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Abstract
In this paper, a new modified proximal point algorithm involving fixed point iterates
of asymptotically nonexpansive mappings in CAT(0) spaces is proposed and the
existence of a sequence generated by our iterative process converging to a minimizer
of a convex function and a common fixed point of asymptotically nonexpansive
mappings is proved.
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1 Introduction
Recently, many convergence results by the proximal point algorithm (shortly, the PPA)
which was initiated by Martinet [] in  for solving optimization problems have been
extended from the classical linear spaces such as Euclidean spaces, Hilbert spaces, and
Banach spaces to the setting of manifolds (see [–]).

For example, in , Bačák [] introduced the PPA in a CAT() space (X, d) as follows:
x ∈ X and

xn+ = arg min
y∈X

(
f (y) +


λn

d(y, xn)
)

, ∀n ≥ , (.)

where λn > , ∀n ≥ . It was shown that if f has a minimizer and �∞
n=λn = ∞, then the

sequence {xn} �-converges to its minimizer (see []).
Also in , Cholamjiak-Abdou-Cho [] established the strong convergence of the se-

quence to minimizers of a convex function and to fixed points of nonexpansive mappings
in CAT() spaces.

Motivated and inspired by the research going on in this direction, it is naturally to put
forward the following.

Open question Can we establish the strong convergence of the sequence to minimizers of
a convex function and to a common fixed point of asymptotically nonexpansive mappings
in CAT() spaces?
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The purpose of this paper is to propose the modified proximal point algorithm using the
S-type iteration process for four asymptotically nonexpansive mappings in CAT() spaces
and to prove some �- and strong convergence theorems of the proposed processes under
suitable conditions.

Our results not only give an affirmative answer to the above open question but also gen-
eralize the corresponding results of Bačák [], Ariza-Ruiz et al. [], Cholamjiak-Abdou-
Cho [], Agarwal et al. [], Dhompongsa-Panyanak [], Khan-Abbas [], and many
others.

2 Preliminaries
Recall that a metric space (X, d) is called a CAT() space, if it is geodesically connected
and if every geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the
Euclidean plane. A subset K of a CAT() space X is convex if, for any x, y ∈ K , we have
[x, y] ⊂ K , where [x, y] := {λx ⊕ ( – λ)y :  ≤ λ ≤ } is the unique geodesic joining x and y.

It is well known that a geodesic space (X, d) is a CAT() space, if and only if the inequality

d(( – t)x ⊕ ty, z
) ≤ ( – t)d(x, z) + td(y, z) – t( – t)d(x, y) (.)

is satisfied for all x, y, z ∈ X and t ∈ [, ]. In particular, if x, y, z are points in a CAT() space
(X, d) and t ∈ [, ], then

d
(
( – t)x ⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z). (.)

In order to save space, we will not repeat the geometric properties, some conclusions,
and the �-convergence of CAT() space here. The interested reader may refer to (for ex-
ample) [, –].

In the sequel, we denote by F(T) the fixed point set of a mapping T .
Recall that a mapping T : C → C is said to be asymptotically nonexpansive, if there exists

a sequence {kn} ⊂ [,∞) with kn →  such that

d
(
Tnx, Tny

) ≤ knd(x, y), ∀x, y ∈ C, n ≥ . (.)

Recall that a function f : C → (–∞,∞] defined on a convex subset C of a CAT() space is
convex if, for any geodesic [x, y] := {γx,y(λ) :  ≤ λ ≤ } := {λx ⊕ ( – λ)y :  ≤ λ ≤ } joining
x, y ∈ C, the function f ◦ γ is convex, i.e.,

f
(
γx,y(λ)

)
:= f

(
λx ⊕ ( – λ)y

) ≤ λf (x) + ( – λ)f (y).

Examples of convex functions in CAT() space X:

Example  The function y �→ d(x, y) : X → [,∞) is convex.

Example  For a nonempty, closed, and convex subset C ⊂ X, the indicator function de-
fined by

δC : X → R, δC(x) =

{
, if x ∈ C,
+∞, otherwise,

(.)

is a proper, convex, and lower semi-continuous function.
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Example  The function y �→ d(z, y) : X → [,∞) is convex.

Indeed, for each two points x, y ∈ X, there is a unique geodesic γx,y(λ) joining x and y
such that

d(z,γx,y(λ)
) ≤ ( – λ)d(z, x) + λd(z, y) – λ( – λ)d(x, y)

≤ ( – λ)d(z, x) + λd(z, y). (.)

This implies that the function y �→ d(z, y) : X → [,∞) is convex.
For any λ > , define the Moreau-Yosida resolvent of f in CAT() space X as

Jλ(x) = arg min
y∈X

[
f (y) +


λ

d(y, x)
]

, ∀x ∈ X. (.)

Let f : X → (–∞,∞] be a proper convex and lower semi-continuous function. It was
shown in [] that the set F(Jλ) of fixed points of the resolvent associated with f coincides
with the set arg min yXf (y) of minimizers of f . Also for any λ > , the resolvent Jλ of f is
nonexpansive [].

Lemma . (Sub-differential inequality []) Let (X, d) be a complete CAT() space and
f : X → (–∞,∞] be proper convex and lower semi-continuous. Then, for all x, y ∈ X and
λ > , the following inequality holds:


λ

d(Jλx, y) –


λ
d(x, y) +


λ

d(x, Jλx) + f (Jλx) ≤ f (y). (.)

Lemma . (Demi-closed principle []) Assume C is a closed convex subset of a complete
CAT() space X and T : C → C be an asymptotically nonexpansive mapping. Let {xn} be a
bounded sequence in C such that �-lim xn = p and limn→∞ d(xn, Txn) = . Then Tp = p.

Lemma . [] Let {an} be a sequence of nonnegative real numbers satisfying the following
conditions:

an+ ≤ ( + bn)an, ∀n ≥ ∞,

where bn ≥  and
∑∞

n= bn < ∞, then the limit limn→∞ an exists.

Lemma . [, ] Let X be a CAT() space, C be a nonempty, closed, and convex subset
of X. Let {xi}n

i= be any finite subset of C, and αi ∈ (, ), i = , , . . . , n such that
∑n

n= αi = .
Then the following inequalities hold:

d

( n⊕
i=

αixi, z

)
≤

n∑
i=

αid(xi, z), ∀z ∈ C, (.)

d

( n⊕
i=

αixi, z

)

≤
n∑

i=

αid(xi, z) –
n∑

i,j=,i=j

αiαjd(xi, xj), ∀z ∈ C. (.)
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Lemma . (The resolvent identity []) Let (X, d) be a complete CAT() space and f :
X → (–∞,∞] be a proper convex and lower semi-continuous function. Then the following
identity holds:

Jλx = Jμ
(

λ – μ

λ
Jλx ⊕ μ

λ
x
)

, ∀x ∈ X and λ > μ > . (.)

3 Some �-convergence theorems involving proximal point and common fixed
points for asymptotically nonexpansive mappings in CAT(0) spaces

We are now in a position to give the main results of the paper.

Theorem . Assume that
() (X, d) is a complete CAT() space, and C is a nonempty, closed, and convex subset

of X ;
() f : C → (–∞,∞] is a proper convex and lower continuous function;
() Ti : C → C and Si : C → C, i = ,  all are {kn}-asymptotically nonexpansive

mappings with kn ∈ [,∞), kn →  and
∑∞

i=(kn – ) < ∞ such that

� := F(T) ∩ F(T) ∩ F(S) ∩ F(S) ∩ arg min
y∈C

f (y) = ∅; (.)

() {αn}, {βn}, {γn}, {δn}, {ηn}, {ξn} are sequences in [, ] with

αn + βn + γn = ,

δn + ηn + ξn = ,  < a ≤ αn,βn,γn, δn,ηn, ξn < ,∀n ≥ ,
(.)

where a is a positive constant in (, );
() {λn} is a sequence such that λn ≥ λ >  for all n ≥  and some λ.
Let {xn} be the sequence generated in the following manner:

⎧⎪⎨
⎪⎩

zn = arg min yy∈C[f (y) + 
λn

d(y, xn)],
yn = αnxn ⊕ βnTn

 xn ⊕ γnTn
 zn,

xn+ = δnTn
 xn ⊕ ηnSn

 xn ⊕ ξnSn
yn,

∀n ≥ . (.)

Then {xn} �-converges to a point x∗ ∈ � which is a minimizer of f in C as well as a common
fixed point of Ti, Si, i = , .

Proof Let q ∈ �. Then q = Tq = Tq = Sq = Sq and f (q) ≤ f (y), ∀y ∈ C. Therefore we
have

f (q) +


λn
d(q, q) ≤ f (y) +


λn

d(y, q), ∀y ∈ C,

and hence q = Jλn q, ∀n ≥ .
(I) First we prove that the limit limn→∞ d(xn, q) exists.
Indeed, zn = Jλn xn, and Jλn is nonexpansive []. Hence we have

d(zn, q) = d(Jλn xn, Jλn q) ≤ d(xn, q). (.)
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Also, by (.), (.), and (.), we have

d(yn, q) = d
(
αnxn ⊕ βnTn

 xn ⊕ γnTn
 zn, q

)
≤ αnd(xn, q) + βnd

(
Tn

 xn, q
)

+ γnd
(
Tn

 zn, q
)

≤ αnd(xn, q) + βnknd(xn, q) + γnknd(zn, q)

≤ knd(xn, q). (.)

Similarly, by (.) and (.), we obtain

d(xn+, q) = d
(
δnTn

 xn ⊕ ηnSn
 xn ⊕ ξnSn

yn, q
)

≤ δnd
(
Tn

 xn, q
)

+ ηnd
(
Sn

 xn, q
)

+ ξnd
(
Sn

yn, q
)

≤ kn
[
δnd(xn, q) + ηnd(xn, q)

]
+ ξnknd(yn, q)

≤ k
nd(xn, q) =

(
 +

(
k

n – 
))

d(xn, q)

=
(
 + (kn – )(kn + )

)
d(xn, q)

≤ (
 + (kn – )L

)
d(xn, q), ∀n ≥ , (.)

where L =  + supn≥ kn. By Lemma ., the limit limn→∞ d(xn, q) exists. Without loss of
generality, we can assume that

lim
n→∞ d(xn, q) = c ≥ . (.)

Therefore {xn} is bounded, and so are {zn}, {yn}, {Tn
i xn}, i = , , {Sn

 xn}, {Tn
 zn}, {Sn

yn}.
(II) Now we prove that limn→∞ d(xn, zn) = .
Indeed, by the sub-differential inequality (.) we have


λn

{
d(zn, q) – d(xn, q) + d(xn, zn)

} ≤ f (q) – f (zn).

Since f (q) ≤ f (zn), ∀n ≥ , it follows that

d(xn, zn) ≤ d(xn, q) – d(zn, q). (.)

Furthermore, it follows from (.) that

d(xn+, q) ≤ kn
[
δnd(xn, q) + ηnd(xn, q)

]
+ ξnknd(yn, q)

≤ kn
[
( – ξn)d(xn, q) + ξnd(yn, q)

]
.

Simplifying we have

d(xn, q) ≤ 
ξnkn

[
knd(xn, q) – d(xn+, q)

]
+ d(yn, q)

≤ 
akn

[
knd(xn, q) – d(xn+, q)

]
+ d(yn, q).
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This together with (.) shows that

c = lim inf
n→∞ d(xn, q) ≤ lim inf

n→∞ d(yn, q). (.)

On the other hand it follows from (.) that

lim sup
n→∞

d(yn, q) ≤ lim sup
n→∞

(
knd(xn, q)

)
= c.

This together with (.) implies that

lim
n→∞ d(yn, q) = c. (.)

Also, by (.) we have

d(yn, q) ≤ αnd(xn, q) + βnknd(xn, q) + γnknd(zn, q)

= kn
[
( – γn)d(xn, q) + γnd(zn, q)

]
,

which can be rewritten as

d(xn, q) ≤ 
γnkn

[
knd(xn, q) – d(yn, q)

]
+ d(zn, q)

≤ 
akn

[
knd(xn, q) – d(yn, q)

]
+ d(zn, q).

This together with (.) shows that

c = lim inf
n→∞ d(xn, q) ≤ lim inf

n→∞ d(zn, q). (.)

From (.), it follows that

lim sup
n→∞

d(zn, q) ≤ lim sup
n→∞

d(xn, q) = c.

This shows that limn→∞ d(zn, q) = c. Therefore it follows from (.) that

lim
n→∞ d(xn, zn) = . (.)

(III) Now we prove that

lim
n→∞ d

(
xn, Tn

i xn
)

= , i = ,  and lim
n→∞ d(yn, zn) = .

Indeed, it follows from (.) that

d(yn, q) = d(αnxn ⊕ βnTn
 xn ⊕ γnTn

 zn, q
)

≤ αnd(xn, q) + βnd(Tn
 xn, q

)
+ γnd(Tn

 zn, q
)

– αnβnd(xn, Tn
 xn

)
– αnγnd(xn, Tn

 zn
)

– βnγnd(Tn
 xn, Tn

 zn
)
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≤ αnd(xn, q) + βnk
nd(xn, q) + γnk

nd(zn, q)

– αnβnd(xn, Tn
 xn

)
– αnγnd(xn, Tn

 zn
)

– βnγnd(Tn
 xn, Tn

 zn
)

≤ k
nd(xn, q) – αnβnd(xn, Tn

 xn
)

– αnγnd(xn, Tn
 zn

)
– βnγnd(Tn

 xn, Tn
 zn

)
. (.)

By virtue of (.) and (.) we have

αnβnd(xn, Tn
 xn

)
+ αnγnd(xn, Tn

 zn
)

+ βnγnd(Tn
 xn, Tn

 zn
)

≤ k
nd(xn, q) – d(yn, q) →  (as n → ∞).

By condition () we have

d
(
xn, Tn

 xn
) → , d

(
xn, Tn

 zn
) →  and

d
(
Tn

 xn, Tn
 zn

) →  (as n → ∞).
(.)

Since

d
(
xn, Tn

 xn
) ≤ d

(
xn, Tn

 xn
)

+ d
(
Tn

 xn, Tn
 zn

)
+ d

(
Tn

 zn, Tn
 xn

)
≤ d

(
xn, Tn

 xn
)

+ d
(
Tn

 xn, Tn
 zn

)
+ knd(zn, xn),

this together with (.) and (.) shows that

lim
n→∞ d

(
xn, Tn

 xn
)

= . (.)

Also from (.), (.), (.), and (.) we have

d(yn, zn) ≤ αnd(xn, zn) + βnd
(
Tn

 xn, zn
)

+ γnd
(
Tn

 zn, zn
)

≤ αnd(xn, zn) + βn
{

d
(
Tn

 xn, xn
)

+ d(xn, zn)
}

+ γn
{

d
(
Tn

 zn, Tn
 xn

)
+ d

(
Tn

 xn, xn
)

+ d(xn, zn)
}

≤ αnd(xn, zn) + βn
{

d
(
Tn

 xn, xn
)

+ d(xn, zn)
}

+ γn
{

knd(zn, xn) + d
(
Tn

 xn, xn
)

+ d(xn, zn)
} →  (as n → ∞). (.)

(IV) Now we prove that

lim
n→∞ d

(
xn, Sn

i xn
)

= , i = ,  and lim
n→∞ d(yn, zn) = .

In fact, it follows from (.) and (.) that

d(xn+, q) ≤ δnd(Tn
 xn, q

)
+ ηnd(Sn

 xn, q
)

+ ξnd(Sn
yn, q

)
– δnηnd(Tn

 xn, Sn
 xn

)
– δnξnd(Tn

 xn, Sn
yn

)
– ηnξnd(Sn

 xn, Sn
yn

)
≤ δnk

nd(xn, q) + ηnk
nd(xn, q) + ξnk

nd(yn, q)
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– δnηnd(Tn
 xn, Sn

 xn
)

– δnξnd(Tn
 xn, Sn

yn
)

– ηnξnd(Sn
 xn, Sn

yn
)

≤ k
nd(xn, q) – δnηnd(Tn

 xn, Sn
 xn

)
– δnξnd(Tn

 xn, Sn
yn

)
– ηnξnd(Sn

 xn, Sn
yn

)
,

which can be rewritten as

δnηnd(Tn
 xn, Sn

 xn
)

+ δnξnd(Tn
 xn, Sn

yn
)

+ ηnξnd(Sn
 xn, Sn

yn
)

≤ k
nd(xn, q) – d(xn+, q) →  (as n → ∞).

This implies that

d(Tn
 xn, Sn

 xn
) → , d(Tn

 xn, Sn
yn

) →  and

d(Sn
 xn, Sn

yn
) →  (as n → ∞).

(.)

This together with limn→∞ d(xn, Tn
i xn) = , limn→∞ d(xn, zn) = , limn→∞ d(yn, zn) = 

shows that

lim
n→∞ d

(
xn, Sn

i xn
)

= , i = , , lim
n→∞ d

(
xn, Sn

yn
)

= . (.)

By the way, it follows from (.) that

d(xn+, xn) ≤ δnd
(
Tn

 xn, xn
)

+ ηnd
(
Sn

 xn, xn
)

+ ξnd
(
Sn

yn, xn
) →  (as n → ∞). (.)

(V) Next we prove that

lim
n→∞ d(xn, Tixn) = , lim

n→∞ d(xn, Sixn) = , i = , . (.)

In fact, it follows from (.), (.), and (.) that, for each i = , ,

d(xn, Tixn) ≤ d(xn, xn+) + d
(
xn+, Tn+

i xn+
)

+ d
(
Tn+

i xn+, Tn+
i xn

)
+ d

(
Tn+

i xn, Tixn
)

≤ d(xn, xn+) + d
(
xn+, Tn+

i xn+
)

+ kn+d(xn+, xn)

+ kd
(
Tn

i xn, xn
) →  (as n → ∞).

Similarly we can also prove that limn→∞ d(xn, Sixn) = , i = , .
(VI) Next we prove that

lim
n→∞ d(Jλxn, xn) = , where λn ≥ λ > . (.)

In fact, it follows from (.) and Lemma . that

d(Jλxn, xn) ≤ d(Jλxn, zn) + d(zn, xn) = d(Jλxn, Jλn xn) + d(zn, xn)

= d
(

Jλxn, Jλ
(

λn – λ

λn
Jλn xn ⊕ λ

λn
xn

))
+ d(zn, xn)
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≤ d
(

xn,
(

 –
λ

λn

)
Jλn xn ⊕ λ

λn
xn

)
+ d(zn, xn)

=
(

 –
λ

λn

)
d(xn, zn) + d(zn, xn) → . (.)

(VII) Next we prove that

w�(xn) :=
⋃

{un}⊂{xn}

{
A

({un}
)} ⊂ �, (.)

where A({un}) is the asymptotic center of {un} (for the definition of the asymptotic center
see, for example, [, ]).

Let u ∈ w�(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}.
Therefore there exists a subsequence {vn} of {un} such that �-limn→∞ vn = v for some
v ∈ C. In view of (.), (.), and (.)

lim
n→∞ d(vn, Tivn) = , lim

n→∞ d(vn, Sivn) = , i = ,  and lim
n→∞ d(Jλxn, xn) = .

By Lemma ., v ∈ �. So, by (.), the limit limn→∞ d(xn, v) exists and u = v []. This
shows that w�(xn) ⊂ �.

Finally, we show that the sequence {xn} �-converges to a point in �. To this end, it
suffices to show that w�(xn) consists of exactly one point. Let {un} be a subsequence of {xn}
with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ w�(xn) ⊂ � and {d(xn, u)} converges, we
have x = u []. Hence w�(xn) = {x}.

This completes the proof of Theorem .. �

Remark .
. Theorem . generalizes the main results in Agarwal et al. [] and Khan-Abbas []

from one nonexpansive mapping to four asymptotically nonexpansive mappings
involving the convex and lower semi-continuous function in CAT() spaces.

. Theorem . extends the main result in Bačák [], and the corresponding results in
Ariza-Ruiz et al. [] and Cholamjiak et al. []. In fact, we present a new modified
proximal point algorithm for solving the convex minimization problem as well as the
fixed point problem of asymptotically nonexpansive mappings in CAT() spaces.

Since every real Hilbert space H is a complete CAT() space, the following result can be
obtained from Theorem . immediately.

Corollary . Let H be a real Hilbert space and C be a nonempty closed and convex sub-
set of H . Let T, T, S, S, {kn}, f , {αn}, {βn}, {γn}, {δn}, {ηn}, {ξn}, {λn}, λ, and � satisfy
the conditions ()-() in Theorem .. Let {xn} be the sequence generated in the following
manner:

⎧⎪⎨
⎪⎩

zn = arg min yy∈C[f (y) + 
λn

d(y, xn)],
yn = αnxn + βnTn

 xn + γnTn
 zn,

xn+ = δnTn
 xn + ηnSn

 xn + ξnSn
yn,

∀n ≥ . (.)

Then the sequence {xn} converges weakly to an element in �.
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Remark . Corollary . is an improvement and generalization of the main result in
Agarwal et al. [], Rockafellar [], and Güler [].

4 Some strong convergence theorems involving proximal point and common
fixed points for asymptotically nonexpansive mappings in CAT(0) spaces

Let (X, d) be a CAT() space, and C be a nonempty, closed, and convex subset of X.
Recall that a mapping T : C → C is said to be demi-compact, if for any bounded sequence

{xn} in C such that d(xn, Txn) →  (as n → ∞), there exists a subsequence {xni} ⊂ {xn} such
that {xni} converges strongly (i.e., in metric topology) to some point p ∈ C.

Theorem . Under the assumptions of Theorem ., if, in addition, one of S, S, T, and
T is demi-compact, then the sequence {xn} defined by (.) converges strongly (i.e., in metric
topology) to a point x∗ ∈ �.

Proof In fact, it follows from (.) and (.) that

lim
n→∞ d(xn, Tixn) = , lim

n→∞ d(xn, Sixn) = , i = , , (.)

and

lim
n→∞ d

(
xn, Jλ(xn)

)
= . (.)

Again by the assumption that one of S, S, T, and T is demi-compact, without loss of
generality, we can assume T is demi-compact, and it follows from (.) that there exists
a subsequence {xni} ⊂ {xn} such that {xni} converges strongly to some point p ∈ C. Since
Jλ is nonexpansive, it is demi-closed at . Again since S, S, T, and T are asymptotically
nonexpansive, by Lemma ., they are also demi-closed at . Hence p ∈ �. Again by (.)
the limit limn→∞ d(xn, p) exists. Hence we have limn→∞ d(xn, p) = .

This completes the proof of Theorem .. �

Theorem . Under the assumptions of Theorem ., assume, in addition, there exists a
nondecreasing function g : [,∞) → [,∞) with g() = , g(r) > , ∀r > , such that

g
(
d(x,�)

) ≤ d(x, Jλx) + d(x, Sx) + d(x, Sx) + d(x, Tx) + d(x, Tx), ∀x ∈ C. (.)

Then the sequence {xn} defined by (.) converges strongly (i.e., in metric topology) to a point
p∗ ∈ �.

Proof It follows from (.) and (.) that for each i = ,  and each λ,  < λ ≤ λn we have

lim
n→∞ d(xn, Tixn) = , lim

n→∞ d(xn, Sixn) =  and lim
n→∞ d

(
xn, Jλ(xn)

)
= . (.)

Therefore we have limn→∞ g(d(xn,�)) = . Since g is nondecreasing with g() =  and
g(r) > , r > , we have

lim
n→∞ d(xn,�) = . (.)
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By virtue of the definition of {xn} and (.), it is easy to prove that {xn} is a Cauchy
sequence in C. Since C is a closed subset in a complete CAT() space X, it is complete.
Without loss of generality, we can assume that {xn} converges strongly to some point p∗.
It is easy to see that F(Jλ), F(Ti), and F(Si), i = , , all are closed subsets in C, so is �. Since
limn→∞ d(xn,�) = , p∗ ∈ �. This completes the proof of Theorem .. �
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