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Abstract
In this paper, we introduce a new class of generalized nonexpansive mappings. Some
new fixed point theorems for these mappings are obtained.
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1 Introduction and preliminaries
A nonexpansive mapping has a Lipschitz constant equal to . The fixed point theory for
such mappings is very rich [–] and has many applications in nonlinear functional anal-
ysis [].

We first commence some basic concepts about generalization of nonexpansive map-
pings as formulated by Suzuki et al. [, ].

Definition  [] Let C be a nonempty subset of a Banach space X. We say that a mapping
T : C → C satisfies condition (C) on C if 

‖x – T(x)‖ ≤ ‖x – y‖ implies ‖T(x) – T(y)‖ ≤
‖x – y‖, for x, y ∈ C.

Of course, every nonexpansive mapping satisfies condition (C) but the converse is not
correct and you can find some counterexamples for it in []. So the class of mappings
which has condition (C) is broader than the class of nonexpansive mappings.

In [], condition (C) is generalized as follows.

Definition  [] Let C be a nonempty subset of a Banach space X and λ ∈ (, ). We say
that a mapping T : C → X satisfies (Cλ)-condition on C if λ‖x – T(x)‖ ≤ ‖x – y‖ implies
‖T(x) – T(y)‖ ≤ ‖x – y‖, for x, y ∈ C.

So if λ = 
 , we will have condition (C). There are examples that show the converse is

false; see [].
In [], monotone nonexpansive mappings are defined in L[, ].
We next review some notions in Lp[, ]. All of them can be found in [].
Consider the Riesz Banach space Lp[, ], where

∫ 
 |f (x)|p dx < +∞ and p ∈ (, +∞).

Also, we have f =  when the set

{
x ∈ [, ] : f (x) = 

}
,
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has Lebesgue measure zero. In this case, we say f =  almost everywhere. An element of
Lp[, ] is therefore seen as a class of functions. The norm of any f ∈ Lp[, ] is given by
‖f ‖p = (

∫ 
 |f (x)|p dx)


p . Throughout this paper, we will write Lp instead of Lp[a, b], a, b ∈R

and ‖ · ‖ instead of ‖ · ‖p.
In this paper, we redefine Definition  on a subset of Banach space Lp and those theo-

rems which are proved in [] generalize to a wider class of monotone (Cλ)-condition with
preserving their fixed point property.

2 Main results
Let C be a nonempty subset of Lp which is equipped with a vector order relation �. A map
T : C → C is called monotone if for all f � g we have T(f ) � T(g).

We generalize the (Cλ)-condition as follows.

Definition  Let C be a nonempty subset of a Banach space Lp. For λ ∈ (, ), we say that
a mapping T monotone (Cλ)-condition on C if T is monotone and for all f � g , λ‖f –
T(f )‖ ≤ ‖g – f ‖ implies ‖T(g) – T(f )‖ ≤ ‖g – f ‖.

Note Definition  is a generalization of the monotone nonexpansive mapping which is
defined in [] as follows.

A map T is said to be monotone nonexpansive if T is monotone and for f � g , we have
‖T(g) – T(f )‖ ≤ ‖g – f ‖.

The next example is a direct generalization of monotone nonexpansive mapping.

Example  Let C = {f ∈ Lp[, ] : f (x) = a}, where a ∈ [, ]. For f , g ∈ C, consider the
partial order relation

f � g iff f (x) ≤ g(x).

Let T : C → C be defined by

T(f ) =

{
, f = ,
, f �= .

Then the mapping T satisfies the monotone (C 


)-condition but it fails monotone nonex-
pansiveness. Indeed, whenever f � g , if  ≤ f (x) ≤ g(x) < , then ‖T(f ) – T(g)‖ ≤ ‖f – g‖.
On the other hand,  ≤ f (x) <  and g = , so if  ≤ f (x) ≤  and g = , then we have again
‖T(f ) – T(g)‖ ≤ ‖f – g‖, but if  < f (x) <  and g = , then 

‖f ‖ � ‖f – ‖. Thus, the map-
ping T satisfying monotone (C 


)-condition on [, ].

Let f = . and g = . Then f � g while ‖T(f ) – T(g)‖� ‖f – g‖. Thus, T is not monotone
nonexpansive.

The following lemmas will be crucial to prove the main result of this paper.

Lemma  Let C be convex and T monotone. Assume that for some f ∈ C, f � T(f). Then
the sequence fn defined by

(�) fn+ = λT(fn) + ( – λ)fn,
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λ ∈ (, ), satisfies

fn � fn+ � T(fn) � T(fn+).

for n ≥ .

Proof First, we prove that fn � T(fn). By assumption, we have f � T(f). Assume that fn �
T(fn), for n ≥ . Then we have

fn = λfn + ( – λ)fn � λT(fn) + ( – λ)fn = fn+

i.e. fn � fn+. Since T is monotone, T(fn) � T(fn+). We have

fn+ = λT(fn) + ( – λ)fn � λT(fn) + ( – λ)T(fn) = T(fn).

Thus

fn � fn+ � T(fn) � T(fn+),

for n ≥ . The proof is closely modeled on Lemma . of []. �

Note that under the assumption of Lemma , if we assume T(f) � f, then we have

T(fn+) � T(fn) � fn+ � fn

for any n ≥ .
A sequence {fn} in C is called an almost fixed point sequence for T , if ‖fn – T(fn)‖ → 

(a.f.p.s. in short).

Lemma  Let T : C → Lp be a monotone (Cλ)-condition mapping and fn be a bounded
a.f.p.s. for T . Then

lim inf
n

∥
∥fn – T(f )

∥
∥ ≤ lim inf

nk
‖fn – f ‖,

for f ∈ C which fn � f and lim infn ‖fn – f ‖ > , for all n ≥ .

Proof Fix f ∈ C such that fn � f . Since fn is an a.f.p.s., for ε = 
 lim infn ‖fn – f ‖, there is n

such that ‖fn – T(fn)‖ < ε, for all n ≥ n. This implies that

λ
∥
∥fn – T(fn)

∥
∥ ≤ ∥

∥fn – T(fn)
∥
∥ < ε < ‖fn – f ‖,

for all n ≥ n. Since T satisfies the monotone (Cλ)-condition, we have

∥
∥T(fn) – T(f )

∥
∥ ≤ ‖fn – f ‖, ()

for all n ≥ n. So by the triangle inequality and (), we have

∥
∥fn – T(f )

∥
∥ ≤ ∥

∥fn – T(fn)
∥
∥ +

∥
∥T(fn) – T(f )

∥
∥ ≤ ∥

∥fn – T(fn)
∥
∥ + ‖fn – f ‖.



Lael and Heidarpour Fixed Point Theory and Applications  (2016) 2016:82 Page 4 of 7

Thus lim infn ‖fn – T(f )‖ ≤ lim infn ‖fn – f ‖. The proof is closely modeled on Lemma  of
[]. �

Lemma  [] If {fn} is a sequence of Lp-uniformly bounded functions on a measure space,
and fn → f almost everywhere, then

lim inf
n

‖fn‖p = lim inf
n

‖fn – f ‖p + ‖f ‖p,

for all p ∈ (,∞).

In the following, let C be a nonempty, convex, and bounded set and T : C → C be a
monotone (Cλ)-condition, for some λ ∈ (, ).

Theorem  Let f ∈ C such that f � T(f). Then fn defined in (�) is an a.f.p.s.

Proof Since fn+ = λT(fn) + ( – λ)fn, for n ≥ , we have

λ
∥
∥fn – T(fn)

∥
∥ = ‖fn – fn+‖.

By Lemma , we have fn � fn+. Therefore, monotone (Cλ)-condition implies that ‖T(fn) –
T(fn+)‖ ≤ ‖fn – fn+‖. Now, we can apply Lemma  of [] to conclude that limn ‖fn –T(fn)‖ =
. �

Example  We show that T , which is defined in Example , has an a.f.p.s. It is easy to
see that C is a nonempty, convex, and bounded subset of Lp. Also, we proved T obeys the
monotone (C 


)-condition. Moreover,  � T(). Thus, by Theorem , T has an a.f.p.s.

Now, we construct an a.f.p.s. according (�). Let f = . So fn = . Therefore

∥
∥fn – T(fn)

∥
∥ = .

Thus fn is an a.f.p.s.

Theorem  Let C be compact. Assume there exists f ∈ C such that f and T(f) are com-
parable. Then T has a fixed point.

Proof Let fn be a sequence which is defined in (�). By Theorem , fn is an a.f.p.s. Since C
is compact, fn has a convergent subsequence fnk to f . By triangle inequality, we get

lim inf
nk

∥
∥T(fnk ) – T(f )

∥
∥ ≤ lim

nk

∥
∥T(fnk ) – fnk

∥
∥ + lim inf

nk

∥
∥fnk – T(f )

∥
∥.

Since fn is an a.f.p.s., we have

lim inf
nk

∥
∥T(fnk ) – T(f )

∥
∥ ≤ lim inf

nk

∥
∥fnk – T(f )

∥
∥. ()

Again, by triangle inequality, we have

lim inf
nk

∥
∥fnk – T(f )

∥
∥ ≤ lim

nk

∥
∥fnk – T(fnk )

∥
∥ + lim inf

nk

∥
∥T(f ) – T(fnk )

∥
∥.
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Therefore,

lim inf
nk

∥
∥fnk – T(f )

∥
∥ ≤ lim inf

nk

∥
∥T(fnk ) – T(f )

∥
∥. ()

From equations () and (), we have

lim inf
nk

∥
∥fnk – T(f )

∥
∥ = lim inf

nk

∥
∥T(fnk ) – T(f )

∥
∥. ()

By using the partially order and convergent properties fnk � f . Lemma  implies fnk �
fnk + � f . So ‖fnk + – fnk ‖ ≤ ‖f – fnk ‖. Since fnk + – fnk = λ(fnk – T(fnk )), we get

λ
∥
∥fnk – T(fnk )

∥
∥ = ‖fnk + – fnk ‖.

Therefore

λ
∥
∥(

fnk – T(fnk )
)∥∥ ≤ ‖f – fnk ‖.

Thus the monotone (Cλ)-condition implies

∥
∥T(fnk ) – T(f )

∥
∥ ≤ ‖fnk – f ‖. ()

Since fnk is bounded, Lemma  implies

lim inf
nk

∥
∥fnk – T(f )

∥
∥ = lim inf

nk
‖fnk – f ‖ +

∥
∥f – T(f )

∥
∥.

From equation (), we get

lim inf
nk

‖fnk – f ‖ +
∥
∥f – T(f )

∥
∥ = lim inf

nk

∥
∥T(fnk ) – T(f )

∥
∥.

From equation (), we get

lim inf
nk

‖fnk – f ‖ +
∥
∥f – T(f )

∥
∥ ≤ lim inf

nk
‖fnk – f ‖.

This implies that T(f ) = f . �

By Theorem , we can see that T in Example , has a fixed point.
The following example shows that monotone (Cλ)-condition is a direct generalization

of (Cλ)-condition.

Example  Let C = co{x, sin(x)}, where x ∈ [– π
 , π

 ]. Define a partial order on C as follows:

f � g iff f (x) ≤ g(x).

Let T : C → C be

T(f ) =

{
sin(x) f �= x,
x f = x.
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Since C is convex hull of a compact set {x, sin(x)}, so it is a nonempty, convex and compact
subset of Lp. Put f = x. Then f and T(f ) are comparable. Also, T obeys the monotone
(Cλ)-condition. Thus, by Theorem , T has a fixed point.

Note, for λ ∈ (, ), T does not obey the (Cλ)-condition. Because, for f = x and g = x
 +


 sin(x), we have λ‖f – T(f )‖ ≤ ‖f – g‖, but ‖T(g) – T(f )‖� ‖f – g‖.

Theorem  Let C be a weakly compact subset of L. Assume, there is f ∈ C such that
f � T(f). Then T has a fixed point.

Proof By Theorem , T has an a.f.p.s. fn. Since C is weakly compact, there is a weakly
convergent subsequence fnk to some f ∈ C. If lim infnk ‖fnk – f ‖ = , then fnk is convergent
and we will have the same proof of Theorem . On the other hand, if lim infnk ‖fnk – f ‖ > ,
then by Lemma ,

lim inf
nk

∥
∥fnk – T(f )

∥
∥ ≤ lim inf

nk
‖fnk – f ‖. ()

We claim that f = T(f ). Because if f �= T(f ), since L satisfies Opial condition, we have

lim inf
nk

‖fnk – f ‖ < lim inf
nk

∥
∥fnk – T(f )

∥
∥,

which is a contradiction with inequality (). �

This result is a generalization of the original existence theorem in [, ] form monotone
nonexpansive to monotone (Cλ)-condition. Therefore this class is bigger and is used to
answer the question asked by T Benavides []: Does X also satisfy the fixed point property
for Suzuki-type mappings?
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