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Abstract
In this research, a multihierarchical methodology works by taking a whole
intersection property to establish a fixed point theorem. Using such a whole
intersection property to let multihierarchical procedures of set-valued mappings can
work on a Hausdorff topological vector space. Some examples are proposed in order
to illustrate our theory.
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1 Introduction and preliminaries
In , on the basis of the KKM theorem, Fan established the celebrated minimax theo-
rem [, ] by employing a whole intersection theorem. Since then, fruitful extensions for
Fan’s minimax theorem were established [–]. It is important in mathematical economics
and game theory; in the meantime, it has been very useful in many applications in convex
and nonlinear analysis. One of important extensional directions is the multihierarchical
approach. A large number of papers [, , –] have developed along this direction and
applied the concept of multihierarchical approach to either the whole intersection prop-
erty or to minimax theorems for real-valued functions. In the meanwhile, Ha [] recently
established a minimax theorem ([], Theorem .), which uses the following whole inter-
section theorem.

Theorem A Let X, Y be two nonempty convex subsets of real Hausdorff topological vector
spaces, where Y is compact, and let F , G, H : X ⇒ Y be three set-valued mappings with
F(x) ⊂ G(x) ⊂ H(x) for each x ∈ X such that

(a) F(x) and H(x) are open in Y for each x ∈ X , and F–(y) and H–(y) are convex for
each y ∈ Y ; and

(b) G–(y) is open in X for each y ∈ Y , and Y \ G(x) is convex for each x ∈ X .
Then either there is y ∈ Y such that F–(y) = ∅, or

⋂

y∈Y

H–(y) �= ∅,

where we denote �–(y) := {x ∈ X : y ∈ �(x)} for a mapping � : X ⇒ Y .

Theorem A can be deduced by using the powerful method of barycentric subdivision.
By employing the same direction of Ha, we can derive the following refinement result.
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Theorem B Let X, Y be two nonempty convex subsets of real Hausdorff topological vector
spaces, where Y is compact, and let A, B, C, D, E, F , G : X ⇒ Y be set-valued mappings with
A(x) ⊂ B(x) ⊂ C(x) ⊂ D(x) ⊂ E(x) ⊂ F(x) ⊂ G(x) for each x ∈ X such that

(a) A(x) and E(x) are open in Y for each x ∈ X , and B–(y) and F–(y) are convex for
each y ∈ Y ; and

(b) D–(y) is open in X for each y ∈ Y , and Y \ C(x) is convex for each x ∈ X .
Then either there is y ∈ Y such that A–(y) = ∅, or

⋂

y∈Y

G–(y) �= ∅.

As we mentioned above, it inspires and encourages us to apply the multihierarchical
approach to minimax theorems for scalar set-valued mappings in Section  and for set-
valued mappings in Section . In this paper, we will continue in this direction and create
a generalized aspect.

2 Fixed point theorems and whole intersection theorems
The following theorem is a generalized form of Lemma . in [].

Theorem  Let X be a nonempty compact convex subset of a Hausdorff topological vector
space, and Y be an n-simplex. Suppose that set-valued mappings P, Q, R, S, T : X ⇒ Y with
P(x) ⊂ Q(x) ⊂ R(x) ⊂ S(x) ⊂ T(x) for each x ∈ X satisfy the following conditions:

(i) P–(y) is nonempty for each y ∈ Y , Y \ Q(x) is convex for each x ∈ X , and R–(y) is
closed for each y ∈ Y ; and

(ii) S(x) is closed for each x ∈ X , and T–(y) is convex for each y ∈ Y .
If f : X → Y is continuous, then there are x ∈ X and y ∈ Y such that

f (x) = y, y ∈ T(x).

Proof By the same directional process of Lemma . in [], we can deduce the theorem.
So, we leave the proof to the readers. �

As a consequence of Theorem , we have the following fixed point theorem.

Corollary  Under the framework of Theorem , in addition, if Y = X is an n-simplex and
f is the identity mapping on X, then T has a fixed point in X.

The following corollary is a variant form of Theorem .

Corollary  Let Y be a nonempty compact convex subset of a Hausdorff topological vector
space, and Z be an n-simplex. Suppose that set-valued mappings P, Q, R, S, T : Z ⇒ Y with
P(x) ⊂ Q(x) ⊂ R(x) ⊂ S(x) ⊂ T(x) for each x ∈ Z satisfy the following conditions:

(i) P(x) is nonempty for each x ∈ Z, Z \ Q–(y) is convex for each y ∈ Y , and R(x) is
closed for each x ∈ Z; and

(ii) S–(y) is closed for each y ∈ Y , and T(x) is convex for each x ∈ Z.
If f : Y → Z is continuous, then there are x ∈ Z and y ∈ Y such that

f (y) = x, y ∈ T(x).
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Now, we can prove Theorem B.

Proof of Theorem B Suppose that the first alternative is not true. Then A–(y) �= ∅ for all
y ∈ Y . For each y ∈ Y , there is xy ∈ A–(y) such that y ∈ A(xy). Therefore, Y ⊂ ⋃

x∈X A(x).
By the compactness of Y and since A(x) is open for each x ∈ X, there exist x, x, . . . , xn ∈ X
such that

Y ⊂
n⋃

i=

A(xi).

Let Z := conv{x, x, . . . , xn} where conv L means the convex hull of a set L, and let
α,α, . . . ,αn be a partition of unity on Y subordinated to the cover {A(xi) : i = , , . . . , n}.
Define f : Y → X by f (y) :=

∑n
i= αi(y)xi. For each y ∈ Y ,  ≤ i ≤ n, if αi(y) > , y ∈ A(xi),

then xi ∈ A–(y) ⊂ B–(y). By the convexity of B–(y), f (y) ∈ B–(y), or

y ∈ B
(
f (y)

)
()

for all y ∈ Y .
On the other hand, define P : Z ⇒ Y by

P(x) := Y \ G(x) ()

for each x ∈ Z, and define Q, R, S, T : Z ⇒ Y similarly, with the mapping G in () replaced
by F , E, D, and C, respectively. Suppose that

⋂
y∈Y G–(y) = ∅. Then P(z) �= ∅ for each z ∈ Z.

Therefore, by conditions (a) and (b), all conditions of Corollary  are valid for the mappings
P, Q, R, S, and T . It follows that there are x ∈ Z and y ∈ Y such that f (y) = x and
y ∈ T(x). Hence, y /∈ C(x), and so y /∈ B(x) = B(f (y)), which contracts (). Therefore,
the second alternative holds. �

The following corollary is a variant form of Theorem B.

Corollary  Let X, Y be nonempty convex subsets of real Hausdorff topological spaces,
and X be compact. Suppose that set-valued mappings A, B, C, D, E, F , G : X ⇒ Y possess
the following conditions:

(i) A–(y) is open in X for each y ∈ Y , B(x) is convex in Y for each x ∈ X , and X \ C–(y)
is convex for each y ∈ Y ;

(ii) D(x) is open in Y for each x ∈ X , E–(y) is open in X for each y ∈ Y , and F(x) is
convex in Y for each x ∈ X ; and

(iii) A(x) ⊂ B(x) ⊂ C(x) ⊂ D(x) ⊂ E(x) ⊂ F(x) ⊂ G(x) for each x ∈ X .
Then either there is x ∈ X such that A(x) = ∅, or

⋂

x∈X

G(x) �= ∅.

The following two corollaries can be derived from Corollary .

Corollary  Under the framework of Corollary , in addition, if A = B, C = D, and E = F =
G, then Corollary  is reduced to Theorem A.
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Corollary  Under the framework of Corollary  except the compactness of X, in addition,
let K ⊂ X be nonempty, compact, and convex. Then either there is x ∈ K such that A(x) =
∅, or

⋂

x∈X

G(x) �= ∅.

3 Multihierarchical structures for scalar set-valued mappings
In this section, we present minimax theorems for scalar set-valued mappings under mul-
tihierarchical structures. We first recall some definitions. Let V and W be two nonempty
sets equipped with some suitable topologies. Then we say that � : V ⇒ W is upper semi-
continuous on V iff for each v ∈ V and for every open set W̃ containing �(v), there
exists a neighborhood Ṽ of v such that �(Ṽ ) ⊂ W̃ . We say that � is lower semicon-
tinuous on V iff for each v ∈ V and for every open set W̃ with �(v) ∩ W̃ �= ∅, there
exists a neighborhood Ṽ of v such that �(v) ∩ W̃ �= ∅ for all v ∈ Ṽ . If � is both lower
semicontinuous and upper semicontinuous on V , then we say that � is continuous on V .
If W is a Hausdorff topological vector space, C is a closed convex pointed cone with
int C �= ∅ in W , and V is a convex subset of a vector space, then we say that � : V ⇒ W
is convex [] (concave [], respectively) on V iff for any v, v ∈ V and any λ ∈ [, ],
�(λv +(–λ)v) ⊂ λ�(v)+(–λ)�(v)–C (λ�(v)+(–λ)�(v) ⊂ �(λv +(–λ)v)–C,
respectively). We say that � : V ⇒ Z is quasi-convex (quasi-concave, respectively) [] on
V iff the set {v ∈ V : �(v) ⊂ z – C} ({v ∈ V : �(v) ⊂ z + C}, respectively) is convex for
all z ∈ Z. Whenever W = R, C = R+, and � becomes a single-valued function, then the
above concepts of mappings coincide with the classical ones. We propose a proposition
and several examples to illustrate some relations between those mappings.

Proposition  For a set-valued mapping, the convexity implies the quasi-convexity
(Proposition . in []). However, the concavity does not imply the quasi-concavity.

Proof We only need propose a counterexample to explain the second statement. Let X =
[, ], C = R+, and � : X ⇒R be defined by

�(x) :=

{
{}, x = ,
{t : –( – x) ≤ t ≤ ( – x)}, x �= .

The set

L�,≥(θ ) :=
{

x ∈ [, ] : �(x) ⊂ θ + R+
}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[, ], θ ≤ –,
{} ∪ [θ/ – , ], – < θ ≤ –,
{}, – < θ ≤ ,
∅, θ > ,

is not convex for all θ ∈ R. Then � is not quasi-concave. On the other hand, since
cx

 + cx
 ≥ (cx + cx) for all c, c ∈ [, ] and x, x ∈ X, c�(x) + c�(x) ⊂ �(cx +

cx) – R+. Hence, � is concave. �

Example  We would like to construct three set-valued mappings from X × Y to R that
satisfy the following conditions: The first mapping is lower semicontinuous in the first
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variable but neither upper semicontinuous in the second variable nor quasi-convex in
the first variable. The second mapping is quasi-convex in the first variable but not up-
per semicontinuous in the second variable. The third mapping is upper semicontinuous
in the second variable but not lower semicontinuous in the first variable.

Sol. Let X = Y = [, ]. We define

P(x, y) :=

⎧
⎪⎨

⎪⎩

[– + x,  – x], x �= , y �= ,
{ – x}, x �= , y = ,
{} otherwise,

Q(x, y) :=

{
[– + y,  – y], y �= ,
{}, y = ,

R(x, y) :=

⎧
⎪⎨

⎪⎩

[ – ( – x),  + ( – x)], x �= , y = ,
{t : t ∈ [–, ]}, x = , y = ,
{} otherwise.

Then we can confirm that P(x, y) is a lower semicontinuous mapping in the first vari-
able but neither upper semicontinuous in the second variable nor quasi-convex in the
first variable; Q(x, y) is quasi-convex in first variable but not upper semicontinuous in the
second variable; and R(x, y) is upper semicontinuous in the second variable but not lower
semicontinuous in the first variable. Since the set

Ly
P,≤(θ ) :=

{
x ∈ [, ] : P(x, y) ⊂ θ – R+

}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[, ], θ ≥ ,
{} ∪ [

√
 – θ , ],  < θ < ,

{, }, θ = ,
∅, θ < ,

is not convex for all θ ∈ R, the mapping P(x, y) is not quasi-convex in the first variable.
Nevertheless, since the set

Ly
Q,≤(θ ) :=

{
x ∈ [, ] : Q(x, y) ⊂ θ – R+

}

=

{
[, ], y ∈ [, ], θ ≥  – y, or  ≤ θ < , y = ,
∅ otherwise,

is convex for all θ ∈ R, the mapping Q(x, y) is quasi-convex in the first variable. We omit
checking the other properties of the mappings P, Q, R and leave them to the readers.

Example  We would like to construct two set-valued mappings from X × Y to R that
satisfy following conditions: One is a mapping that is upper semicontinuous in the first
variable but not concave in the second variable. The other mapping is concave in the sec-
ond variable but not upper semicontinuous in the first variable.

Sol. Let X = Y = [, ]. We define

S(x, y) :=

{
[ – y,  + y], x = ,
{}, x �= ,
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T(x, y) :=

{
{t :  – ( – y) ≤ t ≤  + ( – y)}, x = ,
{t :  ≤ t ≤ ( – x)( + ( – y))}, x �= .

It is not difficult to check that S is upper semicontinuous in the first variable but T is not,
so we only need to check that T is concave in the second variable but S is not. Indeed, for
any c, c ∈ [, ] and y, y ∈ [, ], since c( – y

 ) + c( – y
) ≤ ( – (cy + cy)), we

have cT(x, y) + cT(x, y) ⊂ T(x, cy + cy) – R+. This proves that T is concave in the
second variable. On the other hand, we observe that cy

 + cy
 � (cy + cy), and thus

cS(, y) + cS(, y) �⊂ S(, cy + cy) – R+. So, S is not concave in the second variable.

Example  We would like to construct two set-valued mappings from X × Y to R that
satisfy following conditions: One is a mapping that is quasi-convex in the first variable
but is not continuous in second variable. The other mapping is continuous in the second
variable, and its union in the first variable is compact but not quasi-convex in the first
variable.

Sol. Let X = Y = [, ], and let U(x, y) := R(x, y) +  for all (x, y) ∈ X × Y , which means
that we lift R up to , and let V (x, y) := [,  + (x – x)y], where R is the same as in
Example . Hence, U is quasi-convex in the first variable, upper semicontinuous but not
continuous in the second variable, and V is continuous in the second variable, and its
union

⋃
x∈X V (x, y) = [,  + y] is compact but not quasi-convex in the first variable.

The following two lemmas will help us to derive the main results. These two lemmas
describe some relationships of convexities between a scalar set-valued mapping and real-
valued function.

Lemma  Suppose that X is a nonempty convex subset of a topological vector space and
G : X ⇒ R is a set-valued mapping such that max G(x) exists for each x ∈ X. Then the
mapping G : X ⇒ R is quasi-convex if and only if the mapping x �→ max G(x) is a quasi-
convex function.

Proof Suppose that G : X ⇒ R is quasi-convex. We need to show that the set {x ∈ X :
max G(x) ≤ c} is convex for each c ∈ R. Indeed, for any x, x ∈ {x ∈ X : max G(x) ≤ c} and
λ ∈ [, ], we have

G(x) ⊂ max G(x) – R+ ⊂ c – R+

and

G(x) ⊂ max G(x) – R+ ⊂ c – R+.

By the quasi-convexity of G, we have that λx + ( – λ)x also belongs to the set {x ∈ X :
G(x) ⊂ c – R}, that is, G(λx + ( – λ)x) ⊂ c – R. We note that max G(λx + ( – λ)x) ∈
G(λx + ( – λ)x), and then λx + ( – λ)x also belongs to the set {x ∈ X : max G(x) ≤ c},
and thus, the last set is convex. Therefore, the mapping x �→ max G(x) is quasi-convex.

Conversely, if the mapping x �→ max G(x) is quasi-convex, we need to show that the set
{x ∈ X : G(x) ⊂ c – R+} is convex for each c ∈ R. Indeed, for any x, x ∈ {x ∈ X : G(x) ⊂
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c –R+} and λ ∈ [, ], we have G(x) ⊂ c –R+ and G(x) ⊂ c –R+. Thus, max G(x) ≤ c and
max G(x) ≤ c. Since the mapping x �→ max G(x) is quasi-convex, max G(λx + ( – λ)x) ≤
c, and G(λx + ( – λ)x) ⊂ max G(λx + ( – λ)x) – R+. Hence, λx + ( – λ)x ∈ {x ∈ X :
G(x) ⊂ c – R+}. Therefore, G : X �→R is quasi-convex. �

Lemma  Suppose that X is a nonempty convex subset of a topological vector space and
G : X ⇒ R is a set-valued mapping such that max G(x) exists for each x ∈ X. Then the
mapping G : X ⇒R is convex (concave, resp.) if and only if the mapping x �→ max G(x) is a
convex (concave, resp.) function.

Proof We can deduce the conclusion directly from the definition. �

With the help of Lemmas  and , we derive the following scalar hierarchical minimax
theorem.

Theorem  Let X, Y be two nonempty compact convex subsets of real Hausdorff topologi-
cal vector spaces. Let P, Q, R, S, T , U , V : X ×Y ⇒R be set-valued mappings with nonempty
compact values such that

max P(x, y) ≤ max Q(x, y) ≤ max R(x, y) ≤ max S(x, y)

≤ max T(x, y) ≤ max U(x, y) ≤ max V (x, y)

for all (x, y) ∈ X × Y and that the set
⋃

x∈X V (x, y) is compact for all y ∈ Y . Suppose that the
following conditions are satisfied:

(i) y �→ V (x, y) is continuous on Y for each x ∈ X , x �→ U(x, y) is quasi-convex on X for
each y ∈ Y , y �→ T(x, y) is concave for each x ∈ X , and x �→ S(x, y) is upper
semicontinuous on X for each y ∈ Y ;

(ii) y �→ R(x, y) is upper semicontinuous on Y for each x ∈ X , and x �→ Q(x, y) is
quasi-convex on X for each y ∈ Y ;

(iii) x �→ P(x, y) is lower semicontinuous on X for each y ∈ Y , and y �→ P(x, y) is upper
semicontinuous on Y for each x ∈ X ; and

(iv) for each w ∈ Y , there is xw ∈ X such that

max V (xw, w) ≤ max
⋃

y∈Y

min
⋃

x∈X

V (x, y).

Then we have the following relation:

min
⋃

x∈X

max
⋃

y∈Y

P(x, y) ≤ max
⋃

y∈Y

min
⋃

x∈X

V (x, y). ()

Proof Suppose that max
⋃

y∈Y min
⋃

x∈X V (x, y) �= ∞. For any α ∈ R such that α >
max

⋃
y∈Y min

⋃
x∈X V (x, y), define A : X ⇒ Y by

A(x) =
{

y ∈ Y : max V (x, y) < α
}

()

for all x ∈ X, and similarly B, C, D, E, F , and G, with the mapping V inside the braces in
() replaced by U , T , S, R, Q, and P, respectively. Since max U(x, y) ≤ max V (x, y) for all
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(x, y) ∈ X × Y , A(x) ⊂ B(x). Similarly, B(x) ⊂ C(x) ⊂ D(x) ⊂ E(x) ⊂ F(x) ⊂ G(x) for each
x ∈ X.

From the upper semicontinuity of the mappings R, S, V and Lemma . in [], the sets
A(x), D–(y), and E(x) are open for all x ∈ X and y ∈ Y . By the convexity of the mappings
Q, T , and U and Lemmas  and , the sets B–(y), F–(y), and Y \ C(x) are convex for each
x ∈ X and for each y ∈ Y .

By condition (iv) the sets A–(y) �= ∅ for each y ∈ Y . Hence, from Theorem B,

⋂

y∈Y

G–(y) �= ∅.

Therefore, there exists ξ ∈ X such that max P(ξ , y) < α for all y ∈ Y . By Lemma  in [] we
know that max

⋃
y∈Y P(ξ , y) ≤ α. This implies that

min
⋃

x∈X

max
⋃

y∈Y

P(x, y) ≤ α,

and hence relation () is valid. We complete the proof. �

If we let all mappings be equal and single-valued in Theorem , then Theorem  can be
compared to [–]. The following example shows that Theorem  is valid.

Example  Let us choose P, Q, R, S, T , U , V the same as in Examples -. Note
that the inequality max P(x, y) ≤ max Q(x, y) ≤ max R(x, y) ≤ max S(x, y) ≤ max T(x, y) ≤
max U(x, y) ≤ max V (x, y) is valid for all (x, y) ∈ X × Y . Then, all conditions of Theorem 
except condition (iv) are true. Let us check whether condition (iv) is true or not. Note
that RHS of (iv) = max

⋃
y∈[,] min

⋃
x∈[,][,  + (x – x)y] = , and LHS of (iv) =

 + (xy – x
y)y. In order to let the inequality LHS ≤ RHS hold, we can choose

xy =

{
any point in [, ], y = ,
 or , y �= .

Hence, condition (iv) of Theorem  comes true. Thus, all conditions of Theorem  are
valid. Also, note that min

⋃
x∈X max

⋃
y∈Y P(x, y) = min{,  – x : x ∈ [, ]} = . Therefore,

the conclusion of Theorem  holds.

In Example , we cannot apply Theorem  in [] to confirm whether relation () is true
or not. The reason is that P �= Q �= R, S �= T , and U �= V . If P = Q = R = S = T = U = V , then
Theorem  can be reduced to Corollary  in [].

4 Multihierarchical structures for set-valued mappings
In this section, we show that multihierarchical structures can work on Hausdorff topolog-
ical vector spaces. Let W be a Hausdorff topological vector space, and C ⊂ W a closed
convex and pointed cone with apex at the origin and int C �= ∅. Let C∗ := {g ∈ W ∗ : g(c) ≥
 for all c ∈ C}, where W ∗ is the set of all continuous linear functionals on W . We also
use the notations Max�, Min�, Maxw �, and Minw � for a nonempty set � in W . These
notations represent the sets of maximal points, minimal points, weakly maximal points,
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and weakly minimal points of � [], respectively. We also use the notation ‘F � G’ to
represent the relation

Maxw F ⊂ Maxw G – C

for two nonempty sets F and G in W . Applying the techniques of Theorem  in [], we
discuss the following minimax theorem with multihierarchical structures.

Theorem  Let X, Y be nonempty compact convex subsets of real Hausdorff topological
spaces, and W be a complete locally convex Hausdorff topological vector space. Suppose
that set-valued mappings P, Q, R, S, T , U , V : X × Y ⇒ W with nonempty compact values
satisfy the following conditions:

(i) (x, y) �→ P(x, y) is upper semicontinuous on X × Y , y �→ R(x, y) is upper
semicontinuous on Y for each x ∈ X , x �→ Q(x, y) is naturally quasi-convex [], and
x �→ P(x, y) is lower semicontinuous on X for each y ∈ Y ;

(ii) x �→ S(x, y) is upper semicontinuous on X for each y ∈ Y , and y �→ T(x, y) is concave
on Y for each x ∈ X ;

(iii) (x, y) �→ V (x, y) is upper semicontinuous on X × Y , x �→ U(x, y) is naturally
quasi-convex on X for each y ∈ Y , and y �→ V (x, y) is continuous on Y for each
x ∈ X ;

(iv) for any ϕ ∈ C∗ and y ∈ Y , there is xy ∈ X such that

maxϕV (xy, y) ≤ max
⋃

y∈Y

min
⋃

x∈X

ϕV (x, y);

(v) for each y ∈ Y ,

Max
⋃

y∈Y

Minw
⋃

x∈X

V (x, y) ⊂ Minw
⋃

x∈X

V (x, y) + C;

and
(vi) for all (x, y) ∈ X × Y , P(x, y) � Q(x, y), Q(x, y) � R(x, y), R(x, y) � S(x, y),

S(x, y) � T(x, y), T(x, y) � U(x, y), and U(x, y) � V (x, y).
Then we have the relation

Max
⋃

y∈Y

Minw
⋃

x∈X

V (x, y) ⊂ Min

(
conv

⋃

x∈X

Maxw
⋃

y∈Y

P(x, y)
)

+ C. (H)

Proof Some techniques of the proof are similar to those of Theorem  in []. For sake of
completeness, we will shorten its proof as follows.

Let v /∈ co(
⋃

x∈X Maxw
⋃

y∈Y P(x, y)) + C. Then there is a nonzero continuous linear func-
tional g : W →R such that

g(v) < min
⋃

x∈X

max
⋃

y∈Y

gP(x, y).

With the help of Propositions . and . in [], conditions (i)-(iii) of Theorem  are
satisfied for the mappings gP, gQ, gR, gS, gT , gU , gV . By Proposition (a) in [] and con-
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dition (vi),

gP(x, y) ≤ gQ(x, y) ≤ gR(x, y) ≤ gS(x, y) ≤ gT(x, y) ≤ gU(x, y) ≤ gV (x, y)

for all (x, y) ∈ X × Y . Combining this and condition (iv) gives that all conditions of Theo-
rem  hold for the mappings gP, gQ, gR, gS, gT , gU , gV . Hence, by Theorem ,

g(v) < max
⋃

y∈Y

min
⋃

x∈X

gV (x, y).

Since Y is compact, there is y′ ∈ Y such that

v /∈ Minw
⋃

x∈X

V
(
x, y′) + C.

By (v),

v /∈ Max
⋃

y∈Y

Minw
⋃

x∈X

V (x, y).

This means that, for every v ∈ Max
⋃

y∈Y Minw
⋃

x∈X V (x, y),

v ∈ co

(⋃

x∈X

Maxw
⋃

y∈Y

P(x, y)
)

+ C.

Therefore, (H) is valid. �

The following example is very suitable to illustrate Theorem .

Example  Let X = Y = [, ], W = R
, and C = R


+. Define the set-valued mappings

P, Q, R, S, T , U , V : X × Y ⇒ W by

P(x, y) :=

{
{(x, )}, y �= ,
{(x, t) : t ∈ [–, ]}, y = ,

Q(x, y) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(s, ) : s ∈ [–, ]}, x = , y = ,
{(s, t) : s ∈ [–, ], t ∈ [– + y,  – y]}, x = , y �= ,
{(, )}, x �= , y = ,
{(, t) : t ∈ [– + y,  – y]}, x �= , y �= ,

R(x, y) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(, t) : t ∈ [–, ]}, x = , y = ,
{(, )}, x = , y �= ,
{( – x, t) : t ∈ [–, ]}, x �= , y = ,
{( – x, )}, x �= , y �= ,

S(x, y) :=

{
{(s, t) : s ∈ [, ], t ∈ [,  + y]}, x = ,
{(, t) : t ∈ [,  + y]}, x �= ,

T(x, y) :=

{
{(s,  – y) : s ∈ [–, ]}, x = ,
{(s,  – y) : s ∈ [,  – x]}, x �= ,
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U(x, y) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(, )}, x = , y = ,
{(, t) : t ∈ [, ]}, x = , y �= ,
{(s, ) : s ∈ [,  + (x – /)]}, x �= , y = ,
{(s, t) : s ∈ [,  + (x – /)], t ∈ [, ]}, x �= , y �= ,

and

V (x, y) :=
{(

 + x, t
)

: t ∈ [
y + , 

]}

for all (x, y) ∈ X × Y .

We can check carefully by the definitions that the continuity and convexity hold for all
the mappings P, Q, R, S, T , U , V . Therefore, conditions (i)-(iii) of Theorem  are valid.
For any y ∈ Y and (g, g) ∈ C∗,

max gV (x, y) = max
{(

 + x)g + tg : y +  ≤ t ≤ 
}

=
(
 + x)g + g.

On the other hand,

max
⋃

y∈Y

min
⋃

x∈X

gV (x, y) = max
⋃

y∈Y

{
g +

(
y + 

)
g

}
= g + g.

For each y ∈ Y , if we choose

xy =

{
any point in [, ], g = ,
, g �= ,

then condition (iv) of Theorem  is valid. Since

Max
⋃

y∈Y

Minw
⋃

x∈X

V (x, y) =
{

(, )
}

⊂ ({} × [
y + , 

]) ∪ (
[, ] × {

y + 
})

+ C

= Minw
⋃

x∈X

V (x, y) + C,

condition (v) of Theorem  is true. Condition (vi) of Theorem  is valid by the following
observations:

Maxw P(x, y) =

{
{(x, )}, y �= ,
{x} × [–, ], y = ,

Maxw Q(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[–, ] × {}, x = , y = ,
{(, )}, x �= , y = ,
[–, ] × [– + y,  – y], x = , y �= ,
{} × [– + y,  – y], x �= , y �= ,

Maxw R(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{} × [–, ], x = , y = ,
{ – x} × [–, ], x �= , y = ,
{(, )}, x = , y �= ,
{( – x, )}, x �= , y �= ,



Lin and Lai Fixed Point Theory and Applications  (2016) 2016:86 Page 12 of 13

Maxw S(x, y) =

{
{} × [,  + y], x �= ,
([, ] × { + y}) ∪ ({} × [,  + y]), x = ,

Maxw T(x, y) =

{
{(s,  – y) : s ∈ [–, ]}, x = ,
{(s,  – y) : s ∈ [,  – x]}, x �= ,

and

Maxw V (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{(, )}, x = , y = ,
[,  + (x – /)] × {}, x �= , y = ,
{} × [, ], x = , y �= ,
([,  + (x – /)] × {}) ∪ ({ + (x – /)} × [, ]), x �= , y �= .

Thus, all conditions of Theorem  are satisfied for the seven mappings P, Q, R, S, T , U ,
and V . By Theorem , relation (H) must be true. Indeed,

Max
⋃

y∈Y

Minw
⋃

x∈X

V (x, y) =
{

(, )
}

⊂ {
(, –)

}
+ C

= Min

(
conv

⋃

x∈X

Maxw
⋃

y∈Y

P(x, y)
)

+ C.

5 Conclusions
We construct successfully minimax theorems with multihierarchical procedures of set-
valued mappings. Just like the rainbow has seven colors, the multihierarchical methodol-
ogy can work by seven set-valued mappings. The multihierarchical structure can include
some particular cases that appeared in the literatures.
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