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Abstract
Let f be an holomorphic function which maps the unit disk into itself. In this paper,
consider the zero of order k (i.e., f (z) – f (0) (or f (z)) has a zero of order k at z = 0), we
obtain the sharp estimates of the classical boundary Schwarz lemma involving the
boundary fixed point. The results presented here would generalize the corresponding
result obtained by Frolova et al. (Complex Anal. Oper. Theory 8:1129-1149, 2004).
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1 Introduction and preliminaries
It is well known that the Schwarz lemma serves as a very powerful tool to study several re-
search fields in complex analysis. For example, almost all results in the geometric function
theory have the Schwarz lemma lurking in the background [–].

On the other hand, Schwarz lemma at the boundary is also an active topic in complex
analysis, various interesting results have been obtained [–]. Before summarizing these
results, it is necessary to give some elementary contents on the boundary fixed points [].

Let D denote the unit disk in C, H(D,D) denote the class of holomorphic self-mappings
of D, N denote the set of all positive integers. The boundary point ξ ∈ ∂D is called a fixed
point of f ∈ H(D,D) if

f (ξ ) = lim
r→–

f (rξ ) = ξ .

The classification of the boundary fixed points of f ∈ H(D,D) can be performed via the
value of the angular derivative

f ′(ξ ) = ∠ lim
z→ξ

f (z) – ξ

z – ξ
,

which belongs to (,∞] due to the celebrated Julia-Carathédory theorem []. This the-
orem also asserts that the finite angular derivative at the boundary fixed point ξ exists if
and only if the holomorphic function f ′(z) has the finite angular limit ∠ limz→ξ f ′(z). For a
boundary fixed point ξ of f , if

f ′(ξ ) ∈ (,∞),
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then ξ is called a regular boundary fixed point. The regular fixed points can be attractive
if f ′(ξ ) ∈ (, ), neutral if f ′(ξ ) = , or repulsive if f ′(ξ ) ∈ (,∞).

By the Julia-Carathédory theorem [] (see also []) and the Wolff lemma [], if f ∈
H(D,D) with no interior fixed point, then there exists a unique regular boundary fixed
point ξ such that f ′(ξ ) ∈ (, ]; and if f ∈ H(D,D) with an interior fixed point, then f ′(ξ ) > 
for any boundary fixed point ξ ∈ ∂D.

In particular, Unkelbach [] (see also []) obtain the following boundary Schwarz
lemma.

Theorem A If f ∈ H(D,D) has a regular boundary fixed point , and f () = , then

f ′() ≥ 
 + |f ′()| . ()

Moreover, equality in () holds if and only if f is of the form

f (z) = –z
a – z
 – az

, ∀z ∈D,

for some constant a ∈ (–, ].

Theorem A was improved  years later by Osserman [] by removing the assumption
f () = .

Theorem B ([]) If f ∈ H(D,D) with ξ =  as its regular boundary fixed point. Then

f ′() ≥ ( – |f ()|)

 – |f ()| + |f ′()| . ()

In [], Frolova et al. proved the following theorem, which is an improvement of Theo-
rem B.

Theorem C ([]) If f ∈ H(D,D) with ξ =  as its regular boundary fixed point. Then

f ′() ≥ 

�e( –f ()+f ′()
(–f ()) )

. ()

Recently, Ren and Wang [] offered an alternative and elementary proof of Theorem C
and studied the extremal functions of the inequality (). Their method of proof is quite
different from that which Frolova et al. have used in [].

In this paper, stimulated by the above-cited work (especially []), considering the zero
of order, we obtain a version of boundary Schwarz lemma. This result is a generalization
of the boundary Schwarz-Pick lemma obtained by Frolova et al. [].

In order to prove the desired results, we first recall the classical Julia lemma [] and the
Julia-Carathéodory theorem [].

Lemma  ([]) Let f ∈ H(D,D) and let ξ ∈ ∂D. Suppose that there exists a sequence
{zn}n∈N ⊂D converging to ξ as n tends to ∞, such that the limits

α = lim
n→∞

 – |f (zn)|
 – |zn|
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and

η = lim
n→∞ f (zn)

exist (finitely). Then α >  and the inequality

|f (z) – η|
 – |f (z)| ≤ α

|z – ξ |
 – |z| ()

holds throughout the open unit disk D and is strict except for Möbius transformations
of D.

Lemma  ([]) Let f ∈ H(D,D) and let ξ ∈ ∂D. Then the following conditions are equiv-
alent:

(i) The lower limit

α = lim inf
z→ξ

 – |f (z)|
 – |z| ()

is finite, where the limit is taken as z approaches ξ unrestrictedly in D;
(ii) f has a non-tangential limit, say f (ξ ), at the point ξ , and the difference quotient

f (z) – f (ξ )
z – ξ

has a non-tangential limit, say f (ξ ), at the point ξ ;
(iii) the derivative f ′ has a non-tangential limit, say f ′(ξ ), at the point ξ . Moreover,

under the above conditions we have:
(a) α in (i);
(b) the derivatives f ′(ξ ) in (ii) and (iii) are the same;
(c) f ′(ξ ) = αξ f (ξ );
(d) the quotient –|f (z)|

–|z| has the non-tangential limit α, at the point ξ .

Lemma  ([], p.) Let ϕ ∈ H(D,D), and ϕ(z) =
∑∞

n= bnzν . Then

|bn| ≤  – |b|, n ≥ .

2 Main results and their proofs
We now state and prove each of our main results given by Theorems  and  below.

Theorem  Let f ∈ H(D,D) with ξ =  as its regular boundary fixed point and suppose
f () = f ′() = · · · = f (k–)() = , ak = f (k)()

k! �= , k ∈N, we can obtain:
(I) if  < |ak| < , then

f ′() ≥ k +
| – ak|
 – |ak|


 + �e –ak

–ak

ak+
–|ak |

, ()
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where ak+ = f (k+)()
(k+)! . Equality holds in the inequality if and only if f is of the form

f (z) = zk
ak – z z–a

–az
ak –
–ak

 – z z–a
–az

ak –
–ak

ak
, ∀z ∈D, ()

for some constant a ∈ [–, ).
(II) If |ak| = , then f (z) = zk .

Proof In view of Lemma , we consider the following two cases.
Case I If  < |ak| < , let

g(z) =

⎧
⎪⎨

⎪⎩

–ak
ak –

ak – f (z)
zk

–ak
f (z)
zk

,  < |z| < ,

, z = .

It is elementary to see that g ∈ H(D,D), and ξ =  is its regular boundary fixed point.
A straightforward computation shows that

f ′() = k +
| – ak|
 – |ak| g ′() ()

and

g ′() =
 – ak

 – ak
· ak+

 – |ak| , ()

which is no larger than  in modulus. Applying Lemmas  and  to the holomorphic func-
tion h : D→D defined by

h(z) =
g(z)

z
, ∀z ∈D,

we obtain

g ′() =  + h′() ≥  +
| – g ′()|
 – |g ′()| =

( – �e g ′())
 – |g ′()| . ()

In particular,

g ′() ≥ 
 + �e g ′()

. ()

By combining (), (), and (), we get the estimate in ().
Furthermore, this bound in () is sharp. Indeed, if equality holds in () for z ∈ D, then

we must have equalities in the corresponding inequalities in () and (). Thus, we can
obtain

g(z) = z
z – a
 – az

 – a
 – a

()

for some constant a ∈D, and g ′() ∈ (–, ], which is possible only if a ∈ [–, ).
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Consequently, f must be of the form

f (z) = zk
ak – z z–a

–az
ak –
–ak

 – z z–a
–az

ak –
–ak

ak
, ∀z ∈D, ()

for some constant a ∈ [–, ).
Case II If |ak| = , set

g(z) =

⎧
⎨

⎩

f (z)
zk ,  < |z| < ,

ak , z = .

It is clear that g ∈ H(D,D), |g()| = |ak| = . Thus by the principle of the maximum modu-
lus, g is a constant function, and g(z) = ak = g() = , and hence f (z) ≡ zk . This completes
the proof. �

Taking into account the relation | –ak
–ak

· ak+
–|ak | | ≤  and using () in Theorem , we can

readily deduce the following corollary (the proof is omitted here).

Corollary  Let f ∈ H(D,D) with ξ =  as its regular boundary fixed point and suppose
f () = f ′() = · · · = f (k–)() = , ak = f (k)()

k! �= , k ∈N; we have the following.
If  < |ak| < , then

f ′() ≥ k +
| – ak|
 – |ak| . ()

In particular,

f ′() ≥ k –  +


 + �e ak
. ()

Remark  When n = , it follows from () that

f ′() ≥ 
 + �e a

=


 + �e f ′()
.

Note that


 + �e f ′()

≥ 
 + |f ′()| .

Therefore, Theorem  (or Corollary ) generalizes and improves Theorem A.

Theorem  Let f ∈ H(D,D) with ξ =  as its regular boundary fixed point and suppose
f ′() = · · · = f (k–)() = , ak = f (k)()

k! �= , k ∈N, we can obtain:
(I) If  < |ak| <  – |f ()|, then

f ′() ≥ (k – )
| – f ()|
 – |f ()| +



�e( –f ()+ak
(–f ()) )

. ()
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Equality holds in the inequality if and only if f is of the form

f (z) =
f () – zk a–z

–az
–f ()
–f ()

 – zk a–z
–az

–f ()
–f ()

f ()
.

(II) If |ak| =  – |f ()|, then

f (z) =
–f ()
–f ()

zk + f ()

 + f () –f ()
–f ()

zk
. ()

Proof Set

g(z) =
f (z) – f ()
 – f ()f (z)

 – f ()
 – f ()

.

It is not difficult to verify that g ∈ H(D,D), and ξ =  is its regular boundary fixed point.
Elementary computations yield

f ′() =
| – f ()|
 – |f ()| g ′() ()

and

g(k)()
k!

=
ak

 – |f ()|
 – f ()
 – f ()

. ()

On the other hand, let

h(z) =

⎧
⎨

⎩

g(z)
zk ,  < |z| < ,

g(k)()
k! , z = ,

()

which is in H(D,D). By Lemma , we obtain the following results:
(I) If  < |ak| <  – |f ()|, then it follows from () that | g(k)()

k! | < . By using Lemmas 
and , we have

g ′() = k + h′() ≥ k +
| – g(k)()

k! |
 – | g(k)()

k! |
= k –  +

( – �e g(k)()
k! )

 – | g(k)()
k! |

.

In particular,

g ′() ≥ k –  +


 + �e g(k)()
k!

.

From the above relation and (), we deduce that

f ′() ≥ | – f ()|
 – |f ()|

(

k –  +


 + �e g(k)()
k!

)
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=
| – f ()|
 – |f ()|

(

k –  +


 + �e( ak
–|f ()|

–f ()
–f () )

)

= (k – )
| – f ()|
 – |f ()| +



�e( –f ()+ak
(–f ()) )

.

Applying a similar argument to Theorem , we deduce that equality holds in inequality
() if and only if f is of the form

f (z) =
f () – zk a–z

–az
–f ()
–f ()

 – zk a–z
–az

–f ()
–f ()

f ()
.

(II) If |ak| =  – |f ()|, then we find from () and () that |h()| = | g(k)()
k! | = . By the

principle of the maximum modulus, h is a constant function, and h(z) = g() = , and hence
g(z) ≡ zk , which yields the assertion (). This completes the proof. �

Remark  By setting k =  in () of Theorem , we get the following estimate:

f ′() ≥ 

�e( –f ()+a
(–f ()) )

=


�e( –f ()+f ′()
(–f ()) )

,

which is Theorem C obtained by Frolova et al. []. Thus, Theorem  is a generalization of
Theorem C.
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