RESEARCH

Fixed Point Theory and Applications a SpringerOpen Journal

Open Access

A fixed point theorem for weakly inward *A*-proper maps and application to a Picard boundary value problem

Casey T Cremins*

*Correspondence: ctc@math.umd.edu Department of Mathematics, University of Maryland, College Park, Maryland, USA

Abstract

A fixed point theorem for weakly inward A-proper maps defined on cones in Banach spaces is established using a fixed point index for such maps. The result generalizes a theorem in Deimling (Nonlinear Functional Analysis, 1985) for weakly inward maps defined on a cone in \mathbb{R}^n . We then apply the theorem to a Picard boundary value problem and obtain the existence of a positive solution.

MSC: Primary 34B18; secondary 34B15

Keywords: fixed point index; cone; positive solutions; boundary value problem

1 Introduction

The purpose of this paper is to establish a fixed point theorem for weakly inward *A*-proper maps defined on cones in Banach spaces that generalizes a result in Deimling [1], p.254, for weakly inward maps defined on a cone in \mathbb{R}^n . We use the fixed point index for weakly inward *A*-proper maps introduced by Lan and Webb [2] to obtain our new result. As an application, we obtain a positive solution to the Picard boundary value problem

-x''(t) = f(t, x(t), x'(t), x''(t)), where x(0) = x(1) = 0,

under suitable conditions on f. This problem has been extensively studied; in particular, we refer to [3], where the concept of P_{γ} -compact maps and quasinormal cones is used, [4], where the problem is formulated as a semilinear equation, [5], where f is allowed to take negative values, and [6], where positive solutions for three-point boundary value problems are obtained. As mentioned in [5], in [3] and [4], examples were provided with conflicting hypotheses; our theorem will allow a different approach, which corrects the hypotheses of the analogous examples.

2 Preliminaries

Let *X* be a Banach space, $X_n \subset X$ a sequence of oriented finite-dimensional subspaces, and $P_n : X \to X_n$ a sequence of continuous linear projections such that $P_n x \to x$ for each $x \in X$. Then *X* is called a Banach space with projection scheme $\Gamma = \{X_n, P_n\}$.

© 2016 Cremins. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

A map $f : \operatorname{dom} f \subset X \to X$ is said to be *A*-proper with respect to Γ if $P_n f : X_n \to X_n$ is continuous for each n and for any bounded sequence $\{x_{n_j} | x_{n_j} \in X_{n_j}\}$ such that $f_{n_j}(x_{n_j}) \to y$, there exists a subsequence $\{x_{n_{j_k}}\}$ such that $x_{n_{j_k}} \to x$ and f(x) = y.

A closed convex set *K* in a Banach space *X* is called a *cone* if $\lambda K \subset K$ for all $\lambda \ge 0$ and $K \cap \{-K\} = 0$.

Let $K \subset X$ be a closed convex set. For each $x \in K$, the set $I_K(x) = \{x + c(z - x) : z \in K, c \ge 0\}$ is called the *inward set* of x with respect to K. A map $f : K \to X$ is called *inward* (respectively, *weakly inward*) if for all $x \in K$, $f(x) \in I_K(x)$ ($f(x) \in \overline{I_K}(x)$).

A map $f : \overline{\Omega}_K \to X$ is said to be *inward* (respectively, *weakly inward*) on $\overline{\Omega}_K$ relative to K if $f(x) \in I_K(x)$ (respectively, $f(x) \in \overline{I}_K(x)$) for $x \in \overline{\Omega}_K$, where $\Omega \subset X$ is open and bounded with $\Omega_K = \Omega \cap K \neq \emptyset$.

For the definition and properties of the Lan-Webb fixed point index, see [2].

3 An existence theorem for weakly inward A-proper maps

Theorem 3.1 Let K be a closed convex set, and $f : K \to X$ be weakly inward on K, where I - f is A-proper. Suppose that

(a) $f(x) \not\leq x$ on ||x|| = r, and

(b) there exists $\rho \in (0, r)$ such that $\lambda x \not\leq f(x)$ for $||x|| = \rho$ and $\lambda > 1$.

Then *f* has a fixed point in $\{x \in K : \rho < ||x|| < r\}$.

Proof Let $B_r = \{x \in X : ||x|| < r\}$, $B_{r_K} = B_r \cap K$, $B_\rho = \{x \in X : ||x|| < \rho\}$, and $B_{\rho_K} = B_\rho \cap K$. We show that $i_K(f, B_{r_K}) = \{0\}$ and $i_K(f, B_{\rho_K}) = \{1\}$, so that by the additivity property of the index $i_K(f, B_{r_K} \setminus B_{\rho_K}) = i_K(f, B_{r_K}) - i_K(f, B_{\rho_K}) = \{0\} - \{1\} = \{-1\} \neq \{0\}$, which implies the existence of a fixed point $x \in K$ such that $\rho < ||x|| < r$.

To show that $i_K(f, B_{r_K}) = \{0\}$, suppose instead that $i_K(f, B_{r_K}) \neq \{0\}$. Then we choose an a with $||f(x)|| \leq a$ on \overline{B}_{r_K} and an $e \in K$ with ||e|| > r + a. Define the weakly inward A-proper homotopy H(x, t) = f(x) + te. Now if H(x, t) = x for some $(x, t) \in \partial B_{r_K} \times [0, 1]$, then f(x) + te = x, so that $x \in K$ and $x - f(x) = te \in K$ so $f(x) \leq x$, which contradicts (a). Thus, H is an admissible homotopy, and $i_K(H(x, 1), B_{r_K}) = i_K(f, B_{r_K}) \neq \{0\}$. Then there exists $x \in B_{r_K}$ with f(x) + e = x, so that $||e|| = ||x - f(x)|| \leq ||x|| + ||f(x)|| \leq r + a$, which contradicts ||e|| > r + a. Hence, $i_K(f, B_{r_K}) = \{0\}$.

Now we show that $i_K(f, B_{\rho_K}) = \{1\}$. Define the weakly inward A-proper homotopy H(x, t) = tf(x).

If H(x, t) = x for some $(x, t) \in \partial B_{\rho_K} \times [0, 1]$, then $t \neq 0$ (this would give 0 = x on ∂B_{r_K}) and tf(x) = x and $x \in K$, so that $f(x) = \frac{1}{t}x \ge x$, which contradicts (b).

Thus $H(x, t) \neq x$ on $\partial B_{\rho_K} \times [0, 1]$.

By the homotopy property of the index, $i_K(H(x, 0), B_{\rho_K}) = i_K(H(x, 1), B_{\rho_K}) = i_K(f, B_{\rho_K}) = \{1\}.$

Consequently, $i_K(f, B_{r_K} \setminus B_{\rho_K}) = i_K(f, B_{r_K}) - i_K(f, B_{\rho_K}) = \{0\} - \{1\} = \{-1\}.$

Since the index is not 0, the existence property implies that there exists a fixed point $x \in K$ such that

$$\rho < \|x\| < r.$$

Remark 3.1 The conclusion of Theorem 3.1 is valid if condition (a) holds for $||x|| = \rho$ and condition (b) holds for ||x|| = r, that is,

(a) $f(x) \not\leq x$ on $||x|| = \rho$, and (b) $\lambda x \not\leq f(x)$ for ||x|| = r and $\lambda > 1$.

We shall use these conditions in the following application.

4 Application

We formulate the Picard boundary value problem

$$-x''(t) = f(t, x(t), x'(t), x''(t)), \quad \text{where } x(0) = x(1) = 0 \tag{1}$$

as a fixed point equation of the operator $T: \overline{K}_r \to K, K_r = \{x \in K : ||x|| < r\},\$

$$Ty(t) = f\left(t, L^{-1}y, \frac{d}{dt}(L^{-1}y), -y\right),$$

where $L: X \to Y$ is defined by Lx = -x''(t). Observe that (1) is equivalent to y = Ty.

Let $X = \{x \in C^2[0,1] : x(0) = x(1) = 0\}$, Y = C[0,1], and $K = \{y \in C[1,0] : y(t) \ge 0\}$ with norms $||x||_X = \max\{||x||_Y, ||x'||_Y, ||x''||_Y\}$ and $||x||_Y = \max_{t \in [0,1]}\{|x(t)|\}$. Then *L* is a linear bounded isometric homeomorphism.

Theorem 4.1 Under the above assumptions, suppose also that

(a') there exist r > 0 and $k \in (0,1)$ such that $f : [0,1] \times [0,r] \times [-r,r] \times R^- \to R^+$ is continuous with $|f(t,p,q,s_1) - f(t,p,q,s_2)| \le k|s_1 - s_2|$ for $t \in [0,1]$, $p \in [0,r]$, $q \in [-r,r]$, $s_1, s_2 \in R^-$;

(b') f(t, p, q, s) < r for every $t \in [0, 1]$, $p \in [0, r]$, $q \in [-r, r]$, s = -r;

(c') there are $\rho \in (0, r), t_0 \in [0, 1]$ such that $f(t_0, p, q, s) > \rho$ for $p \in [0, \rho], q \in [-\rho, \rho], s = -\rho$.

Then there exists a positive solution $x \in K$ to equation (1) with $\rho < ||x||_X < r$.

Proof Since *T* maps *K* to *K*, *T* is weakly inward. Condition (a') implies that *T* is $(\beta_K)k$ -ball contractive, where β_K is the ball measure of noncompactness associated with *K*, and thus $\lambda I - T$ is *A*-proper with respect to the projection scheme $\Gamma = \{X_n, P_n\}$ for every $\lambda \ge \gamma$, $\gamma \in (k, 1)$ (*cf.* [3]). To verify the remaining hypotheses of Remark 3.1, we first show that (b') implies (b). Let *r* be as in (b') and $y \in K$ such that $\|y\|_Y = r$. Then there exists $x \in L^{-1}(K)$ such that Lx = y and $\|x\|_X = \|y\|_Y = \|x''\|_Y$, so that $r = \|x''\|_Y = \|x\|_X$ and there exists $t_0 \in [0, 1]$ such that $y(t_0) = r$. Now since y = Lx for some $x \in L^{-1}(K)$, we have that $x(t) \in [0, r]$, $x'(t) \in [-r, r]$ for all $t \in [0, 1]$ and $r = -x''(t_0)$. Then if $Ty = \lambda y$ for some $\lambda > 1$ and $y \in K$ with $\|y\|_Y = r$, we would have $f(t, x(t), x'(t), x''(t)) = \lambda y(t)$ for all $t \in [0, 1]$, including t_0 , but then this implies $\lambda r < r$, a contradiction. So (b) holds.

To show that (c') implies (a) of Remark 3.1, let $x \in K$ with $||x||_X = \rho$. Then $||Lx||_Y = ||-x''||_Y = \rho$, and there exists $t_1 \in [0,1]$ such that $-x''(t_1) = \rho$ or $x''(t_1) = -\rho$. So we have for $t \in [0,1]$ that $x(t) \in [0,\rho]$, $x'(t_1) \in [-\rho,\rho]$, and $x''(t_1) = -\rho$. By (c') we have $Ty(t_1) = f(t_1, x(t_1), x''(t_1), x''(t_1)) > \rho$, and so (a) is satisfied.

Thus, there exists a solution to equation (1) with $x \in K$ and $\rho < ||x|| < r$.

Example 4.1 The function $f(t, x, x', x'') = 1 + \frac{3}{4} \sin x''$ with $r = \frac{3\pi}{2}$ and $\rho = \frac{\pi}{2}$ shows that the class of maps that satisfy the conditions of Theorem 4.1 is nonempty.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

The author is grateful to the referees for their useful comments that have improved this paper.

Received: 22 January 2016 Accepted: 17 June 2016 Published online: 29 June 2016

References

- 1. Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985)
- 2. Lan, K, Webb, JRL: A fixed point index for weakly inward A-proper maps. Nonlinear Anal. 28, 315-325 (1997)
- Lafferriere, B, Petryshyn, WV: New positive fixed point and eigenvalue results for P_γ-compact maps and applications. Nonlinear Anal. 13, 1427-1440 (1989)
- 4. Cremins, CT: Existence theorems for semilinear equations in cones. J. Math. Anal. Appl. 265, 447-457 (2002)
- 5. Lan, K, Webb, JRL: A-Properness of contracting and condensing maps. Nonlinear Anal. 49, 885-895 (2002)
- Infante, G: Positive solutions of some three point boundary value problems via fixed point index for weakly inward A-proper maps. Fixed Point Theory Appl. 2005, 177-184 (2005)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com