

ψ(s) ds, (.)


∫

[t–,τ]\J
M(s) ds <




∫ τ

t–

ψ(s) ds, (.)

∫

[t–,τ]∩J
ψ(s) ds >




∫ τ

t–

ψ(s) ds. (.)

Finally, we define the positive number

ρ = min

{



∫ τ

t–

ψ(s) ds,



∫ t+

τ

ψ(s) ds
}

, (.)
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and we are now in a position to prove that u /∈ Tu. By Proposition . it suffices to prove
the following claim.

Claim Let ε >  be given by our assumptions over γn, and let ρ be as in (.). For every
finite family ui ∈ Bε(u) ∩ BR and λi ∈ [, ] (i = , , . . . , m) with

∑
λi = , we have

∥∥∥∥u –
∑

λiTui

∥∥∥∥
C

≥ ρ.

Let ui and λi be as in the claim and, for simplicity, denote v =
∑

λiTui. Then for a.a.
t ∈ J = {t ∈ In : u(t) = γn(t)} we have

v′′(t) =
m∑

i=

λi(Tui)′′(t) =
m∑

i=

λig(t)f
(
t, ui(t)

)
. (.)

On the other hand, for every i ∈ {, , . . . , m} and every t ∈ J , we have

∣∣ui(t) – γn(t)
∣∣ =

∣∣ui(t) – u(t)
∣∣ < ε,

and then the assumptions on γn ensure that, for a.a. t ∈ J , we have

v′′(t) =
m∑

i=

λig(t)f
(
t, ui(t)

)
<

m∑

i=

λi
(
γ ′′

n (t) – ψ(t)
)

= u′′(t) – ψ(t). (.)

Now we compute

v′(τ) – v′(t–) =
∫ τ

t–

v′′(s) ds =
∫

[t–,τ]∩J
v′′(s) ds +

∫

[t–,τ]\J
v′′(s) ds

<
∫

[t–,τ]∩J
u′′(s) ds –

∫

[t–,τ]∩J
ψ(s) ds

+
∫

[t–,τ]\J
M(s) ds

(
by (.), (.) and (H)

)

= u′(τ) – u′(t–) –
∫

[t–,τ]\J
u′′(s) ds –

∫

[t–,τ]∩J
ψ(s) ds +

∫

[t–,τ]\J
M(s) ds

≤ u′(τ) – u′(t–) –
∫

[t–,τ]∩J
ψ(s) ds + 

∫

[t–,τ]\J
M(s) ds

< u′(τ) – u′(t–) –



∫ τ

t–

ψ(s) ds
(
by (.) and (.)

)
.

Hence, ‖u – v‖C ≥ v′(t–) – u′(t–) ≥ ρ , provided that v′(τ) ≥ u′(τ).
Similar computations with t+ instead of t– show that if v′(τ) ≤ u′(τ), then we also have

‖u – v‖C ≥ ρ . The claim is proven.
Case : m({t ∈ In : u(t) = γn(t)}) >  only for some of those n ∈ N such that γn is viable.

We will show that, in this case, u ∈ Tu implies u = Tu.
To see that, we consider the subsequence of all viable admissible discontinuity curves in

the conditions of Case , which we can denote without loss of generality by {γn}n∈N. We
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have m(Jn) >  for all n ∈N, where

Jn =
{

t ∈ In : u(t) = γn(t)
}

.

For each n ∈N and for a.a. t ∈ Jn, we have

u′′(t) = γ ′′
n (t) = g(t)f

(
t,γn(t)

)
= g(t)f

(
t, u(t)

)
,

and therefore u′′(t) = f (t, u(t)) a.e. in J =
⋃

n∈N Jn.
Now we assume that u ∈ Tu, and we prove that it also implies that u′′(t) = g(t)f (t, u(t))

a.e. in I \ J , thus showing that u = Tu.
Since u ∈ Tu, for each k ∈ N, we can use Proposition . with ε = ρ = /k to guarantee

that we can find functions uk,i ∈ B/k(u) ∩ BR and coefficients λk,i ∈ [, ] (i = , , . . . , m(k))
such that

∑
λk,i =  and

∥∥∥∥∥u –
m(k)∑

i=

λk,iTuk,i

∥∥∥∥∥
C

<

k

.

Let us denote vk =
∑m(k)

i= λk,iTuk,i. Notice that v′
k → u′ uniformly in I and

‖uk,i – u‖C ≤ 
k

for all k ∈N and all i ∈ {, , . . . , m(k)}.
For a.a. t ∈ I \ J , we have that g(t)f (t, ·) is continuous at u(t), so for any ε > , there is

some k = k(t) ∈ N such that, for all k ∈N, k ≥ k, we have

∣∣g(t)f
(
t, uk,i(t)

)
– g(t)f

(
t, u(t)

)∣∣ < ε for all i ∈ {
, , . . . , m(k)

}
,

and therefore

∣∣v′′
k (t) – g(t)f

(
t, u(t)

)∣∣ ≤
m(k)∑

i=

λk,i
∣∣g(t)f

(
t, uk,i(t)

)
– g(t)f

(
t, u(t)

)∣∣ < ε.

Hence, v′′
k (t) → g(t)f (t, u(t)) for a.a. t ∈ I \ J , and then Corollary . guarantees now that

u′′(t) = g(t)f (t, u(t)) for a.a. t ∈ I \ J .
Then, we have proven that {u}∩Tu ⊂ {Tu} for all u ∈ BR. By application of Theorem .

we obtain that T has at least one fixed point in BR, which corresponds to a solution of the
BVP (.) in BR. �

Remark . Note that if g(t)f (t, ) =  for almost all t ∈ [, ], then  is a solution of the
BVP (.). Therefore, when g(t)f (t, ) �=  in a set of positive measure, then Theorem .
provides the existence of a nontrivial solution. In this case, since the kernel k is nonnega-
tive and if, moreover, g(t)f (t, u) ≥  almost everywhere, then we obtain the existence of a
nonnegative solution with a nontrivial norm.
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Remark . The improvement with respect to Theorem . of [] relies not only on the
fact that we can deal with a more general set of BCs but also on the fact that we do not
require global L estimates on f , allowing a more general class of nonlinearities. On the
other hand, notice that our result can be extended to other type of BCs whenever condition
(H) makes sense for the corresponding Green’s function.

Finally, we illustrate our results by an example.

Example . For n ∈N, we denote by φ(n) the function such that φ() =  and, for n ≥ ,
φ(n) counts the number of divisors of n. Thus defined, φ(n) ≥  for all n ∈ N, φ is not
bounded, and, since there are infinitely many prime numbers, lim infn→∞φ(n) = . Now
we define the function

(t, u) ∈ (, ] ×R �−→ f̃ (t, u) = φλ
(
n(t, u)

)
, λ ∈ (, ), (.)

where

n(t, u) :=

⎧
⎪⎨

⎪⎩

 if u ∈ (–∞, –t),
n if – t

n ≤ u < – t
n+ and – t ≤ u < ,

n if (n – )
√

t ≤ u < n
√

t and u ≥ .

We are concerned with the ODE

u′′(t) =
φλ(n(t, u))√

t
for a.e. t ∈ I = [, ], (.)

coupled with separated BCs.
We claim that this problem has at least one solution. In order to show this, note that we

can rewrite the ODE (.) in the form u′′(t) + g(t)f (t, u(t)) = , where g(t) = √
t and f = –f̃

with f̃ as in (.). We now show that the functions g and f satisfy conditions (H)-(H).
First, it is clear that g ∈ L(I), and so (H) holds. On the other hand, since for all n ∈ N

it is φ(n) ≤ max{, n}, we obtain that we have u ∈ [–n, n] ⇒ |f (t, u)| ≤ max{, n}λ for each
n ∈N. Then, if we take R ∈ N, R ≥ , large enough such that M + M ≤ R–λ (with M, M

as in (.)), then we can guarantee that (H) and (H) hold.
To check (H), note that for every continuous function u, we can write the composition

t ∈ I �−→ f (t, u(t)) as

t �−→ f
(
t, u(t)

)
= –

∞∑

n=

φλ(n)
(
χIn (t) + χJn (t)

)
+ φ()χK (t), (.)

where χ denotes the characteristic function, and In, Jn, K are the following measurable
sets:

⎧
⎪⎨

⎪⎩

In = u–([(n – )
√

t, n
√

t) ∩ [, +∞)), n ∈N,
Jn = u–([ –

n t, –
n+ t) ∩ [–t, )), n ∈N,

K = u–((–∞, –t)).

Then (.) is a measurable function, and therefore condition (H) is satisfied.
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Finally, we check condition (H). For a.a. t ∈ I , the function f (t, ·) has a countable number
of discontinuities of the form γk(t) = k

√
t, and γ̂k(t) = –

k+ t, k ∈ N ⊂ N, but all these dis-
continuity curves are inviable for the differential equation. Indeed, notice that, for k ∈ N
and t ∈ I , we have –γ ′′

k (t) = k
t/ > , –γ̂ ′′

k (t) =  and

g(t)f (t, y) ≤ –
λ

√
t

≤ –λ ≤ – for all y ∈R,

taking into account that φ(n) ≥  for all n ∈ N. Then, condition (H) holds (it suffices to
take, for example, the same function ψ ≡ 

 for all discontinuity curves).
We can conclude that the differential equation (.), coupled with separated BCs, has at

least one solution in BR provided that M + M ≤ R–λ. Note that the solution is nontrivial
since the zero function does not satisfy the ODE.

In the special case of α = β = γ = δ =  and λ = /, we obtain (rounded to the third
decimal place) M + M = , and R = .
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