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1 Introduction
Fixed point theory is one of the most useful techniques in the study of nonlinear func-
tional analysis. The Banach contraction principle is the simplest one corresponding to
fixed point theory. This principle states that every contraction T : X → X on a complete
metric space (X, d) has a unique fixed point, that is, there exists x ∈ X such that Tx = x.
This principle has been generalized by many researchers in several directions (see, for
instance, [–]). On the other hand, the study of existence of fixed points for non-self
mappings is a very interesting. More precisely, for two given nonempty closed subsets A
and B of a complete metric space (X, d), a non-self contraction T : A → B does not nec-
essarily have a fixed point. In this case, it is quite natural to investigate an element x ∈ X
such that d(x, Tx) is minimum. A point x ∈ A for which d(x, Tx) = d(A, B) is called a best
proximity point of T , where

d(A, B) = inf
{

d(x, y) : x ∈ A, y ∈ B
}

.

Assume now that T is a cyclic mapping, that T is a self-mapping on A∪B with the property
that T(A) ⊆ B and T(B) ⊆ A. Again, a point x ∈ A ∪ B is a best proximity point of T if
d(x, Tx) = d(A, B); or equivalently, if x is a solution of the minimization problem

min
x∈A∪B

d(x, Tx).

In this paper, we denote the set of best proximity points of T by Best(T).
Since a best proximity point reduces to a fixed point if T is a self-mapping, the best

proximity point theorems are natural generalizations of the Banach contraction principle.
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We mention in passing that best proximity point theory is closely related to the following
classical result in best approximation theory, due to Kay Fan [], and its developments in
other directions; see for instance Prolla [], Sehgal and Singh [, ] and the references
therein.

Theorem . [] If A is a nonempty compact convex subset of a Hausdorff locally convex
topological vector space B and T : A → B is a continuous mapping, then there exists an
element x ∈ A such that d(x, Tx) = d(Tx, A).

In , Sadiq Basha and Shahzad [] introduced the concept of a generalized proximal
contraction mapping. Using this notion, they established best proximity point theorems
under some mild conditions; indeed, their hypotheses were a combination of compactness
and completeness conditions.

Definition . [] Let (X, d) be a metric space and let A and B be nonempty subsets of
X. A mapping T : A → B is said to be a generalized proximal contraction of the first kind
if there exist nonnegative real numbers a, b, c, d with a + b + c + d < , such that for all
x, x, u, u ∈ A, the conditions d(u, Tx) = d(u, Tx) = d(A, B) imply that

d(u, u) ≤ ad(x, x) + bd(x, u) + cd(x, u) + d
[
d(x, u) + d(x, u)

]
.

If b = c, then a + c + d <  or a+c+d
–c–d < . So

d(u, u) ≤ ad(x, x) + c
[
d(x, u) + d(x, u)

]
+ d

[
d(x, u) + d(x, u)

]
.

Definition . [] Let (X, d) be a metric space and let A and B be nonempty subsets of X.
A mapping T : A → B is said to be a generalized proximal contraction of the second kind
if there exist nonnegative real numbers a, b, c, d with a + b + c + d < , such that for all
x, x, u, u ∈ A, the conditions d(u, Tx) = d(u, Tx) = d(A, B) imply that

d(Tu, Tu) ≤ ad(Tx, Tx) + bd(Tx, Tu) + cd(Tx, Tu)

+ d
[
d(Tx, Tu) + d(Tx, Tu)

]
.

If b = c, then a + c + d <  or a+c+d
–c–d < . So

d(Tu, Tu) ≤ ad(Tx, Tx) + c
[
d(Tx, Tu) + d(Tx, Tu)

]

+ d
[
d(Tx, Tu) + d(Tx, Tu)

]
.

Using these notions, the authors proved the following interesting result (for the definition
of A and B, we refer the reader to the next section).

Theorem . [] Let (X, d) be a complete metric space and A and B be two nonempty,
closed subsets of X such that B is approximatively compact with respect to A. Assume that
A and B are nonempty, and T : A → B is a non-self-mapping such that:

(i) T(A) ⊆ B,
(ii) T is a generalized proximal contraction mapping of the first kind.
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Then there exists x ∈ A such that Best(T) = {x}. Further, for any fixed x ∈ A the sequence
{xn}, defined by d(xn+, Txn) = d(A, B), converges to x.

They also proved that if instead, A is approximatively compact with respect to B, and T
is a continuous generalized proximal contraction mapping of the second kind, then T has
a best proximity point ([], Theorem .). Furthermore if T is a generalized proximal
contraction mapping of the first kind, as well as of the second kind, then T has a unique
best proximity point in A ([], Theorem .).

In this paper, inspired by the above notion, we introduce two new notions of cyclic gen-
eralized proximal contraction of the first kind, and of the second kind. We then establish
some best proximity point theorems for these classes of mappings. We begin with the first
contribution of this paper.

Definition . Let (X, d) be a metric space and let A, B be two nonempty subsets of X.
A (cyclic) mapping T : A∪B → A∪B is said to be a cyclic generalized proximal contraction
of the first kind, if there exist nonnegative real numbers a, c, d with a+c+d

–c–d < 
 such that for

all x, x, u, u,∈ A ∪ B, the conditions

d(u, Tx) = d(u, Tx) = d(A, B)

imply that

d(u, u) ≤ ad(x, x) + c
[
d(x, u) + d(x, u)

]

+ d
[
d(x, u) + d(x, u)

]
+ ( – c – d)

(
 –

k


)
d(A, B), ()

where k =
√

 a+c+d
–c–d .

Example . Let X = R and d(x, y) = |x – y| be the Euclidean metric on X. Let A = [, π
 ]

and B = [– π
 , ] be subsets of X. Clearly, d(A, B) = .

We define T : A ∪ B → A ∪ B by Tx = – 
 sin x. Therefore T(A) ⊆ B and T(B) ⊆ A.

So if

d(u, Tx) = d(u, Tx) = d(A, B) = ,

then u = Tx = – 
 sin x and u = Tx = – 

 sin x.
Therefor we have

d(u, u) =
∣∣∣∣–




sin x +



sin x

∣∣∣∣ ≤ 

|x – x|.

So T is a cyclic generalized proximal contraction of the first kind on A ∪ B with a = 
 ,

c = d = , and a+c+d
–c–d = 

 < 
 .

We now present the second new class of mappings.

Definition . Let (X, d) be a metric space and let A, B be two nonempty subsets of X.
A (cyclic) mapping T : A∪B → A∪B is said to be a cyclic generalized proximal contraction
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of the second kind, if there exist nonnegative real numbers a, c, d with a+c+d
–c–d < 

 such that
for all x, x, u, u,∈ A ∪ B, the conditions

d(u, Tx) = d(u, Tx) = d(A, B)

imply that

d(Tu, Tu) ≤ ad(Tx, Tx) + c
[
d(Tx, Tu) + d(Tx, Tu)

]

+ d
[
d(Tx, Tu) + d(Tx, Tu)

]
+ ( – c – d)

(
 –

k


)
d(A, B), ()

where k =
√

 a+c+d
–c–d .

The next example shows that a cyclic generalized proximal contraction of the second kind
is not necessarily a cyclic generalized proximal contraction of the first kind.

Example . Consider X = R
 endowed with the usual metric

d
(
(x, x), (y, y)

)
=

√
(x – y) + (x – y), for all (x, x), (y, y) ∈R

.

Define A := {(x, x) :  ≤ x ≤ 
 } and B := {(, ), (, )}. Then d(A, B) = .

Now we define T : A ∪ B → A ∪ B by

T(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(, ), x = y and x is rational,

(, ), x = y, and x is not rational,

(, ), x = , y = .

Therefore T(A) ⊆ B and T(B) ⊆ A. For every (x, y), (x, y), (u, ú), (u, ú) in A ∪ B, if
d((u, ú), T(x, y)) = d(A, B) =  then (u, ú) = T(x, y) = (, ) or (, ). So

T(u, ú) = (, ).

Similarly, if d((u, ú), T(x, y)) = d(A, B) =  then (u, ú) = T(x, y) = (, ) or (, ). So

T(u, ú) = (, ).

Therefore for all a, c, d with a+c+d
–c–d < 

 , we have

d
(
T(u, ú), T(u, ú)

)
=  ≤ ad

(
T(x, y), T(x, y)

)

+ c
[
d
(
T(x, y), T(u, ú)

)
+ d

(
T(x, y), T(u, ú)

)]

+ d
[
d
(
T(x, y), T(u, ú)

)
+ d

(
T(x, y), T(u, ú)

)]

+ ( – c – d)
(

 –
k


)
d(A, B).

So T is a cyclic generalized proximal contraction of the second kind.
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We now prove that T is not a cyclic generalized proximal contraction of the first kind.
It is clear that diam(A ∪ B) = . If

(x, y) =
(

√


,
√


)
, (u, ú) = (, ), (x, y) = (u, ú) = (, ),

then

d
(
(u, ú), T(x, y)

)
= d

(
(u, ú), T(x, y)

)
= d(A, B) =  and

d
(
(u, ú), (u, ú)

)
= .

For all nonnegative real numbers a, c, d with a+c+d
–c–d < 

 < , we have a + c + d < . There-
fore

ad
(
(x, y), (x, y)

)
+ c

[
d
(
(x, y), (u, ú)

)
+ d

(
(x, y), (u, ú)

)]

+ d
[
d
(
(x, y), (u, ú)

)
+ d

(
(x, y), (u, ú)

)]
+ ( – c – d)

(
 –

k


)
d(A, B)

≤ (a + c + d) diam(A ∪ B) = (a + c + d) <  = d
(
(u, ú), (u, ú)

)
.

So T is not a cyclic generalized proximal contraction of the first kind.

The above example shows that cyclic generalized proximal contractions are not necessar-
ily continuous. In this paper we use this new notion to prove some best proximity point
theorems for continuous cyclic generalized proximal contractions. The details are given
in the next sections.

2 Preliminaries
This section is devoted to some definitions and statements that will be used in the se-
quel. Let (X, d) be a metric space, A, B be two nonempty subsets of X, and T be a cycling
mapping. We denote by A and B the following sets:

A =
{

x ∈ A : d(x, y) = d(A, B) for some y ∈ B
}

,

B =
{

y ∈ B : d(x, y) = d(A, B) for some x ∈ A
}

.

In [], sufficient conditions are provided to guarantee the non-emptiness of A and B.

Definition . [] Let (X, d) be a metric space and A, B be two nonempty subsets of X.
The set B is said to be approximatively compact with respect to A, if every sequence {yn}
in B, satisfying the condition d(x, yn) → d(x, B) for some x ∈ A, has a convergent subse-
quence.

Definition . [] Let X be a metric space and A, B be nonempty subsets of X. A se-
quence {xn} in A ∪ B, with xn ∈ A and xn+ ∈ B for all n ≥ , is said to be a cyclically
Cauchy sequence if

∀ε >  ∃N ∈ N : d(xn, xm) < d(A, B) + ε, ∀n, m ≥ N , n is even and m is odd.

If d(A, B) = , then a sequence {xn} in A∪B is cyclically Cauchy if and only if {xn} is Cauchy.
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Definition . [] A pair (A, B) of subsets of a metric space is said to be cyclically com-
plete if for every cyclically Cauchy sequence {xn} in A∪B, either {xn} or {xn+} converges.

Definition . [] A pair (A, B) of subsets of a metric space is said to be proximally com-
plete if for every cyclically Cauchy sequence {xn} in A ∪ B, the sequences {xn} and {xn+}
have convergent subsequences in A and B.

Theorem . [] Let A and B be subsets of a metric space X. If (A, B) is proximally com-
plete, then A and B are closed subsets of X.

Definition . Let (X, d) be a metric space.
• A pair (A, B) of nonempty subsets of X is said to be proximinal if for each

(x, y) ∈ A × B there exists (x, y) ∈ A × B such that d(x, y) = d(x, y) = d(A, B).
• A pair (A, B) of nonempty subsets of X is said to be sharp proximinal if for each

(x, y) ∈ A × B there exists a unique (x, y) ∈ A × B such that
d(x, y) = d(x, y) = d(A, B).

• A pair (A, B) of nonempty subsets of X is said to be semi-sharp proximinal if for each
(x, y) ∈ A × B there exists at most one (x, y) ∈ A × B such that
d(x, y) = d(x, y) = d(A, B).

We recall that every closed convex pair (A, B) in a strictly convex Banach space is semi-
sharp proximinal ([], Lemma .).

3 Main results
We begin this section by proving a theorem on the existence of best proximity points for
cyclic generalized proximal contractions in metric spaces.

Theorem . Let (A, B) be a proximally complete pair in a metric space X and A �= ∅. Let
T : A ∪ B → A ∪ B be a mapping satisfying the following conditions:

(i) T(A) ⊆ B, T(B) ⊆ A,
(ii) T is a continuous cyclic generalized proximal contraction of the first kind.

Then there exists (x, y) ∈ A × B such that

d(x, Tx) = d(A, B), d(y, Ty) = d(A, B) and d(x, y) = d(A, B).

Proof By the assumption A �= ∅, so there exists x ∈ A. Since T(A) ⊆ B, it follows that
T(x) ∈ B. So there exists x ∈ A such that d(x, Tx) = d(A, B).

Continuing this process, we obtain a sequence {xn} in A, such that d(xn+, Txn) = d(A, B).
On the other hand, since x ∈ A, there exists y ∈ B such that d(x, y) = d(A, B), and

since T(B) ⊆ A, it follows that T(y) ∈ B. So there exists y ∈ B such that d(y, Ty) =
d(A, B).

Continuing this process, we obtain a sequence {yn} in B such that d(yn+, Tyn) = d(A, B).
Now we define

zn =

⎧
⎨

⎩
xr , n = r,

yr , n = r + .
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We will prove that {zn} is a cyclically Cauchy sequence in A ∪ B. To do this, we need verify
that limm,n→∞ d(zn, zm+) = d(A, B), or equivalently,

lim
m,n→∞ d(xn, ym) = d(A, B).

Let m ≤ n. Since d(xn+, Txn) = d(ym+, Tym) = d(A, B) and T is a cyclic generalized proxi-
mal contraction of the first kind on A ∪ B, we have

d(xn+, ym+) ≤ ad(xn, ym) + c
[
d(xn, xn+) + d(ym, ym+)

]

+ d
[
d(xn, ym+) + d(xn+, ym)

]

+ ( – c – d)
(

 –
k


)
d(A, B). ()

By using the inequalities

d(xn, xn+) ≤ d(xn, ym) + d(ym, ym+) + d(ym+, xn+),

d(xn, ym+) ≤ d(xn, ym) + d(ym, ym+), ()

d(xn+, ym) ≤ d(xn+, ym+) + d(ym, ym+),

we obtain

d(xn+, ym+) ≤ ad(xn, ym)

+ (c + d)
[
d(xn, ym) + d(xn+, ym+) + d(ym, ym+)

]

+ ( – c – d)
(

 –
k


)
d(A, B), ()

and hence

d(xn+, ym+) ≤ a + c + d
 – c – d

d(xn, ym) + 
c + d

 – c – d
d(ym, ym+)

+
(

 –
k


)
d(A, B). ()

Since (c + d) ≤ (a + c + d), it follows that


c + d

 – c – d
≤ 

a + c + d
 – c – d

= 
k


=

k


≤ k


.

So we have

d(xn+, ym+) ≤ k


d(xn, ym) +

k


d(ym, ym+) +
(

 –
k


)
d(A, B). ()

Note also that

d(ym, Tym–) = d(ym+, Tym) = d(A, B)
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and that T is a cyclic generalized proximal contraction of the first kind, so that a manipu-
lation yields

d(ym, ym+) ≤ ad(ym–, ym)

+ (c + d)
[
d(ym, ym+) + d(ym–, ym)

]

+ ( – c – d)
(

 –
k


)
d(A, B). ()

Therefore

d(ym, ym+) ≤ a + c + d
 – c – d

d(ym–, ym) +
(

 –
k


)
d(A, B),

from which it follows that

d(ym, ym+) ≤ k


d(ym–, ym) +

(
 –

k


)
d(A, B). ()

It now follows from equations (), () that

d(xn+, ym+) ≤ k



[
k


d(xn–, ym–) +

k


d(ym–, ym) +
(

 –
k


)
d(A, B)

]

+
k


[
k


d(ym–, ym) +

(
 –

k


)
d(A, B)

]
+

(
 –

k


)
d(A, B)

≤ k


d(xn–, ym–) +

k


d(ym–, ym) +

(
k


+

k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)

d(xn–, ym–) +
(

k


)

d(ym–, ym)

+
((

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)[k


d(xn–, ym–) +

k


d(ym–, ym–) +
(

 –
k


)
d(A, B)

]

+
(

k


)[k


d(ym–, ym–) +

(
 –

k


)
d(A, B)

]

+
((

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)

d(xn–, ym–) +
(

k


)

d(ym–, ym–)

+
((

k


)

+
(

k


)

+
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B). ()
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Now, we assume that the above relation holds for r < m, and we will show that it holds for
r = m. To this end, we note that

d(xn+, ym+) ≤
(

k


)r+

d(xn–r , ym–r) +
(

k


)r+

d(ym–r , ym–r+)

+
((

k


)r

+
(

k


)r–

+ · · · +
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)r+[k


d(xn–(r+), ym–(r+)) +

k


d(ym–(r+), ym–r)

+
(

 –
k


)
d(A, B)

]

+
(

k


)r+[k


d(ym–(r+), ym–r) +

(
 –

k


)
d(A, B)

]

+
((

k


)r

+
(

k


)r–

+ · · · +
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)(r+)+

d(xn–(r–), ym–(r–)) +
(

k


)(r+)+

d(ym–(r+), ym–r)

+
((

k


)r+

+
(

k


)r+

+
(

k


)r

+ · · ·

+
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B). ()

So for r = m, we have

d(xn+, ym+)

≤
(

k


)m+

d(xn–m, y) +
(

k


)m+

d(y, y)

+
((

k


)m

+
(

k


)m–

+ · · · +
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

=
(

k


)m+

d(xn–m, y) +
(

k


)m+

d(y, y) +
(

 –
(

k


)m+)
d(A, B). ()

We now prove that the sequence {xn} is bounded. Suppose to the contrary that it is not
bounded, so for

M =
k + k
 – k d(y, y) +

 – k
 – k d(A, B),

there exists a natural number n such that d(xn, y) ≤ M and d(xn+, y) > M. Now, we have

M < d(xn+, y) ≤ k


d(xn, y) +

k


d(y, y) +
(

 –
k


)
d(A, B)

≤ k


[
d(xn, y) + d(y, y)

]
+

k


d(y, y) +
(

 –
k


)
d(A, B)
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≤ k


M +

(
k


+

k


)
d(y, y) +

(
 –

k


)
d(A, B)

=
k


M +

(
 –

k



)
M = M, ()

which is a contradiction. This argument shows that the sequence {xn} is bounded, so that

lim
m,n→∞ d(xn+, ym+)

≤ lim
m,n→∞

[(
k


)m+

d(xn–m, y) +
(

k


)m+

d(y, y) +
(

 –
(

k


)m+)
d(A, B)

]

= d(A, B). ()

Therefore {zn} is a cyclically Cauchy sequence in A ∪ B. By our assumption, (A, B) is a
proximally complete pair in X so that the sequences {xn} and {ym} have convergent subse-
quences in A and B, respectively, that is, there exist subsequences {xnr } and {yms} of {xn}
and {ym} and (x, y) ∈ (A × B) such that

lim
r→∞ xnr = x and lim

s→∞ yms = y. ()

Since T is continuous, it follows that

d(x, Tx) = lim
r→∞ d(xnr+ , Txnr ) = d(A, B)

and

d(y, Ty) = lim
s→∞ d(yms+ , Txms ) = d(A, B).

Finally, from () and () we obtain

d(x, y) = lim
r,s→∞ d(xnr , yms ) = d(A, B). �

Example . Let X = R and d(x, y) = |x – y| be the Euclidean metric on X. Let A = [, π
 ]

and B = [– π
 , ] be subsets of X. Since A and B are closed subsets of the complete metric

space R and d(A, B) = , it follows that (A, B) is a proximally complete pair. It is clear that
A = B = {}, moreover, T(A) ⊆ B and T(B) ⊆ A. As in Example ., we define T :
A ∪ B → A ∪ B by Tx = – 

 sin x. It is easy to see that T is a continuous cyclic generalized
proximal contraction of the first kind on A∪B. Therefore all the conditions of Theorem .
are fulfilled, so there exists (x, y) ∈ A × B such that

d(x, Tx) = d(A, B), d(y, Ty) = d(A, B) and d(x, y) = d(A, B).

Since T = , it follows that d(, T) =  = d(A, B). Note also that (, ) ∈ A × B, and
d(, ) =  = d(A, B).

Theorem . Let (A, B) be a cyclically complete pair in a metric space X and A �= ∅. Let
A be approximatively compact with respect to B and B be approximatively compact with
respect to A. Let T : A ∪ B → A ∪ B be a mapping satisfying the following conditions:
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(i) T(A) ⊆ B, T(B) ⊆ A,
(ii) T is a continuous cyclic generalized proximal contraction of the first kind.

Then there exists (x, y) ∈ A × B such that

d(x, Tx) = d(A, B), d(y, Ty) = d(A, B) and d(x, y) = d(A, B).

Proof Following the same lines as in the proof of Theorem ., we can construct the se-
quences {xn} in A and {yn} in B such that d(xn+, Txn) = d(A, B) and d(yn+, Tyn) = d(A, B).
Now, define the sequence {zn} by

zn =

⎧
⎨

⎩
xr , n = r,

yr , n = r + .

It follows that {zn} is a cyclically Cauchy sequence in A ∪ B. Moreover,

lim
m,n→∞ d(xn, ym) = d(A, B). ()

Since by our assumption, (A, B) is a cyclically complete pair in X, either {xn} or {ym} con-
verges. Assume the sequence {xn} converges in A, so there exists x ∈ A such that

lim
n→∞ xn = x. ()

Note also that

d(x, B) ≤ d(ym, x) ≤ d(ym, xn) + d(xn, x),

from which it follows that

d(x, B) ≤ lim
m→∞ lim

n→∞ d(ym, x) ≤ d(A, B) ≤ d(x, B),

and finally

d(x, B) = lim
m→∞ d(ym, x). ()

Since B is approximatively compact with respect to A, there exist a subsequence {yms} of
{ym} and an element y ∈ B such that

lim
s→∞ yms = y. ()

Now, we use the continuity of T to write

d(x, Tx) = lim
n→∞ d(xn+, Txn) = d(A, B)

and

d(y, Ty) = lim
s→∞ d(yms+ , Tyms ) = d(A, B).
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Finally, it follows from (), (), and () that

d(x, y) = lim
n,s→∞ d(xn, yms ) = d(A, B). �

We now manage to prove the existence of best proximity points for cyclic generalized
proximal contractions of the second kind.

Theorem . Let (A, B) be a proximally complete pair in a metric space X and A �= ∅. Let
A be approximatively compact with respect to B and B be approximatively compact with
respect to A. Let T : A ∪ B → A ∪ B be a mapping satisfying the following conditions:

(i) T(A) ⊆ B, T(B) ⊆ A,
(ii) T is a continuous cyclic generalized proximal contraction of the second kind.

Then there exists (x, y) ∈ A × B such that

d(x, Tx) = d(A, B), d(y, Ty) = d(A, B) and d(Tx, Ty) = d(A, B).

Proof Following the same lines as in the proof of Theorem ., it is possible to construct
the sequences {xn} in A and {yn} in B such that

d(xn+, Txn) = d(A, B), d(yn+, Tyn) = d(A, B).

Now, we define

zn =

⎧
⎨

⎩
Txr , n = r,

Tyr , n = r + .

We prove that {zn} is a cyclically Cauchy sequence in A ∪ B.
To this end, we must prove that limm,n→∞ d(zn, zm+) = d(A, B) or, equivalently,

lim
m,n→∞ d(Txn, Tym) = d(A, B).

Let m ≤ n. Since d(xn+, Txn) = d(ym+, Tym) = d(A, B) and T is a cyclic generalized proxi-
mal contraction of the second kind on A ∪ B, we have

d(Txn+, Tym+) ≤ ad(Txn, Tym) + c
[
d(Txn, Txn+) + d(Tym, Tym+)

]

+ d
[
d(Txn, Tym+) + d(Txn+, Tym)

]

+ ( – c – d)
(

 –
k


)
d(A, B). ()

Using the triangle inequalities, as in the proof of Theorem ., we have

d(Txn+, Tym+) ≤ad(Txn, Tym)

+ (c + d)
[
d(Txn, Tym) + d(Txn+, Tym+) + d(Tym, Tym+)

]

+ ( – c – d)
(

 –
k


)
d(A, B) ()
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and hence

d(Txn+, Tym+) ≤ a + c + d
 – c – d

d(Txn, Tym) + 
c + d

 – c – d
d(Tym, Tym+)

+
(

 –
k


)
d(A, B). ()

Since (c + d) ≤ (a + c + d), it follows that


c + d

 – c – d
≤ 

a + c + d
 – c – d

= 
k


=

k


≤ k



and hence

d(Txn+, Tym+) ≤ k


d(Txn, Tym) +

k


d(Tym, Tym+) +
(

 –
k


)
d(A, B). ()

Again, since d(ym, Tym–) = d(ym+, Tym) = d(A, B) and T is a cyclic generalized proximal
contraction of the second kind on A ∪ B, after some manipulations we have

d(Tym, Tym+) ≤ ad(Tym–, Tym) + (c + d)
[
d(Tym, Tym+) + d(Tym–, Tym)

]

+ ( – c – d)
(

 –
k


)
d(A, B). ()

Therefore

d(Tym, Tym+) ≤ a + c + d
 – c – d

d(Tym–, Tym) +
(

 –
k


)
d(A, B),

from which it follows that

d(Tym, Tym+) ≤ k


d(Tym–, Tym) +

(
 –

k


)
d(A, B). ()

It now follows from equations () and () that

d(Txn+, Tym+) ≤ k



[
k


d(Txn–, Tym–) +

k


d(Tym–, Tym) +
(

 –
k


)
d(A, B)

]

+
k


[
k


d(Tym–, Tym) +

(
 –

k


)
d(A, B)

]
+

(
 –

k


)
d(A, B)

≤ k


d(Txn–, Tym–) +

k


d(Tym–, Tym)

+
(

k


+

k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)

d(Txn–, Tym–) +
(

k


)

d(Tym–, Tym)

+
((

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)[k


d(Txn–, Tym–) +

k


d(Tym–, Tym–) +
(

 –
k


)
d(A, B)

]
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+
(

k


)[k


d(Tym–, Tym–) +

(
 –

k


)
d(A, B)

]

+
((

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)

d(Txn–, Tym–) +
(

k


)

d(Tym–, Tym–)

+
((

k


)

+
(

k


)

+
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B). ()

Now, we assume that the above relation is valid for r < m, and we try to conclude that it
holds for r = m. To this end, we note that

d(Txn+, Tym+) ≤
(

k


)r+

d(Txn–r , Tym–r) +
(

k


)r+

d(Tym–r , Tym–r+)

+
((

k


)r

+
(

k


)r–

+ · · · +
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)r+[k


d(Txn–(r+), Tym–(r+))

+
k


d(Tym–(r+), Tym–r) +
(

 –
k


)
d(A, B)

]

+
(

k


)r+[k


d(Tym–(r+), Tym–r) +

(
 –

k


)
d(A, B)

]

+
((

k


)r

+
(

k


)r–

+ · · · +
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

≤
(

k


)(r+)+

d(Txn–(r–), Tym–(r–))

+
(

k


)(r+)+

d(Tym–(r+), Tym–r)

+
((

k


)r+

+
(

k


)r+

+
(

k


)r

+ · · ·

+
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B). ()

So, for r = m, we have

d(Txn+, Tym+) ≤
(

k


)m+

d(Txn–m, Ty) +
(

k


)m+

d(y, y)

+
((

k


)m

+
(

k


)m–

+ · · · +
(

k


)

+
k


+ 
)(

 –
k


)
d(A, B)

=
(

k


)m+

d(Txn–m, Ty)

+
(

k


)m+

d(Ty, Ty) +
(

 –
(

k


)m+)
d(A, B). ()
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Now we prove that the sequence {Txn} is bounded. Suppose not, so, for

M =
k + k
 – k d(Ty, Ty) +

 – k
 – k d(A, B),

there exists a natural number n such that d(Txn, Ty) ≤ M and d(Txn+, Ty) > M. Now we
have

M < d(Txn+, Ty) ≤ k


d(Txn, Ty) +

k


d(Ty, Ty) +
(

 –
k


)
d(A, B)

≤ k


[
d(Txn, Ty) + d(Ty, Ty)

]
+

k


d(Ty, Ty) +
(

 –
k


)
d(A, B)

≤ k


M +

(
k


+

k


)
d(Ty, Ty) +

(
 –

k


)
d(A, B)

=
k


M +

(
 –

k



)
M = M, ()

which is a contradiction. Therefore the sequence {Txn} is bounded. So we have

lim
m,n→∞ d(Txn+, Tym+)

≤ lim
m,n→∞

[(
k


)m+

d(Txn–m, y) +
(

k


)m+

d(Ty, Ty) +
(

 –
(

k


)m+)
d(A, B)

]

= d(A, B). ()

This implies that the sequence {zn} is cyclically Cauchy in A∪B. But by assumption, (A, B)
is a proximally complete pair in X, so that both sequences {Txn} and {Tym} have convergent
subsequences in B and A, respectively. This means that there exist subsequences {Txnr }
and {Tyms} of {Txn} and {Tym} and (y, x) ∈ (B × A) such that

lim
r→∞ Txnr = y and lim

s→∞ Tyms = x. ()

Moreover, we have

d(y, A) ≤ d(y, xnr+ ) ≤ d(y, Txnr ) + d(Txnr , xnr+ )

≤ d(y, Txnr ) + d(A, B) ≤ d(y, Txnr ) + d(y, A). ()

Taking the limit as r → ∞, we conclude that d(y, xnr+ ) → d(y, A). Since A is approxima-
tively compact with respect to B, the sequence {xnr } has a subsequence {xnrt } converging
to some x ∈ A. Now, using the continuity of T , we obtain

d(x, Tx) = lim
t→∞ d(xnrt+

, Txnrt ) = d(A, B),

that is, x ∈ Best(T). Similarly

d(x, B) ≤ d(x, yms+ ) ≤ d(x, Tyms ) + d(Tyms , yms+ )

≤ d(x, Tyms ) + d(A, B) ≤ d(x, Tyms ) + d(x, B). ()
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Taking the limit as s → ∞, we get d(x, yms+ ) → d(x, B). Since B is approximatively com-
pact with respect to A, the sequence {yms} has a subsequence {ymsi

} converging to some
y ∈ B. Now, using the continuity of T , we obtain

d(y, Ty) = lim
i→∞ d(ymsi+

, Tymsi
) = d(A, B),

that is, y ∈ Best(T). Finally, from () we have

d(Tx, Ty) = lim
t,i→∞ d(Txnrt , Tymsi

) = d(A, B). �

Example . Let X = R
 be endowed with the usual metric

d
(
(x, x), (y, y)

)
=

√
(x – y) + (x – y).

We define A := {(x, x) :  ≤ x ≤ } and B := {(x, –x) :  ≤ x ≤ }. Clearly d(A, B) =  and
A = B = {(, )}. So A �= ∅. Since A and B are closed subsets of the complete metric space
R

, and d(A, B) = , it follows that (A, B) is a proximally complete pair. Also, because of the
compactness of A and B, we conclude that A is approximatively compact with respect to
B and B is approximatively compact with respect to A. Now we define T : A ∪ B → A ∪ B
by

T(x, y) =

⎧
⎨

⎩


 (x, –x), y = x,

 (x, x), y = –x.

Therefore T(A) ⊆ B and T(B) ⊆ A. Also T(A) ⊆ B and T(B) ⊆ A. For every (x, y),
(x, y), (u, ú), (u, ú) in A ∪ B, if d((u, ú), T(x, y)) = d(A, B) =  then

(u, ú) = T(x, y) =

⎧
⎨

⎩


 (x, –x), if y = x,

 (x, x), if y = –x.

So

T(u, ú) =

⎧
⎨

⎩
T( 

 x, – 
 x), if y = x,

T( 
 x, 

 x), if y = –x,

=

⎧
⎨

⎩


 (x, x), if y = x,

 (x, –x), if y = –x,

=



(x, y).

Similarly, if d((u, ú), T(x, y)) = d(A, B) = , then

(u, ú) = T(x, y) =

⎧
⎨

⎩


 (x, –x), if y = x,

 (x, x), if y = –x.
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So

T(u, ú) =

⎧
⎨

⎩
T( 

 x, – 
 x), if y = x,

T( 
 x, 

 x), if y = –x

=

⎧
⎨

⎩


 (x, x), if y = x,

 (x, –x), if y = –x,

=



(x, y).

After routine calculations, one can show that d(T(x, y), T(x, y)) = d((x, y), (x, y)).
Therefore we have

d
(
T(u, ú), T(u, ú)

)
=




d
(
(x, y), (x, y)

)
=




d
(
T(x, y), T(x, y)

)
.

So T is a continuous cyclic generalized proximal contraction of the second kind on A ∪ B
with a = 

 , c = d = , and a+c+d
–c–d = 

 < 
 .

Now, all the conditions of Theorem . are satisfied, so there exists (x, y) ∈ A × B such
that

d(x, Tx) = d(A, B), d(y, Ty) = d(A, B) and d(Tx, Ty) = d(A, B).

Since T(, ) = 
 (, ) = (, ), we have d((, ), T(, )) =  = d(A, B). Note also that

((, ), (, )) ∈ A × B, and d(T(, ), T(, )) =  = d(A, B).

Theorem . If in Theorem ., instead of the assumption that (A, B) is proximally com-
plete, we assume that (A, B) is cyclically complete, then the conclusion of Theorem . holds.

Proof Following the same lines of the proof of Theorem ., we construct the sequences
{xn} in A and {yn} in B such that d(xn+, Txn) = d(A, B) and d(yn+, Tyn) = d(A, B). Now,
define the sequence {zn} by

zn =

⎧
⎨

⎩
Txr , n = r,

Tyr , n = r + .

It is easy to see that {zn} is a cyclically Cauchy sequence in A ∪ B, and

lim
m,n→∞ d(Txn, Tym) = d(A, B). ()

But, by assumption, (A, B) is a cyclically complete pair in X so that either {Txn} or {Tym}
converges. Assume that the sequence {Txn} converges in A; and there exists y ∈ B such
that

lim
n→∞ Txn = y. ()

Note that

d(A, y) ≤ d(Tym, y) ≤ d(Tym, Txn) + d(Txn, y),
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from which it follows that

d(A, y) ≤ lim
m→∞ lim

n→∞ d(Tym, y) ≤ d(A, B) ≤ d(A, y). ()

Since A is approximatively compact with respect to B, there exist a subsequence {Tyms} of
{Tym} and an element x ∈ A such that

lim
s→∞ Tyms = x. ()

Moreover, we have

d(y, A) ≤ d(y, xn+) ≤ d(y, Txn) + d(Txn, xn+)

≤ d(y, Txn) + d(A, B) ≤ d(y, Txn) + d(y, A). ()

Taking the limit as n → ∞, we get d(y, xn+) → d(y, A). Since A is approximatively com-
pact with respect to B, the sequence {xn} has a subsequence {xnr } converging to some
x ∈ A. Now, using the continuity of T , we obtain

d(x, Tx) = lim
r→∞ d(xnr+ , Txnr ) = d(A, B),

that is, x ∈ Best(T). Similarly

d(x, B) ≤ d(x, yms+ ) ≤ d(x, Tyms ) + d(Tyms , yms+ )

≤ d(x, Tyms ) + d(A, B) ≤ d(x, Tyms ) + d(x, B). ()

Taking the limit as s → ∞, we get d(x, yms+ ) → d(x, B). Since B is approximatively com-
pact with respect to A, the sequence {yms} has a subsequence {ymsi

} converging to some
y ∈ B. Now, using the continuity of T , we obtain

d(y, Ty) = lim
i→∞ d(ymsi+

, Tymsi
) = d(A, B),

that is, y ∈ Best(T). Finally, from () we have

d(Tx, Ty) = lim
n,s→∞ d(Txn, Tyms ) = d(A, B). �

4 Conclusion
In this paper we have introduced two new classes of mappings, namely, the cyclic gener-
alized proximal contractions of the first kind, and of the second kind. As we have seen by
the examples, these mappings are not necessarily continuous, so that it remains an open
question to investigate whether the main results of this paper, Theorems . and ., stand
true if we remove the continuity assumption on T . The next open question is whether one
can weaken the approximately compactness condition of the sets in the statement of The-
orem . by a weaker condition, such as the closeness of A and B. More precisely, we
raise the following questions.
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Question . Is it possible to prove Theorem ., and Theorem . without the continuity
assumption on T?

Question . To what extent can the compactness conditions in Theorem . be relaxed?
Does the result follow if we just assume that the pair (A, B) is semi-sharp proximinal?
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