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1 Introduction and mathematical preliminaries
Recently, Wardowski [] established a new contraction, the so-called F-contraction, and
obtained a fixed point result as a generalization of the Banach contraction principle. After
that Altun et al. [] introduced the new concept of multivalued F-contraction mappings
and gave some fixed point results. Wardowski and Dung [] further generalized the con-
cept of an F-contraction to an F-weak contraction and also obtained certain fixed point
results. Dung and Hang [] studied the notion of a generalized F-contraction and extended
a fixed point theorem for such mappings. Recently Piri and Kumam [] described a large
class of functions by replacing condition (F′) instead of the condition (F) in the defini-
tion of F-contraction.

Following this direction of research, in this paper, we extend the fixed point results of
Wardowski [], Wardowski and Dung [], Dung and Hang [], and Piri and Kumam [] by
introducing a generalized F-Suzuki-contraction in b-metric spaces. We begin with some
basic well-known definitions and results which will be used in the rest of this paper.

Throughout this paper, N, N, R+, R denote the set of nonnegative integer numbers,
the set of natural numbers, the set of positive real numbers, and the set of real numbers,
respectively.

Definition . Let F be the family of all functions F : R+ →R such that:

(F) F is strictly increasing, i.e. for all x, y ∈ R+ such that x < y, F(x) < F(y);
(F) for each sequence {αn}∞n= of positive numbers, limn→∞ αn =  if and only if

limn→∞ F(αn) = –∞;
(F) there exists k ∈ (, ) such that limα→+ αkF(α) = .
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Definition . [] Let (X, d) be a metric space. A mapping T : X → X is said to be an
F-contraction on (X, d) if there exist F ∈F and τ >  such that, for all x, y ∈ X,

d(Tx, Ty) >  ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
. ()

A new generalization of Banach contraction principle has been given by Wardowski []
as follows.

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be an F-contrac-
tion. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n=
converges to x∗.

In , Wardowski and Dung [] introduced the notion of an F-weak contraction and
proved a related fixed point theorem as follows.

Definition . [] Let (X, d) be a metric space. A mapping T : X → X is said to be an
F-weak contraction on (X, d) if there exist F ∈F and τ >  such that, for all x, y ∈ X,

d(Tx, Ty) >  ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
M(x, y)

)
, ()

in which

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}
.

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be an F-weak
contraction. If T or F is continuous, then T has a unique fixed point x∗ ∈ X and for every
x ∈ X the sequence {Tnx}∞n= converges to x∗.

Recall that a contraction conditions for a self-mapping T on a metric space (X, d), usu-
ally contained at most five values d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx) (for example
see [, ]). Recently, by adding four new values d(Tx, x), d(Tx, Tx), d(Tx, y), d(Tx, Ty)
to a contraction condition, Kumam et al. [] stated a new generalization of the Ćirić fixed
point theorem in []. Motivated and inspired by the idea of Kumam et al. [], Dung and
Hang [] generalized the notion of a generalized F-contraction and proved some fixed
point theorems for such maps. They gave examples to show that their result is a real gen-
eralization of Theorem . and some others in the literature.

Definition . [] Let (X, d) be a metric space. A mapping T : X → X is said to be a
generalized F-contraction on (X, d) if there exist F ∈F and τ >  such that, for all x, y ∈ X,

d(Tx, Ty) >  ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
N(x, y)

)
,

in which

N(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


,
d(Tx, x) + d(Tx, Ty)


,

d
(
Tx, Tx

)
, d

(
Tx, y

)
, d

(
Tx, Ty

)}
. ()
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Theorem . [] Let (X, d) be a complete metric space and let T : X → X be a generalized
F-contraction mapping. If T or F is continuous, then T has a unique fixed point x∗ ∈ X and
for every x ∈ X the sequence {Tnx}∞n= converges to x∗.

In , Piri and Kumam [] described a large class of functions by replacing the con-
dition (F) in the definition of an F-contraction introduced by Wardowski [] with the
following one:

(F′) F is continuous on (,∞).

They denote by F the family of all functions F : R+ → R which satisfy conditions (F), (F),
and (F′). Under this new set-up, Piri and Kumam proved some Wardowski and Suzuki
type fixed point results in metric spaces as follows.

Theorem . [] Let T be a self-mapping of a complete metric space X into itself. Suppose
that there exist F ∈ F and τ >  such that, for all x, y ∈ X,

d(Tx, Ty) >  ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
.

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= converges
to x∗.

Theorem . [] Let T be a self-mapping of a complete metric space X into itself. Suppose
that there exist F ∈ F and τ >  such that

∀x, y ∈ X,



d(x, Tx) < d(x, y) ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
.

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= con-
verges to x∗.

Definition . [] Let X be a nonempty set and s ≥  be a given real number. A mapping
d : X × X → R

+ is said to be a b-metric if for all x, y, z ∈ X the following conditions are
satisfied:

(bm) d(x, y) =  if and only if x = y;
(bm) d(x, y) = d(y, x);
(bm) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space (with constant s).

Definition . [] Let (X, d) be a b-metric space. A sequence {xn}∞n= in X is called:
(A) Convergent if and only if there exists x ∈ X such that limn→∞ d(xn, x) = . In this

case, we write limn→ xn = x.
(B) Cauchy if and only if limn,m→∞ d(xn, xm) = .

Remark . [] Notice that in a b-metric space (X, d) the following assertions hold:
(A) a convergent sequence has a unique limit;
(B) each convergent sequence is Cauchy;
(C) in general, a b-metric is not continuous;
(D) in general, a b-metric does not induce a topology on X .
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Definition . [] The b-metric space (X, d) is complete if every Cauchy sequence in X
converges in X.

Definition . [] Let (X, dX) and (Y , dY ) be b-metric spaces; a mapping f : X → Y is
called:

(A) continuous at a point x ∈ X , if for every sequence {xn}∞n= in X such that
limn→ xn = x, then limn→ f (xn) = f (x);

(B) continuous on X , if it is continuous at each point x ∈ X .

2 Main results
We use FG to denote the set of all functions F : R+ →R which satisfy conditions (F) and
(F′) and � to denote the set of all functions ψ : [,∞) → [,∞) such that ψ is continuous
and ψ(t) =  if and only t = .

Definition . Let (X, d) be a b-metric space. A self-mapping T : X → X is said to be a
generalized F-Suzuki-contraction if there exists F ∈ FG such that, for all x, y ∈ X with x �= y,


s

d(x, Tx) < d(x, y) ⇒ F
(
sd(Tx, Ty)

) ≤ F
(
MT (x, y)

)
– ψ

(
MT (x, y)

)
,

in which ψ ∈ � and

MT (x, y) = max

{
d(x, y), d

(
Tx, y

)
,

d(Tx, y) + d(x, Ty)
s

,

d(Tx, x) + d(Tx, Ty)
s

, d
(
Tx, Ty

)
+ d

(
Tx, Tx

)
,

d
(
Tx, Ty

)
+ d(Tx, x), d(Tx, y) + d(y, Ty)

}
. ()

Theorem . Let (X, d) be a complete b-metric space and T : X → X be a generalized
F-Suzuki-contraction. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the
sequence {Tnx}∞n= converges to x∗.

Proof Take x = x ∈ X. Let xn = Txn– for all n ∈ N. If there exists n ∈ N such that
d(xn, Txn) =  then x = xn becomes a fixed point of T , which completes the proof. So, in
the rest of the proof, we assume that

 < d(xn, Txn), ∀n ∈N. ()

Hence, we have


s

d(xn, Txn) < d(xn, Txn) = d(xn, xn+), ∀n ∈N. ()

So by the assumption of the theorem, we have

F
(
d(Txn, Txn+)

) ≤ F
(
MT (xn, xn+)

)
– ψ

(
MT (xn, xn+)

)
.
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Since

max
{

d(xn, xn+), d
(
Txn, xn+

)}

≤ MT (xn, xn+)

= max

{
d(xn, xn+), d(xn+, xn+),

d(xn, xn+)
s

,
d(xn+, xn)

s
,

d(xn+, xn+), d(xn+, xn+), d(xn, xn+)
}

≤ max

{
d(xn, xn+), d(xn+, xn+),

s[d(xn, xn+) + d(xn+, xn+)]
s

,

s[d(xn, xn+) + d(xn+, xn+)]
s

, d(xn+, xn+), d(xn+, xn+), d(xn, xn+)
}

≤ max
{

d(xn, xn+), d(xn+, xn+)
}

,

we get

F
(
d(xn+, xn+)

) ≤ F
(
max

{
d(xn, xn+), d(xn+, xn+)

})

– ψ
(
max

{
d(xn, xn+), d(xn+, xn+)

})
. ()

If d(xn+, xn+) > d(xn, xn+), then

max
{

d(xn, xn+), d(xn+, xn+)
}

= d(xn+, xn+),

so () becomes

F
(
d(xn+, xn+)

) ≤ F
(
d(xn+, xn+)

)
– ψ

(
d(xn+, xn+)

)
,

which is a contradiction (from () and the property of ϕ, we have ψ(d(xn+, xn+)) > ).
Thus, we conclude that

F
(
d(xn+, xn+)

) ≤ F
(
d(xn, xn+)

)
– ψ

(
d(xn, xn+)

)

< F
(
d(xn, xn+)

)
. ()

It follows from () and (F) that

d(xn, xn+) < d(xn–, xn), ∀n ∈N. ()

Therefore {d(xn+, xn)}n∈N is a nonnegative decreasing sequence of real numbers. Thus,
there exists γ ≥  such that limn→∞ d(xn+, xn) = γ . Letting n → ∞ in (), we have

F(γ ) ≤ F(γ ) – ψ(γ ).

This implies that ψ(γ ) =  and thus γ = . Consequently, we have

lim
n→∞ d(xn, Txn) = lim

n→∞ d(xn, xn+) = . ()
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Now, we claim that {xn}∞n= is a Cauchy sequence. Arguing by contradiction, we assume
that there exist ε > , and the sequences {p(n)}∞n= and {q(n)}∞n= of natural numbers such
that, for all n ∈N,

p(n) > q(n) > n, d(xp(n), xq(n)) ≥ ε, d(xp(n)–, xq(n)) < ε. ()

Observe that

ε ≤ d(xp(n), xq(n)) ≤ s
[
d(xp(n), xp(n)–) + d(xp(n)–, xq(n))

]

≤ sd(xp(n), xp(n)–) + sε.

So from (), we get

ε ≤ lim sup
n→∞

d(xp(n), xq(n)) ≤ sε. ()

From the triangle inequality, we have

ε ≤ d(xp(n), xq(n)) ≤ s
[
d(xp(n), xq(n)+) + d(xq(n)+, xq(n))

]
()

and

d(xp(n), xq(n)+) ≤ s
[
d(xp(n), xq(n)) + d(xq(n), xq(n)+)

]
. ()

It follows from (), (), (), and () that

ε

s
≤ lim sup

n→∞
d(xp(n), xq(n)+) ≤ sε. ()

Again, using above process, we get

ε

s
≤ lim sup

n→∞
d(xp(n)+, xq(n)) ≤ sε. ()

From () and the inequality

d(xp(n), xq(n)+) ≤ s
[
d(xp(n), xp(n)+) + d(xp(n)+, xq(n)+)

]
,

we have

ε

s ≤ lim sup
n→∞

d(xp(n)+, xq(n)+). ()

From () and the inequality

d(xp(n)+, xq(n)+) ≤ s
[
d(xp(n)+, xq(n)) + d(xq(n), xq(n)+)

]

≤ s[d(xp(n)+, xp(n)) + d(xp(n), xq(n))
]

+ sd(xq(n), xq(n)+),
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we have

lim sup
n→∞

d(xp(n)+, xq(n)+) ≤ sε. ()

It follows from () and () that

ε

s ≤ lim sup
n→∞

d(xp(n)+, xq(n)+) ≤ sε. ()

From () and (), we can choose a positive integer n ∈N such that


s

d(xp(n), Txp(n)) <

s

ε < d(xp(n), xq(n)), ∀n ≥ n.

Therefore by assumption of theorem for every n ≥ n, we have

F
(
d(xp(n)+, xq(n)+)

) ≤ F
(
MT (xp(n), xq(n))

)
– ψ

(
MT (xp(n), xq(n))

)
. ()

Since

d(xp(n), xq(n))

≤ MT (xp(n), xq(n))

= max

{
d(xp(n), xq(n)), d(xp(n)+, xq(n)),

d(xp(n)+, xq(n)) + d(xp(n), xq(n)+)
s

,

d(xp(n)+, xp(n)) + d(xp(n)+, xq(n)+)
s

, d(xp(n)+, xq(n)+) + d(xp(n)+, xp(n)+),

d(xp(n)+, xq(n)+) + d(xp(n)+, xp(n)), d(xp(n)+, xq(n)) + d(xq(n), xq(n)+)
}

≤ max

{
d(xp(n), xq(n)), s

[
d(xp(n)+, xp(n)+) + d(xp(n)+, xq(n))

]
,

d(xp(n)+, xq(n)) + d(xp(n), xq(n)+)
s

,

s[d(xp(n)+, xp(n)+) + d(xp(n)+, xp(n))] + s[d(xp(n)+, xp(n)+) + d(xp(n)+, xq(n)+)]
s

,

s
[
d(xp(n)+, xp(n)+) + d(xp(n)+, xq(n)+)

]
+ d(xp(n)+, xp(n)+),

s
[
d(xp(n)+, xp(n)+) + d(xp(n)+, xq(n)+)

]
+ d(xp(n)+, xp(n)),

d(xp(n)+, xq(n)) + d(xq(n), xq(n)+)
}

,

taking the limit supremum as n → ∞ on each side of the above inequality and using (),
(), (), and () we have

ε ≤ lim sup
n→∞

MT (xp(n), xq(n)) ≤ sε. ()

Also, we can show that

ε ≤ lim inf
n→∞ MT (xp(n), xq(n)) ≤ sε. ()
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Taking the limit supremum as n → ∞ in () and using () and (), we get

F
(
sε

)
= F

(
s ε

s

)
≤ F

(
lim sup

n→∞
d(xp(n)+, xq(n)+)

)

≤ F
(

lim sup
n→∞

MT (xp(n), xq(n))
)

– ψ
(

lim sup
n→∞

MT (xp(n), xq(n))
)

≤ F
(
sε

)
– ψ(ε),

which is a contradiction with ε > , and it follows that {xn} is a Cauchy sequence in X. By
completeness of (X, d), {xn}∞n= converges to some point x∗ in X. Therefore,

lim
n→∞ d

(
xn, x∗) = . ()

We claim that, for every n ∈N,


s

d(xn, Txn) < d
(
xn, x∗) or


s

d
(
Txn, Txn

)
< d

(
Txn, x∗). ()

Suppose, on the contrary, that there exists m ∈N such that


s

d(xm, Txm) ≥ d
(
xm, x∗) and


s

d
(
Txm, Txm

) ≥ d
(
Txm, x∗). ()

Therefore,

sd
(
xm, x∗) ≤ d(xm, Txm) ≤ s

[
d
(
xm, x∗) + d

(
x∗, Txm

)]
,

which implies that

d
(
xm, x∗) ≤ d

(
x∗, Txm

)
. ()

From () and (), we have

d
(
Txm, Txm

)
< d(xm, Txm) ≤ sd

(
xm, x∗) + sd

(
x∗, Txm

)

≤ sd
(
x∗, Txm

)
. ()

It follows from () and () that d(Txm, Txm) < d(Txm, Txm). This is a contradiction.
Hence, () holds. If part (I) of () is true, then we have

F
(
d
(
xn+, Tx∗)) = F

(
d
(
Txn, Tx∗))

≤ F
(
MT

(
xn, x∗)) – ψ

(
MT

(
xn, x∗)). ()

Since

d
(
x∗, Tx∗) ≤ MT

(
xn, x∗)

= max

{
d
(
xn, x∗), d

(
xn+, x∗),

d(xn+, x∗) + d(xn, Tx∗)
s

,
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d(xn+, xn) + d(xn+, Tx∗)
s

, d
(
xn+, Tx∗) + d(xn+, xn+),

d
(
xn+, Tx∗) + d(xn+, xn), d

(
xn+, x∗) + d

(
x∗, Tx∗)

}

≤ max

{
d
(
xn, x∗), d

(
xn+, x∗),

d(xn+, x∗) + d(xn, Tx∗)
s

,

s[d(xn+, xn+) + d(xn+, xn)] + d(xn+, Tx∗)
s

,

d
(
xn+, Tx∗) + d(xn+, xn+),

d
(
xn+, Tx∗) + d(xn+, xn), d

(
xn+, x∗) + d

(
x∗, Tx∗)

}
,

letting n → ∞ and using (), we get

lim
n→∞ MT

(
xn, x∗) = d

(
x∗, Tx∗).

It follows from (), (F′), and the continuity of ϕ that

F
(
d
(
x∗, Tx∗)) ≤ F

(
d
(
x∗, Tx∗)) – ψ

(
d
(
x∗, Tx∗)).

This yields x∗ = Tx∗. If part (II) of () is true, using a similar method to the above, we
get x∗ = Tx∗. Hence, x∗ is a fixed point of T . Now we show that T has at most one fixed
point. Indeed, if x∗, y∗ ∈ X are two fixed points of T , such that x∗ �= y∗, then we have  =

s d(x∗, Tx∗) < d(x∗, y∗) and from the assumption of the theorem, we obtain

F
(
d
(
x∗, y∗)) = F

(
d
(
Tx∗, Ty∗))

≤ F
(
MT

(
x∗, y∗)) – ψ

(
MT

(
x∗, y∗))

= F
(
d
(
y∗, x∗)) – ψ

(
d
(
y∗, x∗)).

This gives ψ(d(y∗, x∗)) ≤ . Hence y∗ = x∗. This completes the proof. �

The following two theorems can be obtained easily by repeating the steps in the proof
of Theorem ..

Theorem . Let (X, d) be a complete b-metric space and T : X → X be a self-mapping
such that, for every x, y ∈ X,


s

d(x, Tx) < d(x, y) ⇒ F
(
d(Tx, Ty)

) ≤ F
(
MT (x, y)

)
– ψ

(
N(x, y)

)
,

where N(x, y) is defined by () and ψ is defined as in Theorem .. Then T has a unique
fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= converges to x∗.

Theorem . Let (X, d) be a complete b-metric space and T : X → X be a self-mapping
such that, for every x, y ∈ X,


s

d(x, Tx) < d(x, y) ⇒ F
(
d(Tx, Ty)

) ≤ F
(
MT (x, y)

)
– ψ

(
d(x, y)

)
,
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where MT (x, y) is defined by () and ψ is defined as in Theorem .. Then T has a unique
fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= converges to x∗.

Since a b-metric space is a metric space when s = , so we obtain the following theo-
rems.

Theorem . Let (X, d) be a complete metric space and T : X → X be a generalized F-
Suzuki-contraction. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the se-
quence {Tnx}∞n= converges to x∗.

Theorem . Let (X, d) be a complete metric space and T : X → X be a self-mapping such
that, for every x, y ∈ X,


s

d(x, Tx) < d(x, y) ⇒ F
(
d(Tx, Ty)

) ≤ F
(
MT (x, y)

)
– ψ

(
d(x, y)

)
,

where MT (x, y) is defined by () and ψ is defined as in Theorem .. Then T has a unique
fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= converges to x∗.

Theorem . [] Let (X, d) be a complete metric space and let T : X → X be a generalized
F-contraction. If F is continuous, then T has a unique fixed point x∗ ∈ X and for every x ∈ X
the sequence {Tnx}∞n= converges to x∗.

Proof Since N(x, y) ≤ MT (x, y), so from (F) and by taking ψ = τ in Theorem . the proof
is complete. �

Theorem . [] Let T be a self-mapping of a complete metric space X into itself. Suppose
that there exist F ∈ F and τ >  such that

∀x, y ∈ X,



d(x, Tx) < d(x, y) ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
.

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx}∞n= converges
to x∗.

Proof Since d(x, y) ≤ MT (x, y), from (F) and by taking ψ = τ and s =  in Theorem . the
proof is complete. �

Example . Let X = {–, –, , , } and define a metric d on X by

d(x, y) =

⎧
⎪⎨

⎪⎩

, if x = y,
, if (x, y) ∈ {(, –), (–, )},
, otherwise.

Then (X, d) is a b-metric space with coefficient s = . But it is not a metric space since the
triangle inequality is not satisfied. Let T : X → X be defined by

T(–) = T() = T() = , T(–) = , T() = –.
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First observe that

d(Tx, Ty) > 

⇔ [(
x ∈ {–, , } ∧ y = 

) ∨ (
x ∈ {–, , } ∧ y = –

) ∨ (x =  ∧ y = –)
]
.

Now we consider the following cases:
Case . Let x ∈ {–, , } ∧ y = , then

d(Tx, Ty) = d(, –) = , d(x, y) = d(x, ) = , d(x, Tx) = d(x, ) =  ∨ ,

d(y, Ty) = d(, –) = ,
d(x, Ty) + d(Tx, y)


=

d(x, –) + d(, )


=



∨ ,

d(Tx, x) + d(Tx, Ty)


=
d(, x) + d(, –)


=




∨ ,

d(x, Ty) = d(x, –) =  ∨ , d(Tx, y) = d(, –) = ,

d
(
Tx, Tx

)
= d(, ) = , d

(
Tx, y

)
= d(, ) = ,

d
(
Tx, Ty

)
+ d(x, Tx) = d(, –) + d(x, ) =  ∨ ,

d(Tx, y) + d(y, Ty) = d(, ) + d(, –) = .

Case . Let x ∈ {–, , } ∧ y = –, then

d(Tx, Ty) = d(, ) = , d(x, y) = d(x, –) = , d(x, Tx) = d(x, ) =  ∨ ,

d(y, Ty) = d(–, ) = ,
d(x, Ty) + d(Tx, y)


=

d(x, ) + d(, –)


=



∨ ,

d(Tx, x) + d(Tx, Ty)


=
d(, x) + d(, )


=




∨ ,

d(x, Ty) = d(x, ) = , d(Tx, y) = d(, –) = ,

d
(
Tx, Tx

)
= d(, ) = , d

(
Tx, y

)
= d(, –) = ,

d
(
Tx, Ty

)
+ d(x, Tx) = d(, ) + d(x, ) =  ∨ 

d(Tx, y) + d(y, Ty) = d(, –) + d(–, ) = .

Case . Let x =  ∧ y = –, then

d(Tx, Ty) = d(–, ) = , d(x, y) = d(, –) = , d(x, Tx) = d(, –) = ,

d(y, Ty) = d(–, ) = ,
d(x, Ty) + d(Tx, y)


=

d(, ) + d(–, –)


=



,

d(Tx, x) + d(Tx, Ty)


=
d(, ) + d(, )


= ,

d(x, Ty) = d(, ) = , d(Tx, y) = d(–, –) = ,

d
(
Tx, Tx

)
= d(, –) = , d

(
Tx, y

)
= d(, –) = ,

d
(
Tx, Ty

)
+ d(x, Tx) = d(, ) + d(, –) = ,

d(Tx, y) + d(y, Ty) = d(–, –) + d(–, ) = .
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In Case , we have

d(Tx, Ty) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)


}

= max

{
d(Tx, x) + d(Tx, Ty)


, d

(
Tx, Tx

)
, d

(
Tx, y

)
, d

(
Tx, Ty

)}
= .

This proves that for all F ∈F , T is not an F-weak contraction, generalized F-contraction,
and F-contraction. Hence Theorem ., Theorem ., and Theorem . are not applicable
for this example. However, we see that, for all x, y ∈ X,




d(x, Tx) < d(x, y), d(Tx, Ty) = , and MT (x, y) ≥ .

Since

ln
(
d(Tx, Ty)

) ≤ ln
(
MT (x, y)

)
+ ln

(



)

≤ ln
(
MT (x, y)

)
–




.

So by taking F(t) = ln(t) and ϕ(t) = 
 t, we have

F
(
d(Tx, Ty)

) ≤ F
(
MT (x, y)

)
– ϕ

(
MT (x, y)

)
.

Hence T satisfies the assumption of Theorem ..
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