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Abstract
In this paper, a formula for theM-constants μn(l�,p) of Orlicz sequence spaces l�,p

equipped with the p-Amemiya norm as well as for the equalities μn(l�,p) = n for any
n ∈ N are given. Moreover, the Fatou property, weak orthogonality, and the weak
fixed point property of these spaces are discussed. Finally a direct formula for the
Dominguez-Benavides coefficient of the spaces l�,p is given in terms of the Orlicz
function generating these spaces. Both,M-constants and Dominguez-Benavides
coefficient, are strongly related to the fixed point theory.
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1 Introduction and preliminaries
In the following, X and X∗ will stand for a Banach space and its dual space, respectively.
By S(X) and B(X) we will denote the unit sphere and the unit ball of X, respectively. For
a nonempty subset C of X, a mapping T : C → C is said to be nonexpansive provided the
inequality

‖Tx – Ty‖ ≤ ‖x – y‖

holds for every x, y ∈ C. A Banach space X is said to have the fixed point property (resp.,
weak fixed point property) if for every nonempty bounded closed (resp. weakly compact)
convex subset of C ⊂ X the nonexpansive mapping T : C → C has a fixed point in C (see,
e.g., [, ]).

Many properties of Banach lattices related to their isomorphic or isometric struc-
ture, depend on a behavior of some numerical characteristics called indices (Boyd in-
dices, Gröbler indices, type, cotype etc.). In the theory of Banach lattices the so called
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M-constants defined by

μn(X) = sup

{∥∥∥∥∥
n∨

i=

xi

∥∥∥∥∥ :  ≤ xi ∈ X,‖xi‖ ≤  for i = , , . . . , n

}

are also used (see, e.g., [–]). The numbers μn(X) are useful in the lattice isomorphic
classification of special types of Banach lattices. It is well known that, in the definition of
μn(X), we can restrict ourselves to pairwise orthogonal elements (see []).

The constant μ(X), called the Riesz angle, plays an important role in the fixed point
theory. It is well known that weakly orthogonal Banach lattices (for the definition of this
property see Section ) with μ(X) <  have the weak fixed point property (see []).

Let � : R → [,∞) be an Orlicz function, i.e., let � be an even, convex function with
�() =  and limu→∞ �(u) = ∞. We say that an Orlicz function � satisfies the δ-condition
(shortly: � ∈ δ), if there are positive constants u with  < �(u) < ∞ and K >  such that
�(u) ≤ K�(u) for all |u| ≤ u. Note that � ∈ δ implies immediately that �(u) >  for
every u 	= .

By � we will denote the function complementary to � in the sense of Young, i.e., the
function � is defined by the formula

�(u) = sup
{|u|v – �(v) : v ≥ 

}
.

Let l be the space of all real sequences x = (x(i)). For a given Orlicz function � we define
on l a convex functional (called a pseudomodular) by

I�(x) =
∞∑
i=

�
(
x(i)

)
,

where x = (x(i)) ∈ l. By the Orlicz space l� generated by the Orlicz function � we mean
the vector space

l� =
{

x ∈ l : I�(cx) < ∞ for some c >  depending on x
}

.

Further, by the space h� of finite elements (= order continuous elements) we will mean
the vector space

h� =

{
x ∈ l : ∀λ > 

∞∑
i=i

�(λxi) < ∞
}

.

These spaces are usually equipped with the Luxemburg norm (see [–])

‖x‖� = inf

{
λ >  : I�

(
x
λ

)
≤ 

}

or with the equivalent one

‖x‖
� = sup

{ ∞∑
i=

∣∣x(i)y(i)
∣∣ : y ∈ l� , l� (y) ≤ 

}
,
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called the Orlicz norm (see [, ]). The Orlicz norm can equivalently be expressed by
the Amemiya formula (see [])

‖x‖
� = inf

k>


k
(
 + I�(kx)

)
.

The last formula can be generalized to a family of norms (called p-Amemiya norms) de-
pending on the parameter  ≤ p ≤ ∞ in the following way (see [, ]):

‖x‖�,p = inf
k>


k

sp
(
I�(kx)

)
, ()

where

sp(u) =

{
( + up)


p for  ≤ p < ∞,

max{, u} for p = ∞.

Evidently ‖x‖�, = ‖x‖
� and it is easy to prove that the Luxemburg norm and the

∞-Amemiya norm coincide as well, i.e., ‖x‖�,∞ = ‖x‖� (see, e.g., []). The p-Amemiya
norms have the following relationships (for all  ≤ p′ ≤ p ≤ ∞):

‖x‖� = ‖x‖�,∞ ≤ ‖x‖�,p ≤ ‖x‖�,p′ ≤ ‖x‖�, = ‖x‖
� ≤ ‖x‖� ()

and

‖x‖� ≤ ‖x‖�,p ≤ /p‖x‖�. ()

We will write l�,p when we would like to underline that the Orlicz space l� is equipped
with the p-Amemiya norm ‖ · ‖�,p.

This paper is a continuation of investigations of geometric properties of Orlicz spaces
equipped with the p-Amemiya norm over the atomless measure space presented in [–
].

2 M-Constants and order isometric copies of �1 in l�,p spaces
In the following, by S(l�,p) we will mean the subset of the unit sphere S(l�,p) that consists
of sequences with finite support only.

Theorem . For any  ≤ p ≤ ∞, n ∈N , and any Orlicz function �,

μn(l�,p) = sup
{

dx,...,xn : x, . . . , xn ∈ S(l�,p) and xj ∧ xj′ =  for j 	= j′
}

, ()

where the numbers dx,...,xn >  are defined by

dx,...,xn = inf
k>

{
dx,...,xn ,k :


k

sp

( n∑
j=

I�
(

kxj

dx,...,xn ,k

))
= 

}
. ()

Proof Let x, . . . , xn ∈ S(l�,p), xj ∧ xj′ =  for j 	= j′ and let k > . Since the set {i ∈N : xj(i) 	=
,  ≤ j ≤ n} is finite, the function � is continuous and attains the value  (because it takes
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only finite values), there exists dx,...,xn ,k >  such that


k

sp

( n∑
j=

I�
(

kxj

dx,...,xn ,k

))
= .

Note that, for every x, . . . , xn ∈ S(l�,p) and every k > , we have


/p ≤ dx,...,xn ,k ≤ nk

min{, (kp – )/p} = nk max

{
,


(kp – )/p

}
. ()

Indeed, if the first inequality does not hold then we could find k >  and γ >  such that
dx,...,xn ,k < 

γ /p . Then, by (),

n∑
j=

I�
(

kxj

dx,...,xn ,k

)
≥

n∑
j=

I�
(

γ kxj

–/p min{‖x‖�,p, . . . ,‖xn‖�,p}
)

≥ γ k
n∑

j=

I�
(

xj

–/p‖xj‖�,p

)
≥ γ k

n∑
j=

I�
(

xj

‖xj‖�

)

= γ kn ≥ γ max
{

k,
(
kp – 

)/p}.

Thus, for  ≤ p < ∞,


k

sp

( n∑
j=

I�
(

kxj

dx,...,xn ,k

))
≥ 

k
(
 + γ pkp)/p > 

and


k

s∞

( n∑
j=

I�
(

kxj

dx,...,xn ,k

))
≥ 

k
max{,γ k} = γ > .

This contradicts the definition of the number dx,...,xn ,k in (). So, the first inequality in ()
holds.

Further, suppose that the second inequality does not hold. Then we could find x, . . . , xn ∈
S(l�,p), k > , and γ >  such that dx,...,xn ,k > γ nk

min{,(kp–)/p} . Since ‖xj‖� ≤ ‖xj‖�,p = , we
have I�(xj) ≤ ‖xj‖� = , whence

n∑
j=

I�
(

kxj

dx,...,xn ,k

)
≤

n∑
j=

I�
(

k min{, (kp – )/p}xj

γ nk

)

≤ min{, (kp – )/p}
γ n

n∑
j=

I�(xj)

≤ min{, (kp – )/p}
γ n

n∑
j=

‖xj‖�

≤ 
γ

min
{

,
(
kp – 

)/p}.
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Thus, for  ≤ p < ∞,


k

sp

( n∑
j=

I�
(

kxj

dx,...,xn ,k

))
≤ 

k

(
 +


γ p

(
kp – 

))/p

< 

and


k

s∞

( n∑
j=

I�
(

kxj

dx,...,xn ,k

))
≤ 

k
max

{
,


γ

}
=


k

< ,

and again we arrive at a contradiction with the definition of the number dx,...,xn ,k in ().
Therefore the second inequality in () holds.

Now we will prove the main equality () of the theorem. For simplicity, denote

d = sup
{

dx,...,xn : x, . . . , xn ∈ S(l�,p) and xj ∧ xj′ =  for j 	= j′
}

.

As an immediate consequence of (), taking k = /p, we get kp –  = , so


/p < dx,...,xn ≤ inf

k>
max

{
nk,

nk
(kp – )/p

}
≤ /pn, ()

whence we infer that  < –/p < d ≤ /pn < ∞.
For any  < ε < d we can find x, . . . , xn ∈ S(l�,p), such that xj ∧ xj′ =  for all  ≤ j, j′ ≤ n,

j 	= j′ and dx,...,xn ,k > d – ε for all k > . Since the set {i ∈N : xj(i) 	= },  ≤ j ≤ n, is finite and
the function � is continuous, we can find k >  such that

∥∥∥∥∥
n∨

j=

xj

d – ε

∥∥∥∥∥
�,p

=


k
sp

(
I�

(
k

n∨
j=

xj

d – ε

))
.

If k ≤  then ‖∨n
j= xj‖�,p ≥ d – ε. On the other hand, if k >  then we have

∥∥∥∥∥
n∨

j=

xj

d – ε

∥∥∥∥∥
�,p

≥ 
k

sp

( n∑
j=

I�
(

kxj

dx,...,xn ,k

))
= .

Thus ‖∨n
j= xj‖�,p ≥ d – ε and, by the arbitrariness of ε > , we get μn(l�,p) ≥ d.

Conversely, take any x, . . . , xn ∈ S(l�,p) such that xj ∧ xj′ =  for all  ≤ j, j′ ≤ n, j 	= j′

and let us take an arbitrary ε > . Then dx,...,xn < d + ε. Thus we can find k ≥  such that
dx,...,xn ,k < d + ε as well. By the definition of the p-Amemiya norm,

∥∥∥∥∥
n∨

j=

xj

d + ε

∥∥∥∥∥
�,p

≤ 
k

sp

(
I�

(
k

n∨
j=

xj

d + ε

))
≤ 

k
sp

( n∑
j=

I�
(

kxj

dx,...,xn ,k

))
= .

Thus ‖∨n
j= xj‖�,p ≤ d + ε and, by the arbitrariness of ε > , we get μn(l�,p) ≤ d. Therefore,

we have proved that μn(l�,p) = d. �

In order to prove important Theorem . we first need to prove the following result.
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Theorem . If � /∈ δ then, for any  ≤ p ≤ ∞, the Orlicz space l�,p contains an order
almost isometric copy of l.

Proof Any linear functional f ∈ (l�,p)∗ can be uniquely expressed as f = v + s, where v is
belongs to the Köthe dual of l� and s is a singular functional on l�, that is, for any x ∈ h�

the equality s(x) =  holds. By Lemma . in [], ‖s‖ = sup{s(x) : I�(x) < ∞}. Further, by
() and ‖v‖ = sup{v(x) : ‖x‖�,p ≤ }, we have

‖v‖� = sup
{

v(x) : ‖x‖
� ≤ 

} ≤ ‖v‖ ≤ ‖v‖
� = sup

{
v(x) : ‖x‖� ≤ 

}
.

Moreover, by Theorem . in [] (see also []), limn→∞ ‖x – xn‖� = limn→∞ ‖x – xn‖
� =

θ (v) for every x ∈ �� and xn =
∑∞

i=n x(i)ei, where θ (v) = inf{λ >  : I�( v
λ

) < ∞}. Hence, for
any v ∈ l� , we have

lim
n→∞

∥∥∥∥∥
∞∑

i=n+

v(i)ei

∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥
∞∑

i=n+

v(i)ei

∥∥∥∥∥
�

= lim
n→∞

∥∥∥∥∥
∞∑

i=n+

v(i)ei

∥∥∥∥∥


�

= θ (v). ()

Since � /∈ δ, there exists an element v ∈ S(l�) such that I� (λx) = +∞ for every λ ≥ ,
that is, θ (v) = . Therefore

lim
n→∞

∥∥∥∥∥
∞∑

i=n+

v(i)ei

∥∥∥∥∥ = ,

so, for any ε > , there exists a sequence i < i < · · · such that ‖∑∞
i=i+ v(i)ei‖

� <  + ε and,
for all j = , , . . . ,

 – ε <

∥∥∥∥∥
ij+∑

i=ij+

v(i)ei

∥∥∥∥∥ <  + ε.

Put wj =
∑ij+

i=ij+ v(i)ei for j ∈ N . Since ‖wj‖ = sup{wj(x) : x ∈ S(l�,p)} and the number of
elements of the support of wj is finite, for each j ∈N there exists

xj =
ij+∑

i=ij+

xj(i)ei ∈ S(l�,p)

such that wj(xj) = 〈wj, xj〉 =
∑ij+

i=ij+ xj(i)vi = ‖wj‖ and 〈wj, xi〉 =  for every j 	= i. For any
a = (a(j)) ∈ l, we have

∥∥∥∥∥
∞∑
j=

a(j)xj

∥∥∥∥∥
�,p

≤
∞∑
j=

∣∣a(j)
∣∣‖xj‖�,p ≤

∞∑
j=

∣∣a(j)
∣∣ = ‖a‖l .

Since ṽ =
∑∞

j= sign(a(j))wj is a linear functional and

‖ṽ‖
� =

∥∥∥∥∥
∞∑
j=

sign
(
a(j)

)
wj

∥∥∥∥∥


�

=

∥∥∥∥∥
∞∑

i=i

v(i)ei

∥∥∥∥∥


�

≤  + ε,
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we have ṽ(x) ≤ ( + ε)‖x‖�, so

( + ε)

∥∥∥∥∥
∞∑
j=

a(j)xj

∥∥∥∥∥
�,p

≥ ( + ε)

∥∥∥∥∥
∞∑
j=

a(j)xj

∥∥∥∥∥
�

≥ ṽ

( ∞∑
i=

a(i)xi

)

=
∞∑
j=

sign
(
a(j)

)
wj

( ∞∑
i=

a(i)xi

)
=

∞∑
j=

∣∣a(j)
∣∣wj(xj)

=
∞∑
j=

∣∣a(j)
∣∣‖wj‖ ≥ ( – ε)‖a‖l .

By the arbitrariness of ε > , we conclude that the Orlicz space l�,p contains an order
almost isometric copy of l. �

Theorem . Assume that �(u)/u → ∞ as u → ∞. For any n ∈ N and  ≤ p ≤ ∞,
μn(l�,p) = n if and only if � /∈ δ.

Proof If � /∈ δ then, by Theorem ., we immediately conclude that μn(l�,p) = μn(l) = n.
Now, let � ∈ δ. We will show that μn(l�,p) < n. Let x, . . . , xn be arbitrary elements of the

set S(l�,p) such that xj ∧ xj′ =  for all  ≤ j, j′ ≤ n with j 	= j′. Since the set {i ∈ N : xj(i) 	=
,  ≤ j ≤ n} is finite and the function � is continuous, we can find a number k ≥ , such
that


k

sp

( n∑
j=

I�(kxj)

)
= .

Since �(u)/u → ∞ as u → ∞, the function � takes only finite values. Since, moreover,
� ∈ δ, for any u >  we can find ε >  such that �( u

n–ε
) ≤ 

n�(u) for all |u| ≤ u. Without
loss of generality we can assume that u ≥ k max{|xj(i)| :  ≤ j ≤ n, i ∈ N }. We have u

n–ε
≤

�–( 
n�(u)) for all |u| ≤ u (see [, ]), so

n∑
j=

I�
(

kxj

n – ε

)
≤

n∑
j=

nj+∑
i=nj+

�

(
�–

(

n

�
(
kxj(i)

)))
=


n

n∑
j=

I�(kxj),

whence


k

sp

( n∑
j=

I�
(

kxj

n – ε

))
≤ 

k
sp

( n∑
j=

I�(kxj)

)
≤ ,

so dx,...,xn ,k ≤ n – ε. Thus, by the arbitrariness of the choice of elements x, . . . , xn ∈ S�� ,p

and by Theorem ., μn(l�,p) ≤ n – ε < n. �

3 Fatou property, weak orthogonality, and weak fixed point property
In order to generalize Maurey’s () proof of the w-FPP to a larger class of Banach lat-
tices Borwein and Sims () introduced the notion of a weakly orthogonal Banach lat-
tice. A Banach lattice X is said to be weakly orthogonal if for any sequence (xn) in X+,
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which converges weakly to  we have

lim
n→∞

∥∥|xn| ∧ |x|∥∥ = 

for all x ∈ X. For the definition of Banach lattices we refer to []. Moreover, Betiuk-
Pilarska and Prus proved in [] that weakly orthogonal Banach lattices, with the coef-
ficient of monotonicity strictly smaller than , have the weak fixed point property.

Sims (see []) introduced another definition of weak orthogonality of Banach lattices,
denoted WORTH, and proved that if a Banach lattice is WORTH, then it satisfies non-strict
Opial condition, that is, whenever (xn) is a weak-null sequence in X then

lim inf
n→∞ ‖xn‖ ≤ lim inf

n→∞ ‖xn + x‖

for all x ∈ X. In [] Cui, Hudzik and Płuciennik proved that Köthe sequence spaces with
semi-Fatou property are WORTH if and only if they are order continuous. We will prove
that, in the spaces l�,p, the criteria for the weak orthogonality due to Borwein and Sims are
the same as for WORTH of Köthe spaces equipped with the semi-Fatou norms obtained
in [].

In the proof of Theorem . which gives the criteria for weak orthogonality of Orlicz
sequence spaces, we will need the Fatou property of the space l�,p. Recall that a Banach
lattice X satisfies the Fatou property if and only if for every sequence (xn) with  ≤ xn ↑ x
we have ‖xn‖ ↑ ‖x‖.

Theorem . For any  ≤ p ≤ ∞ the Orlicz sequence space l�,p satisfies the Fatou property.

Proof Let (xn) be a sequence of elements of l�,p with  ≤ xn ↑ x. Evidently we can assume
that x 	= . By the definition of the p-Amemiya norm, we can find a sequence (kn) of positive
numbers such that


kn

(
 + Ip

�(knxn)
)/p –


n

≤ ‖xn‖�,p ≤ 
kn

(
 + Ip

�(knxn)
)/p.

Suppose that the sequence (kn) is bounded. Without loss of generality we can assume
that kn → k ∈ [,∞). Since


kn

–

n

≤ ‖xn‖�,p ≤ ‖x‖�,p < ∞,

we infer that k > . Hence, by Fatou’s lemma,

‖x‖�,p ≥ lim
n→∞‖xn‖�,p ≥ lim

n→∞


kn

(
 + Ip

�(knxn)
)/p ≥ 

k

(
 + Ip

�(kx)
)/p ≥ ‖x‖�,p,

i.e., ‖xn‖ ↑ ‖x‖.
Now, assume that the sequence (kn) is not bounded. Without loss of generality we

can assume that kn ↑ ∞ as n → ∞. We claim that limu→∞ �(u)/u = c < ∞. Indeed, if
limu→∞ �(u)/u = ∞ then

∞ > ‖x‖�,p ≥ lim
n→∞‖xn‖�,p ≥ lim

n→∞
I�(knxn)

kn
= lim

n→∞
∑

{i:xn(i) 	=}

�(knxn(i))
knxn(i)

xn(i),
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whence xn(i) →  as n → ∞ for all i ∈ N . Thus x =  - a contradiction. Therefore, by
subadditivity of the function f (u) = u/p on the interval [,∞), we get

‖x‖�,p ≤ lim
k→∞


k
(
 + Ip

�(kx)
)/p ≤ lim

k→∞

k
(
 + I�(kx)

)
= lim

k→∞

k

I�(kx)

= lim
k→∞


k

∑
{i:x(i) 	=}

�
(
kx(i)

)
= lim

k→∞
∑

{i:x(i) 	=}

�(kx(i))
kx(i)

x(i) ≤ c‖x‖� .

Since �(knxn(i))
knxn(i) xn(i) ↑ cx(i) as n → ∞ for every i ∈ N with x(i) 	= , by the Beppo Levy

theorem, we get

c‖x‖� ≥ ‖x‖�,p ≥ lim
n→∞‖xn‖�,p ≥ lim

n→∞


kn
I�(knxn)

≥ lim
n→∞

∑
{i:xn(i) 	=}

�(knxn(i))
knxn(i)

xn(i) =
∑

{i:x(i) 	=}
cx(i) = c‖x‖� ,

whence we conclude that, in the case of unbounded sequence (kn), the Fatou property
holds as well. �

Theorem . The Orlicz sequence space l�,p ( ≤ p ≤ ∞) is weakly orthogonal if and only
if � ∈ δ.

Proof If � /∈ δ then there exists an element x ∈ S+(��,p) satisfying I�(λx) = ∞ for any
λ > . By the Fatou property we can find natural numbers i < i < · · · such that




≤
∥∥∥∥∥

ij+∑
i=ij+

x(i)ei

∥∥∥∥∥
�

≤ ,

and put xj =
∑ij+

i=ij+ x(i)ei. Then, by Lemma . in [], we have xj
w→ , but

lim
j→∞‖xj ∧ x‖�,p ≥ lim

j→∞‖xj ∧ x‖� = lim
j→∞‖xj‖� ≥ 


,

so the Orlicz space l�,p is not weakly orthogonal - a contradiction.
Conversely, assume that � ∈ δ. Then the space �

� is order continuous, so for any x ∈ l
�

and ε > , there exists i ∈ N such that ‖∑∞
i=i+ x(i)ei‖

� < ε. For any weakly null sequence
(xn) in l

�, there is n ∈ N such that ‖∑i
i= xn(i)ei‖

� < ε whenever n ≥ n, because weak
convergence to zero implies its pointwise convergence to zero. Hence

‖xn ∧ x‖�,p ≤ ‖xn ∧ x‖
� ≤

∥∥∥∥∥
i∑
i=

∣∣xn(i)
∣∣ei +

∞∑
i=i+

∣∣x(i)
∣∣ei

∥∥∥∥∥


�

≤ ε.

By the arbitrariness of ε we have limn→∞ ‖xn ∧ x‖�,p = , so the Orlicz space l�,p is weakly
orthogonal. �

Applying the result of Borwein and Sims from [], which states that a weakly orthogonal
Banach lattice with the Riesz angle less than  has the weak fixed point property, the fact
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that the space ��,p is reflexive if and only if both functions � and � satisfy condition δ

and Theorem ., we get the following corollary.

Corollary . Every reflexive Orlicz sequence space l�,p ( ≤ p ≤ ∞) has the weak fixed
point property, so they have the fixed point property as well.

4 Dominguez-Benavides coefficient
In  Garcia-Falset [] defined a geometric coefficient R(X) which ensures the fixed
point property and he obtained stability results for this coefficient. In particular, he proved
that nearly uniformly smooth spaces have the FPP []. The coefficient R(X) is defined as
follows:

R(X) = sup
{

lim inf
n→∞ ‖xn + x‖

}
,

where the supremum is taken over all x ∈ B(X) and over all weakly null sequences of the
unit ball B(X).

In  Dominguez-Benavides [] generalized the coefficient R(X) introducing,for all
a > , the condition

R(a, X) = sup
{

lim inf
n→∞ ‖xn + x‖

}
,

where the supremum is taken over all x ∈ X with ‖x‖ ≤ a and over all weakly null se-
quences of the unit ball B(X) such that

D
(
(xn)

)
= lim sup

n→∞

(
lim sup

m→∞
‖xn – xm‖

)
≤ .

The coefficients R(a, X) play an important role in the fixed point theory for nonexpan-
sive mappings. Moreover, R(a, X) remains unaltered if we replace lim inf by lim sup in its
definition. It was proved that, for a given a ≥ , if R(a, X) <  + a then the Banach space X
has the fixed point property. The following theorem provides a formula for R(a, X) coeffi-
cients in the case of Orlicz sequence spaces l�,p.

Theorem . Assume that �(u)/u →  as u →  and � satisfies the δ condition. For any
a >  we have

R(a, l�,p) = sup
{

dx,z : x ∈ G�,‖z‖�,p = a
}

, ()

where

G� =
{

x ∈ B(l�,p) :

k

sp
(
I�(kx)

) ≤  for some k > 
}

,

dx,z = inf
k>

{
dx,z,k >  :


k

sp

(
I�

(
kx

dx,z,k

)
+ I�

(
kz

dx,z,k

))
= 

}
,

and in each of the above defined sets only a finite number of coordinates of the sequences x,
z are non-zero.
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Let us note that x ∈ G� whenever finite number of coordinates of x are non-zero and
‖x‖�,p ≤ 

 . Indeed, in that case there exists  < k < ∞ such that 
k

sp(I�(kx)) = ‖x‖�,p. If
k = k/ then, by convexity of �,


k

sp
(
I�(kx)

) ≤ 


k
sp

(
I�(kx)

)
= ‖x‖�,p ≤ ,

i.e., x ∈ G�.
Note also that R(a, l�) ≥ a. Indeed, taking x =  for any k >  and z ∈ l� with ‖z‖�,p = a,

we have

d,z,k =
d,z,k

k
sp

(
I�

(
kz

d,z,k

))
≥ ‖z‖�,p = a.

Thus d,z ≥ a, whence R(a, l�) ≥ a.

Proof Denote the right-hand side of the equality () by d. For any  < ε < d there exist
x, z ∈ l�,p with finite supports, x ∈ G�, ‖z‖�,p = a, such that dx,z > d – ε. Let j ∈N be such
a number that x(i) = z(i) =  for every i > j. Define the sequence (xn) as follows:

xn =
(n+)j∑
i=nj+

x(i – nj)ei.

Since �(u)/u →  as u → ,

lim sup
λ→

I�(λxn)
λ

= lim
λ→

I�(λx)
λ

= .

Thus limn→∞ xn(i) =  for each i ∈N , whence we conclude that xn tends weakly to  (see
[, ]).

Since x ∈ G�, we can find k >  such that 
k

sp(I�(kx)) ≤ . Thus, for every n, m ∈ N
we have

‖xn – xm‖�,p ≤ 
k

sp
(
I�

(
k(xn – xm)

)) ≤ 
k

sp
(
I�(kx)

) ≤ ,

whence D((xn)) ≤ .
By the definition, dx,z,k ≥ dx,z > d – ε for every k > . Since only a finite number of

coordinates of the function z are non-zero and limn→∞ inf{i : xn(i) 	= } → ∞, we have
xn(i) · z(i) =  for all i ∈N and all n large enough, whence

 =

k

sp

(
I�

(
kx

dx,z,k

)
+ I�

(
kz

dx,z,k

))
=


k

sp

(
I�

(
kxn

dx,z,k

)
+ I�

(
kz

dx,z,k

))

≤ 
k

sp

(
I�

(
kxn

d – ε

)
+ I�

(
kz

d – ε

))
=


k

sp

(
I�

(
k(xn + z)

d – ε

))

for all n large enough. Hence

∥∥∥∥xn + z
d – ε

∥∥∥∥
�,p

= inf
k>


k

sp

(
I�

(
k(xn + z)

d – ε

))
≥ ,
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i.e.,

lim inf
n→∞ ‖xn + z‖�,p ≥ d – ε.

By the arbitrariness of ε >  we get R(a, l�) ≥ d.
Now we will prove that R(a, l�) ≤ d. Assume that (xn) is a weakly null sequence of ele-

ments of B(l�,p) with D((xn)) ≤ . Let ε >  and put n = . Since � ∈ δ(), the norm ‖·‖�,p

is order continuous in l�,p, so we can find i ∈N such that

∥∥∥∥∥
∞∑

i=i+

xn (i)ei

∥∥∥∥∥
�,p

< ε.

Since, for every i ∈N , limn→∞ xn(i) = , there exists n > n such that

∥∥∥∥∥
i∑

i=

xn (i)ei

∥∥∥∥∥
�,p

< ε.

Since xn has an absolutely continuous norm, there exists i > i such that

∥∥∥∥∥
∞∑

i=i+

xn (i)ei

∥∥∥∥∥
�,p

< ε.

In this way we can find, by induction, two sequences (ik) and (nj) such that

∥∥∥∥∥
∞∑

i=ij+

xnj (i)ei

∥∥∥∥∥
�,p

< ε and

∥∥∥∥∥
ij∑

i=

xnj+ (i)ei

∥∥∥∥∥
�,p

< ε.

For any j ∈ N put yj =
∑ij

i=ij–+ xnj (i)ei. Since yk(i) · ys(i) =  for every i, k, s ∈ N , k 	= s, we
have

‖yk – ys‖�,p ≤ ‖xnk – xns‖�,p +

∥∥∥∥∥
ik–∑
i=

xnk (i)ei

∥∥∥∥∥
�,p

+

∥∥∥∥∥
is–∑
i=

xns (i)ei

∥∥∥∥∥
�,p

+

∥∥∥∥∥
∞∑

i=ik +

xnk (i)ei

∥∥∥∥∥
�,p

+

∥∥∥∥∥
∞∑

i=is+

xns (i)ei

∥∥∥∥∥
�,p

≤ D
(
(xn)

)
+ ε ≤  + ε.

Let zj = yj
+ε

for j ∈ N . Then, by the last inequalities, D((zj)) ≤  and limj→∞ zj(i) = .
Thus

lim
λ→

sup
j

I�(λzj)
λ

≤ lim
λ→

sup
j

I�(λxnj )
λ

= ,

whence the sequence (zj) converges weakly to  (see [, ]).
Since D((zj)) ≤ , there exists l >  such that


l

sp
(
I�(lzk) + I�(lzs)

) ≤ ,
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i.e.,

I�(lzk) + I�(lzs) ≤ (
lp
 – 

)/p for  ≤ p < ∞,

I�(lzk) + I�(lzs) ≤ l for p = ∞

for every k, s ∈ N , k 	= s. Then, for  ≤ p < ∞, either I�(lzk) ≤ 
 (lp

 – )/p or I�(lzs) ≤

 (lp

 – )/p and, for p = ∞, either I�(lzk) ≤ 
 l or I�(lzs) ≤ 

 l. Hence, passing to a sub-
sequence if necessary, we can assume that zk ∈ G� for every k ∈N .

Now take any x ∈ l� with finite support such that ‖x‖�,p = a. Then x(i) · zk(j) =  for
every i, j ∈N and every k ∈ N large enough. Thus, for every h >  we have

 =

h

sp

(
I�

(
hzk

dx,zk ,h

)
+ I�

(
hx

dx,zk ,h

))
=


h

sp

(
I�

(
h(x + zk)

dx,zk ,h

))
,

whence ‖x + zk‖�,p ≤ infh> dx,zk ,h = dx,zk for every k ∈N large enough. By the arbitrariness
of suitable x and (zk) we conclude that R(a, l�,p) ≤ d. �
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