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Abstract
Let E be a real normed space with dual space E∗ and let A : E → 2E

∗
be any map. Let

J : E → 2E
∗
be the normalized duality map on E. A new class of mappings,

J-pseudocontractive maps, is introduced and the notion of J-fixed points is used to
prove that T := (J – A) is J-pseudocontractive if and only if A is monotone. In the case
that E is a uniformly convex and uniformly smooth real Banach space with dual E∗,
T : E → 2E

∗
is a bounded J-pseudocontractive map with a nonempty J-fixed point set,

and J – T : E → 2E
∗
is maximal monotone, a sequence is constructed which converges

strongly to a J-fixed point of T . As an immediate consequence of this result, an analog
of a recent important result of Chidume for boundedm-accretive maps is obtained in
the case that A : E → 2E

∗
is bounded maximal monotone, a result which

complements the proximal point algorithm of Martinet and Rockafellar. Furthermore,
this analog is applied to approximate solutions of Hammerstein integral equations
and is also applied to convex optimization problems. Finally, the techniques of the
proofs are of independent interest.

MSC: 47H04; 47H05; 46N10; 47H06; 47J25

Keywords: J-fixed points; J-pseudocontractive mapping; monotone mapping;
strong convergence

1 Introduction
Let H be a real inner product space. A map A : H → H is called monotone if for each
x, y ∈ H ,

〈η – ν, x – y〉 ≥  ∀η ∈ Ax,ν ∈ Ay. (.)

Monotone mappings were first studied in Hilbert spaces by Zarantonello [], Minty [],
Kačurovskii [] and a host of other authors. Interest in such mappings stems mainly from
their usefulness in applications. In particular, monotone mappings appear in convex op-
timization theory. Consider, for example, the following:. Let g : H → R∪ {∞} be a proper
convex function. The subdifferential of g , ∂g : H → H , is defined for each x ∈ H by

∂g(x) =
{

x∗ ∈ H : g(y) – g(x) ≥ 〈y – x, x∗〉 ∀y ∈ H
}

.
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It is easy to check that ∂g is a monotone operator on H , and that  ∈ ∂g(u) if and only if
u is a minimizer of g . Setting ∂g ≡ A, it follows that solving the inclusion  ∈ Au, in this
case, is solving for a minimizer of g .

Furthermore, the equation  ∈ Au when A is a monotone map from a real Hilbert space
to itself also appears in evolution systems. Consider the evolution equation du

dt + Au = 
where A is a monotone map from a real Hilbert space to itself. At an equilibrium state, du

dt =
 so that Au = , whose solutions correspond to the equilibrium state of the dynamical
system.

In particular, consider the following diffusion equation:

⎧
⎪⎨

⎪⎩

∂u
∂t (t, x) = �u(t, x) + g(u(t, x)), t ≥ , x ∈ �,
u(t, x) = , t ≥ , x ∈ ∂�,
u(, x) = u(x), u ∈ L(�),

(.)

where � is an open subset of Rn.
By a simple transformation, i.e., by setting v(t) = u(t, ·), where

v : [,∞) → L(�)

is defined by v(t)(x) = u(t, x) and f (ϕ)(x) = g(ϕ(x)), where

f : L(�) → L(�),

we see that equation (.) is equivalent to

{
v′(t) = Av(t) + f (v(t)), t ≥ ,
v() = u,

(.)

where A is a nonlinear monotone-type mapping defined on L(�). Setting f to be identi-
cally zero, at an equilibrium state (i.e., when the system becomes independent of time) we
see that equation (.) reduces to

Au = . (.)

Thus, approximating zeros of equation (.) is equivalent to the approximation of solu-
tions of the diffusion equation (.) at equilibrium state.

The notion of monotone mapping has been extended to real normed spaces. We now
briefly examine two well-studied extensions of Hilbert space monotonicity to arbitrary
normed spaces.

1.1 Accretive-type mappings
Let E be a real normed space with dual space E∗. A map J : E → E∗ defined by

Jx :=
{

x∗ ∈ E∗ :< x, x∗ >= ‖x‖ · ∥∥x∗∥∥,‖x‖ =
∥∥x∗∥∥}

is called the normalized duality map on E. We have with J– = J∗, JJ∗ = IE∗ and J∗J = IE ,
where IE and IE∗ are the identity mappings on E and E∗, respectively.
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A map A : E → E is called accretive if for each x, y ∈ E, there exists j(x – y) ∈ J(x – y)
such that

〈
η – ν, j(x – y)

〉 ≥  ∀η ∈ Ax,ν ∈ Ay. (.)

A is called m-accretive if, in addition, the graph of A is not properly contained in the graph
of any other accretive operator. It is m-accretive if and only if A is accretive and R(I + tA) =
E for all t > .

In a Hilbert space, the normalized duality map is the identity map, and so, in this case,
inequality (.) and inequality (.) coincide. Hence, accretivity is one extension of Hilbert
space monotonicity to general normed spaces.

Accretive operators have been studied extensively by numerous mathematicians (see,
e.g., the following monographs: Berinde [], Browder [], Chidume [], Reich [], and the
references therein).

1.2 Monotone-type mappings in arbitrary normed spaces
Let E be a real normed space with dual E∗. A map A : E → E∗ is called monotone if for
each x, y ∈ E, the following inequality holds:

〈η – ν, x – y〉 ≥  ∀η ∈ Ax,ν ∈ Ay. (.)

It is called maximal monotone if, in addition, the graph of A is not properly contained in
the graph of any other monotone operator. Also, A is maximal monotone if and only if it
is monotone and R(J + tA) = E∗ for all t > .

It is obvious that monotonicity of a map defined from a normed space to its dual is
another extension of Hilbert space monotonicity to general normed spaces.

The extension of the monotonicity condition from a Banach space into its dual has
been the starting point for the development of nonlinear functional analysis. . . . The
monotone mappings appear in a rather wide variety of contexts, since they can be
found in many functional equations. Many of them appear also in calculus of varia-
tions, as subdifferential of convex functions (Pascali and Sburian [], p.).

Accretive mappings were introduced independently in  by Browder [] and Kato
[]. Interest in such mappings stems mainly from their firm connection with the existence
theory for nonlinear equations of evolution in real Banach spaces. It is known (see, e.g.,
Zeidler []) that many physically significant problems can be modeled in terms of an
initial-value problem of the form

 ∈ du
dt

+ Au, u() = u, (.)

where A is a multi-valued accretive map on an appropriate real Banach space. Typical
examples of such evolution equations are found in models involving the heat, wave or
Schrödinger equations (see, e.g., Browder [], Zeidler []). Observe that in the model
(.), if the solution u is independent of time (i.e., at the equilibrium state of the system),
then du

dt =  and (.) reduces to

 ∈ Au (.)
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whose solutions then correspond to the equilibrium state of the system described by (.).
Solutions of equation (.) can also represent solutions of partial differential equations
(see, e.g., Benilan et al. [], Khatibzadeh and Moroşanu [], Khatibzadeh and Shokri
[], Showalter [], Volpert [], and so on).

In studying the equation  ∈ Au, where A is a multi-valued accretive operator on a
Hilbert space H , Browder introduced an operator T defined by T := I – A where I is the
identity map on H . He called such an operator pseudocontractive. It is clear that solutions
of  ∈ Au, if they exist, correspond to fixed points of T .

Within the past  years or so, methods for approximating solutions of equation (.)
when A is an accretive-type operator have become a flourishing area of research for nu-
merous mathematicians. Numerous convergence theorems have been published in var-
ious Banach spaces and under various continuity assumptions. Many important results
have been proved, thanks to geometric properties of Banach spaces developed from the
mid-s to the early s. The theory of approximation of solutions of the equation
when A is of the accretive-type reached a level of maturity appropriate for an examina-
tion of its central themes. This resulted in the publication of several monographs which
presented in-depth coverage of the main ideas, concepts, and most important results on
iterative algorithms for appropriation of fixed points of nonexpansive and pseudocon-
tractive mappings and their generalizations, approximation of zeros of accretive-type op-
erators; iterative algorithms for solutions of Hammerstein integral equations involving
accretive-type mappings; iterative approximation of common fixed points (and common
zeros) of families of these mappings; solutions of equilibrium problems; and so on (see, e.g.,
Agarwal et al. []; Berinde []; Chidume []; Reich []; Censor and Reich []; William
and Shahzad [], and the references therein). Typical of the results proved for solutions
of equation (.) is the following theorem.

Theorem . (Chidume []) Let E be a uniformly smooth real Banach space with modu-
lus of smoothness ρE , and let A : E → E be a multi-valued bounded m-accretive operator
with D(A) = E such that the inclusion  ∈ Au has a solution. For arbitrary x ∈ E, define a
sequence {xn} by

xn+ = xn – λnun – λnθn(xn – x), un ∈ Axn, n ≥ ,

where {λn} and {θn} are sequences in (, ) satisfying the following conditions:
(i) limn→∞ θn = , {θn} is decreasing;

(ii)
∑

λnθn = ∞;
∑

ρE(λnM) < ∞, for some constant M > ;

(iii) limn→∞
[ θn–

θn –]
λnθn

= .
There exists a constant γ >  such that ρE(λn)

λn
≤ γθn. Then the sequence {xn} converges

strongly to a zero of A.

Unfortunately, developing algorithms for approximating solutions of equations of type
(.) when A : E → E∗ is of monotone type has not been very fruitful. Part of the difficulty
seems to be that all efforts made to apply directly the geometric properties of Banach
spaces developed from the mid s to the early s proved abortive. Furthermore, the
technique of converting the inclusion (.) into a fixed point problem for T := I –A : E → E
is not applicable since, in this case when A is monotone, A maps E into E∗, and the identity
map does not make sense.
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Fortunately, Alber [] (see also, Alber and Ryazantseva []) recently introduced a Lya-
punov functional φ : E × E →R, which signaled the beginning of the development of new
geometric properties of Banach spaces which are appropriate for studying iterative meth-
ods for approximating solutions of (.) when A : E → E∗ is of monotone type. Geometric
properties so far obtained have rekindled enormous research interest on iterative meth-
ods for approximating solutions of equation (.) where A is of monotone type, and other
related problems (see, e.g., Alber []; Alber and Guerre-Delabriere []; Chidume [,
]; Chidume et al. []; Diop et al.[]; Moudafi [], Moudafi and Tera []; Reich [];
Sow et al. []; Takahashi []; Zegeye [] and the references therein).

It is our purpose in this paper to apply the notion of J-fixed points (which has also been
defined as a semi-fixed point (see, e.g., Zegeye []), a duality fixed point (see, e.g., Liu
[]) and, as far as we know, a new class of mappings called J-pseudocontractive maps
introduced here to prove that T := (J – A) is J-pseudocontractive if and only if A is mono-
tone; and in the case that E is a uniformly convex and a uniformly smooth real Banach
space with dual E∗, T : E → E∗ is a bounded J-pseudocontractive map with a nonempty
J-fixed point set, and J – T : E → E∗ is maximal monotone, a sequence is constructed
which converges strongly to a J-fixed point of T . As an immediate application of this re-
sult, an analog of Theorem . for bounded maximal monotone maps is obtained, which
is also a complement of the proximal point algorithm of Martinet [] and Rockafellar
[], which has also been studied by numerous authors (see, e.g., Bruck []; Chidume
[]; Chidume []; Chidume and Djitte []; Kamimura and Takahashi []; Lehdili and
Moudafi []; Reich []; Reich and Sabach [, ]; Solodov and Svaiter []; Xu []
and the references therein). Furthermore, this analog is applied to approximate solutions
of Hammerstein integral equations and is also applied to convex optimization problems.
Finally, our techniques of proofs are of independent interest.

2 Preliminaries
Let E be a real normed linear space of dimension ≥ . The modulus of smoothness of E,
ρE : [,∞) → [,∞), is defined by

ρE(τ ) := sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ,‖y‖ = τ , τ > 
}

.

A normed linear space E is called uniformly smooth if

lim
τ→

ρE(τ )
τ

= .

It is well known (see, e.g., Chidume [], p., also Lindenstrauss and Tzafriri []) that ρE is
nondecreasing. If there exist a constant c >  and a real number q >  such that ρE(τ ) ≤ cτ q,
then E is said to be q-uniformly smooth. Typical examples of such spaces are the Lp, p,
and W m

p spaces for  < p < ∞ where

Lp (or lp) or W m
p is

{
-uniformly smooth if  ≤ p < ∞;
p-uniformly smooth if  < p < .

A Banach space E is said to be strictly convex if

‖x‖ = ‖y‖ = , x �= y �⇒
∥∥∥∥

x + y


∥∥∥∥ < .
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The modulus of convexity of E is the function δE : (, ] → [, ] defined by

δE(ε) := inf

{
 –

∥∥∥∥
x + y



∥∥∥∥ : ‖x‖ = ‖y‖ = ; ε = ‖x – y‖
}

.

The space E is uniformly convex if and only if δE(ε) >  for every ε ∈ (, ]. It is also well
known (see e.g., Chidume [], p., Lindenstrauss and Tzafriri []) that δE is nondecreas-
ing. If there exist a constant c >  and a real number p >  such that δE(ε) ≥ cεp, then E
is said to be p-uniformly convex. Typical examples of such spaces are the Lp, p, and W m

p

spaces for  < p < ∞ where

Lp (or lp) or W m
p is

{
p-uniformly convex if  ≤ p < ∞;
-uniformly convex if  < p < .

The norm of E is said to be Fréchet differentiable if, for each x ∈ S := {u ∈ E : ‖u‖ = },

lim
t→

‖x + ty‖ – ‖x‖
t

exists and is attained uniformly for y ∈ E.
For q > , let Jq denote the generalized duality mapping from E to E∗ defined by

Jq(x) :=
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖q and ‖f ‖ = ‖x‖q–},

where 〈·, ·〉 denotes the generalized duality pairing. J is called the normalized duality map-
ping and is denoted by J . It is well known that if E is smooth, then Jq is single-valued.

In the sequel, we shall need the following definitions and results. Let E be a smooth real
Banach space with dual E∗. The Lyapounov functional φ : E × E →R, defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for x, y ∈ E, (.)

where J is the normalized duality mapping from E into E∗ will play a central role in the
sequel. It was introduced by Alber and has been studied by Alber [], Alber and Guerre-
Delabriere [], Kamimura and Takahashi [], Reich [], and a host of other authors. If
E = H , a real Hilbert space, then equation (.) reduces to φ(x, y) = ‖x – y‖ for x, y ∈ H . It
is obvious from the definition of the function φ that

(‖x‖ – ‖y‖) ≤ φ(x, y) ≤ (‖x‖ + ‖y‖) for x, y ∈ E. (.)

Define a map V : X × X∗ →R by

V
(
x, x∗) = ‖x‖ – 

〈
x, x∗〉 +

∥∥x∗∥∥ for x ∈ X, x∗ ∈ X∗. (.)

Then it is easy to see that

V
(
x, x∗) = φ

(
x, J–(x∗)) ∀x ∈ X, x∗ ∈ X∗. (.)
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Lemma . (Alber and Ryazantseva []) Let X be a reflexive strictly convex and smooth
Banach space with X∗ as its dual. Then

V
(
x, x∗) + 

〈
J–x∗ – x, y∗〉 ≤ V

(
x, x∗ + y∗) (.)

for all x ∈ X and x∗, y∗ ∈ X∗.

Lemma . (Alber and Ryazantseva [], p.) Let X be a reflexive strictly convex and
smooth Banach space with X∗ as its dual. Let W : X × X → R

 be defined by W (x, y) =

φ(y, x). Then

W (x, y) – W (z, y) ≥ 〈Jx – Jz, z – y〉,

i.e.,

φ(y, x) – φ(y, z) ≥ 〈Jx – Jz, z – y〉,

and also

W (x, y) ≤ 〈Jx – Jy, x – y〉

for all x, y, z ∈ X.

Lemma . (Alber and Ryazantseva [], p.) Let X be a uniformly convex Banach space.
Then, for any R >  and any x, y ∈ X such that ‖x‖ ≤ R, ‖y‖ ≤ R, the following inequality
holds:

〈Jx – Jy, x – y〉 ≥ (L)–δX
(
c–

 ‖x – y‖),

where c =  max{, R},  < L < ..

Define

K := RL sup
{‖Jx – Jy‖ : ‖x‖ ≤ R,‖y‖ ≤ R

}
+ . (.)

Lemma . (Alber and Ryazantseva [], p.) Let X be a uniformly smooth and strictly
convex Banach space. Then for any R >  and any x, y ∈ X such that ‖x‖ ≤ R, ‖y‖ ≤ R the
following inequality holds:

〈Jx – Jy, x – y〉 ≥ (L)–δX∗
(
c–

 ‖Jx – Jy‖),

where c =  max{, R},  < L < ..

Let E∗ be a real strictly convex dual Banach space with a Fréchet differentiable norm.
Let A : E → E∗ be a maximal monotone operator with no monotone extension. Let z ∈ E∗

be fixed. Then for every λ > , there exists a unique xλ ∈ E such that Jxλ + λAxλ � z (see
Reich [], p. ). Setting Jλz = xλ, we have the resolvent Jλ := (J + λA)– : E∗ → E of A for
every λ > . The following is a celebrated result of Reich.
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Lemma . (Reich, []; see also, Kido, []) Let E∗ be a strictly convex dual Banach space
with a Fréchet differentiable norm, and let A be a maximal monotone operator from E to
E∗ such that A– �= ∅. Let z ∈ E∗ be arbitrary but fixed. For each λ >  there exists a unique
xλ ∈ E such that Jxλ + λAxλ � z. Furthermore, xλ converges strongly to a unique p ∈ A–.

Lemma . From Lemma ., setting λn := 
θn

where θn →  as n → ∞, z = Jv for some
v ∈ E, and yn := (J + 

θn
A)–z, we obtain

Ayn = θn(Jv – Jyn),

yn → y∗ ∈ A–,
(.)

where A : E → E∗ is maximal monotone.

Remark  Let R >  such that ‖v‖ ≤ R, ‖yn‖ ≤ R for all n ≥ . We observe that equation
(.) yields

Jyn– – Jyn +

θn

(Ayn– – Ayn) =
θn– – θn

θn
(Jv – Jyn–). (.)

Taking the duality pairing of the LHS of this equation with yn– – yn, applying Cauchy-
Schwarz, and using (.), we obtain

〈Jyn– – Jyn, yn– – yn〉 ≤ θn– – θn

θn
‖Jv – Jyn–‖‖yn– – yn‖.

It follows that if E is uniformly convex and uniformly smooth, using Lemma . we ob-
tain

(L)–δE
(
c–

 ‖yn– – yn‖
) ≤ θn– – θn

θn
‖Jv – Jyn–‖‖yn– – yn‖

≤ R sup
{‖Jv – Jyn–‖

}θn– – θn

θn
, (.)

which gives, using equation (.),

‖yn– – yn‖ ≤ cδ
–
E

(
θn– – θn

θn
K

)
. (.)

Similarly, using Lemma ., we obtain

‖Jyn– – Jyn‖ ≤ cδ
–
E∗

(
θn– – θn

θn
K

)
. (.)

Remark  In p-uniformly convex spaces, we have (see, e.g., Chidume [], p.), for some
constant c > ,

δE(ε) ≥ cεp for  < ε ≤ . (.)

From inequality (.), using inequality (.), we obtain

c
Lcp


‖yn– – yn‖p ≤

(
θn– – θn

θn

)
‖Jv – Jyn–‖‖yn– – yn‖,
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which gives

‖yn– – yn‖ ≤
(

θn– – θn

θn

)/p

K for some K > . (.)

Also, we have from Lemma . that

(L)–δX∗
(
c–

 ‖Jx – Jy‖) ≤ 〈Jx – Jy, x – y〉.

Again, using inequality (.), we obtain

c
Lcp


‖Jyn– – Jyn‖p ≤ 〈Jyn– – Jyn, yn– – yn〉 ≤ ‖Jyn– – Jyn‖‖yn– – yn‖,

which gives

‖Jyn– – Jyn‖ ≤
(

θn– – θn

θn

)/p

K for some K > . (.)

Lemma . (Kamimura and Takahashi []) Let X be a real smooth and uniformly convex
Banach space, and let {xn} and {yn} be two sequences of X. If either {xn} or {yn} is bounded
and φ(xn, yn) →  as n → ∞, then ‖xn – yn‖ →  as n → ∞.

Lemma . (Xu []) Let {an}∞n= be a sequence of non-negative real numbers satisfying
the following relation:

an+ ≤ ( – σn)an + σnbn + cn, n ≥ , (.)

where {σn}∞n=, {bn}∞n=, and {cn}∞n= satisfy the conditions:
(i) {σn}∞n= ⊂ [, ],

∑∞
n= σn = ∞, or equivalently,

∏∞
n=( – σn) = ;

(ii) lim supn→∞ bn ≤ ;
(iii) cn ≥  (n ≥ ),

∑∞
n= cn < ∞.

Then limn→∞ an = .

Definition . (J-fixed point) Let E be an arbitrary normed space and E∗ be its dual. Let
T : E → E∗ be any mapping. A point x ∈ E will be called a J-fixed point of T if and only if
there exists η ∈ Tx such that η ∈ Jx.

Remark  The notion of J-fixed points, as far as we know, was first introduced by Zegeye
[] who called a point x∗ ∈ E such that Tx∗ = Jx∗, a semi-fixed point of T . Later, Liu []
called such a point a duality fixed point of T .

3 Main results
We introduce the following definition.

Definition . (J-pseudocontractive mappings) Let E be a normed space. A mapping T :
E → E∗ is called J-pseudocontractive if for every x, y ∈ E,

〈τ – ζ , x – y〉 ≤ 〈η – ν, x – y〉 for all τ ∈ Tx, ζ ∈ Ty,η ∈ Jx,ν ∈ Jy.
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Example  If E = H , a real Hilbert space, then J is the identity map on H . Consequently,
every pseudocontractive map on H is J-pseudocontractive.

For our next example, we need the following characterization of the normalized duality
map on lp,  < p < ∞.

In lp spaces,  < p < ∞, for arbitrary x ∈ lp, x = (x, x, x, . . .),

Jx = ‖x‖–p(|x|p–x, |x|p–, |x|p–x, . . .
)

(see, e.g., Alber and Ryazantseva [], p.).

Example  Let  < q < p < ∞ and let λ ∈R be arbitrary. Define T : lp → lq by

Tx = (λ, x, x, . . .).

Then (i) T is J-pseudocontractive, (ii) xλ := (λ, , , . . .) is a J-fixed point of T .

Remark  We observe that, assuming existence, a zero of a monotone mapping A : E →
E∗ corresponds to a J-fixed point of a J-pseudocontractive mapping, T .

The following lemma asserts that A : E → E∗ is monotone if and only if T := (J – A) :
E → E∗ is J-pseudocontractive.

Lemma . Let E be an arbitrary real normed space and E∗ be its dual space. Let A :
E → E∗ be any mapping. Then A is monotone if and only if T := (J – A) : E → E∗ is
J-pseudocontractive.

Proof Let x, y ∈ E be arbitrary. Suppose A is monotone. Then, for every μx ∈ Ax, μy ∈ Ay,
jx ∈ Jx, jy ∈ Jy, τx ∈ Tx, τy ∈ Ty, such that τx = jx – μx, τy = jy – μy, we have

〈τx – τy, x – y〉 = 〈jx – jy, x – y〉 – 〈μx – μy, x – y〉
≤ 〈jx – jy, x – y〉.

Hence, T is J-pseudocontractive.
Conversely, suppose T := (J –A) is J-pseudocontractive, we prove A := J –T is monotone.

For all x, y ∈ E, let μx ∈ Ax, μy ∈ Ay. Then μx = jx – ζx and μy = jy – ζy for some ζx ∈ Tx,
ζy ∈ Ty, jx ∈ Jx, and jy ∈ Jy. We have

〈μx – μy, x – y〉 = 〈jx – ζx – jy + ζy, x – y〉
= 〈jx – jy, x – y〉 – 〈ζx – ζy, x – y〉
≥ .

Hence, A is monotone. �

We now prove the following lemma, which will be crucial in the sequel.
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Lemma . Let E be a smooth real Banach space with dual E∗. Let φ : E × E → R be the
Lyapounov functional. Then

φ(y, x) = φ(x, y) – 〈x + y, Jx – Jy〉 + 
(‖x‖ – ‖y‖) for all x, y ∈ E.

Proof Let x, y ∈ E, we have

φ(y, x) = ‖x‖ – 〈y, Jx〉 + ‖y‖

= φ(x, y) – 
(〈y, Jx〉 – 〈x, Jy〉). (.)

But,

〈x + y, Jx – Jy〉 = ‖x‖ – 〈x, Jy〉 + 〈y, Jx〉 – ‖y‖,

so that

〈y, Jx〉 – 〈x, Jy〉 = 〈x + y, Jx – Jy〉 + ‖y‖ – ‖x‖;

and substituting in (.), the result follows. �

In Theorem . below, the sequence {λn}∞n= ⊂ (, ) satisfies the following conditions:
(i)

∑∞
n= λn = ∞;

(ii) λnM∗
 ≤ γθn; δ–

E (λnM∗
) ≤ γθn,

for all n ≥  and for some constants M∗
 > , γ > .

Theorem . Let E be a uniformly convex and uniformly smooth real Banach space and
let E∗ be its dual. Let T : E → E∗ be a multi-valued J-pseudocontractive and bounded
map. Suppose FJ

E(T) := {v ∈ E : Jv ∈ Tx} �= ∅. For arbitrary u ∈ E, define a sequence {xn}
iteratively by: x ∈ E,

xn+ = J–(( – λn)Jxn + λnηn – λnθn(Jxn – Ju)
)
, n ≥ , where ηn ∈ Txn. (.)

Then the sequence {xn} is bounded.

Proof Since FJ
E(T) �= ∅, let x∗ ∈ FJ

E(T). Then there exists r >  such that max{φ(x∗, u),
φ(x∗, x)} ≤ r

 . Let B := {x ∈ E : φ(x∗, x) ≤ r}, and since T is bounded, we define:

M := sup
{∥∥Jx – η + θ (Jx – Ju)

∥∥ : θ ∈ (, ), x ∈ B,η ∈ Tx
}

+ ,

M := sup
{‖Jx – Ju‖ : x ∈ B

}
+ ,

M := sup
{∥∥J–[Jx – λ

(
Jx – η + θ (Jx – Ju)

)]
– x

∥∥ : λ, θ ∈ (, ), x ∈ B,η ∈ Tx
}

+ .

Let M := max{MM, cM, cM}, and

γ := min

{
,

r
M

}
,
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where c is the constant in Lemma .. We show that φ(x∗, xn) ≤ r for all n ≥ . We pro-
ceed by induction. Clearly, φ(x∗, x) ≤ r. Suppose φ(x∗, xn) ≤ r for some n ≥ . We show
φ(x∗, xn+) ≤ r. Suppose this is not the case, then φ(x∗, xn+) > r. Observe that

‖xn+ – xn‖ =
∥∥J–[Jxn – λn

(
Jxn – ηn + θn(Jxn – Ju)

)]
– J–Jxn

∥∥.

From Lemma . and the recurrence relation (.), we have

(L)–δE
(
c–

 ‖xn+ – xn‖
) ≤ 〈Jxn+ – Jxn, xn+ – xn〉
≤ ‖Jxn+ – Jxn‖‖xn+ – xn‖
≤ λnM‖xn+ – xn‖. (.)

We hence obtain

‖xn+ – xn‖ ≤ cδ
–
E

(
λnM∗


)

for some M∗
 > . (.)

Using inequality (.) with y∗ = λn[Jxn – ηn + θn(Jxn – Ju)], we obtain using also inequality
(.)

φ
(
x∗, xn+

)
= V

(
x∗, Jxn – λn

[
Jxn – ηn + θn(Jxn – Ju)

])

≤ V
(
x∗, Jxn

)
– λn

〈
xn – x∗, Jxn – ηn + θn(Jxn – Ju)

〉

– λn
〈
xn+ – xn, Jxn – ηn + θn(Jxn – Ju)

〉

≤ V
(
x∗, Jxn

)
– λn

〈
xn – x∗, Jxn – ηn + θn(Jxn – Ju)

〉

+ λn‖xn+ – xn‖
∥∥Jxn – ηn + θn(Jxn – Ju)

∥∥

≤ V
(
x∗, Jxn

)
– λn

〈
xn – x∗, Jxn – ηn

〉

– λnθn
〈
xn – x∗, Jxn – Ju

〉
+ λnMcδ

–
E

(
λnM∗


)
.

Since T is J-pseudocontractive, so that (J – T) is monotone, and using the recursion for-
mula, we have

φ
(
x∗, xn+

) ≤ V
(
x∗, Jxn

)
– λnθn

〈
xn – x∗, Jxn – Ju

〉
+ λnMcδ

–
E

(
λnM∗


)

= φ
(
x∗, xn

)
– λnθn〈xn – xn+, Jxn – Ju〉 – λnθn

〈
xn+ – x∗, Jxn – Jxn+

〉

– λnθn
〈
xn+ – x∗, Jxn+ – Ju

〉
+ λnMcδ

–
E

(
λnM∗


)
. (.)

We have from Lemma .

–λnθn
〈
xn+ – x∗, Jxn+ – Ju

〉 ≤ λnθnφ
(
x∗, u

)
– λnθnφ

(
x∗, xn+

)
.

Substituting this in inequality (.), we obtain

r < φ
(
x∗, xn+

)

≤ φ
(
x∗, xn

)
– λnθnφ

(
x∗, xn+

)
+ λnθnφ

(
x∗, u

)
+ λnθnMcδ

–
E

(
λnM∗


)
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+ λnθnM(λnM) + λnMcδ
–
E

(
λnM∗


)

≤ φ
(
x∗, xn

)
– λnθnφ

(
x∗, xn+

)
+ λnθnφ

(
x∗, u

)

+ λnθnγMc + λnθnγMM + λnθnγMc

≤ φ
(
x∗, xn

)
– λnθnφ

(
x∗, xn+

)
+ λnθn

r


≤ r – λnθnr +
λnθnr


= r –

λnθnr


< r.

This is a contradiction. Hence, {xn}∞n= is bounded. �

In Theorem . below, λn and θn are real sequences in (, ) satisfying the following
conditions:

(i)
∑∞

n= λnθn = ∞,
(ii) λnM∗

 ≤ γθn; δ–
E (λnM∗

) ≤ γθn,

(iii)
δ–

E ( θn––θn
θn K )

λnθn
→ ,

δ–
E∗ ( θn––θn

θn K )
λnθn

→ , as n → ∞,
(iv) 

 ( θn––θn
θn

K) ∈ (, ),
for some constants M∗

 > , and γ > ; where δE : (,∞) → (,∞) is the modulus of con-
vexity of E and K >  is as defined in Lemma ..

Theorem . Let E be a uniformly convex and uniformly smooth real Banach space and
let E∗ be its dual. Let T : E → E∗ be a J-pseudocontractive and bounded map such that
(J – T) is maximal monotone. Suppose FJ

E(T) = {v ∈ E : Jv ∈ Tv} �= ∅. For arbitrary x, u ∈ E,
define a sequence {xn} iteratively by:

xn+ = J–[( – λn)Jxn + λnηn – λnθn(Jxn – Ju)
]
, ηn ∈ Txn, n ≥ , (.)

where {λn} and {θn} are sequences in (, ) satisfying conditions (i)-(iv) above. Then the
sequence {xn} converges strongly to a J-fixed point of T .

Proof Setting y∗ = λn[Jxn – ηn + θn(Jxn – Ju)] ∈ E∗, applying inequality (.) and using
Lemma ., we compute as follows:

φ(yn, xn+) = V
(
yn, Jxn – λn

(
Jxn – ηn + θn(Jxn – Ju)

))

≤ V (yn, Jxn) – 
〈
xn+ – yn,λn

(
Jxn – ηn + θn(Jxn – Ju)

)〉

= φ(yn, xn) – λn〈xn+ – yn, Jxn – ηn〉 – λnθn〈xn+ – yn, Jxn – Ju〉
= φ(xn, yn) – 〈xn + yn, Jxn – Jyn〉 + 

(‖xn‖ – ‖yn‖)

– λn〈xn+ – yn, Jxn – ηn〉 – λnθn〈xn+ – yn, Jxn – Ju〉. (.)

But we have from Lemma ., yn = J–[τn – θn(Jyn – Ju)] for some τn ∈ Tyn and thus obtain

φ(xn, yn) = V (xn, Jyn) = V (xn, Jyn– + Jyn – Jyn–)

≤ V (xn, Jyn–) – 〈yn – xn, Jyn– – Jyn〉.
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Hence, substituting this in inequality (.) and using Lemma ., we obtain

φ(yn, xn+) ≤ V (xn, Jyn–) – 〈yn – xn, Jyn– – Jyn〉 + 
(‖xn‖ – ‖yn‖)

– 〈xn + yn, Jxn – Jyn〉 – λn〈xn+ – yn, Jxn – ηn〉
– λnθn〈xn+ – yn, Jxn – Ju〉

= φ(yn–, xn) + 
(‖yn–‖ – ‖yn‖) + 〈yn– + xn, Jxn – Jyn–〉

– 〈yn – xn, Jyn– – Jyn〉 – 〈xn + yn, Jxn – Jyn〉
– λn〈xn+ – yn, Jxn – ηn〉 – λnθn〈xn+ – yn, Jxn – Ju〉. (.)

Furthermore, using Lemma ., we obtain

–λnθn〈xn+ – yn, Jxn – Ju〉
= –λnθn〈xn+ – xn, Jxn – Ju〉 – λnθn〈xn – yn–, Jxn – Jyn–〉

– λnθn〈xn – yn–, Jyn– – Ju〉 – λnθn〈yn– – yn, Jxn – Ju〉
≤ –λnθn〈xn+ – xn, Jxn – Ju〉 – λnθnφ(yn–, xn)

– λnθn〈xn – yn–, Jyn– – Ju〉 – λnθn〈yn– – yn, Jxn – Ju〉.

Substituting this inequality in inequality (.), we thus have

φ(yn, xn+) ≤ φ(yn–, xn) + 
(‖yn–‖ – ‖yn‖) + 〈yn– + xn, Jxn – Jyn–〉

– 〈yn – xn, Jyn– – Jyn〉 – 〈xn + yn, Jxn – Jyn〉
– λn〈xn+ – yn, Jxn – ηn〉 – λnθn〈xn+ – xn, Jxn – Ju〉 – λnθnφ(yn–, xn)

– λnθn〈xn – yn–, Jyn– – Ju〉 – λnθn〈yn– – yn, Jxn – Ju〉
≤ φ(yn–, xn) – λnθnφ(yn–, xn) + 

(‖yn–‖ – ‖yn‖)

+ 〈yn– – yn, Jxn – Jyn–〉 – 〈yn – xn, Jyn– – Jyn〉
– 〈xn + yn, Jyn – Jyn–〉 – λn〈xn+ – yn, Jxn – ηn〉
– λnθn〈xn+ – xn, Jxn – Ju〉 – λnθn〈xn – yn–, Jyn– – Ju〉
– λnθn〈yn– – yn, Jxn – Ju〉.

Estimating the underlined terms, we obtain

–λn〈xn+ – yn, Jxn – ηn〉 – λnθn〈xn – yn–, Jyn– – Ju〉
= –λn〈xn+ – xn, Jxn – ηn〉–λn〈xn – yn, Jxn – ηn〉 – λnθn〈xn – yn, Jyn– – Jyn〉

– λn
〈
xn – yn, –(Jyn – τn)

〉
– λnθn〈yn – yn–, Jyn– – Ju〉

≤ –λn〈xn+ – xn, Jxn – ηn〉 – λnθn〈xn – yn, Jyn– – Jyn〉
– λnθn〈yn – yn–, Jyn– – Ju〉.
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We thus have

φ(yn, xn+) ≤ φ(yn–, xn) – λnθnφ(yn–, xn) + ‖yn– – yn‖
(‖yn–‖ + ‖yn‖

)

+ 〈yn– – yn, Jxn – Jyn–〉 – 〈xn + yn, Jyn – Jyn–〉
– 〈yn – xn, Jyn– – Jyn〉 – λnθn〈xn+ – xn, Jxn – Ju〉
– λnθn〈yn– – yn, Jxn – Ju〉 – λn〈xn+ – xn, Jxn – ηn〉
– λnθn〈xn – yn, Jyn– – Jyn〉 – λnθn〈yn – yn–, Jyn– – Ju〉

≤ φ(yn–, xn) – λnθnφ(yn–, xn) + ‖yn– – yn‖
(‖yn–‖ + ‖yn‖

)

+ 〈yn– – yn, Jxn – Jyn〉 – 〈yn– + xn, Jyn – Jyn–〉
– 〈yn – xn, Jyn– – Jyn〉 – λnθn〈xn+ – xn, Jxn – Ju〉
– λnθn〈yn– – yn, Jxn – Ju〉 – λn〈xn+ – xn, Jxn – ηn〉
– λnθn〈xn – yn, Jyn– – Jyn〉 – λnθn〈yn – yn–, Jyn– – Ju〉

≤ ( – λnθn)φ(yn–, xn)

+ λnθnMa
(‖xn+ – xn‖ + ‖yn– – yn‖ + ‖Jyn– – Jyn‖

)

+ Mb
(
λn‖xn+ – xn‖ + ‖yn– – yn‖ + ‖Jyn– – Jyn‖

)

for some Ma > , Mb >  (.)

≤ ( – λnθn)φ(yn–, xn)

+ λnθnMa

(
cδ

–
E

(
λnM∗


)

+ δ–
E

(
θn– – θn

θn
K

)
+ δ–

E∗

(
θn– – θn

θn
K

))

+ Mb

(
cλnδ

–
E

(
λnM∗


)

+ δ–
E

(
θn– – θn

θn
K

)
+ δ–

E∗

(
θn– – θn

θn
K

))
(.)

≤ ( – λnθn)φ(yn–, xn) + λnθnM∗
a

(
cδ

–
E

(
λnM∗


)

+ δ–
E

(
θn– – θn

θn
K

)

+ δ–
E∗

(
θn– – θn

θn
K

)
+

δ–
E ( θn––θn

θn
K)

λnθn
+

δ–
E∗ ( θn––θn

θn
K)

λnθn

+
cδ

–
E (λnM∗

)
θn

)
, where M∗

a =  max{Ma, Mb}. (.)

Now, setting

an := φ(yn–, xn); σn := λnθn; cn ≡ ,

and

bn :=
[

M∗
a

(
cδ

–
E

(
λnM∗


)

+ δ–
E

(
θn– – θn

θn
K

)
+ δ–

E∗

(
θn– – θn

θn
K

)

+
δ–

E ( θn––θn
θn

K)
λnθn

+
δ–

E∗ ( θn––θn
θn

K)
λnθn

+
cδ

–
E (λnM∗

)
θn

)]
,

inequality (.) becomes

an+ ≤ ( – σn)an + σnbn + cn, n ≥ .
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It now follows from Lemma . that φ(yn–, xn) →  as n → ∞. From Lemma ., we have
‖xn – yn–‖ →  and since yn → y∗ ∈ (J – T)–, we obtain xn → y∗ ∈ (J – T)–. This
completes the proof. �

Example  We have (see, e.g., [], p.) for p > , q > , X = Lp, X∗ = Lq,

δX∗ (ε) =  –
(

 –
(

ε



)q)/q

,

and so obtain

δ–
X∗ (ε) = 

[
 – ( – ε)q]/q ≤ q/qε/q, since ( – ε)q >  – qε for q > .

The prototypes for our theorems are the following:

λn =


(n + )a , θn =


(n + )b ,

 < b <

r

· a, a + b < /r,

b < /K , where K >  is as defined in Lemma ., r = max{p, q}.

In particular, without loss of generality, let r = p. Then one can choose a := 
(p+) and b :=

min{ 
K , 

p(p+) }.
We now verify that, with these prototypes, the conditions (i)-(iii) of Theorem . are

satisfied. Clearly (i) and the first part of (ii) are easily verified.
For the second part of condition (ii), we have

δ–
E (λnM∗

)
θn

=
[ – ( – λnM∗

)p]/p

θn

≤ (pM∗
)/pλ

/p
n

θn
= 

(
pM∗


)/p · (n + )b–(a/p) → .

For condition (iii), we have

δ–
E∗ ( θn–

θn
– )

λnθn
=

[ – ( – θn–
θn

)q]/q

λnθn

=
[ – ( – ( n+

n )b)q]/q

/(n + )a+b = 
[

 –
(

 –
(

 +

n

)b)q]/q

· (n + )a+b

≤ 
[

 –
(

 –  –
b
n

)q]/q

· (n + )a+b ≤ 
[

bq
n

]/q

· (n + )a+b

= (bq)/q · 
n/q · (n + )a+b ≤ a+b+(bq)/q · na+b–(/q) → .

Similarly, we obtain

δ–
E ( θn–

θn
– )

λnθn
=

[ – ( – θn–
θn

)p]/p

λnθn
→ .
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Finally, for condition (iv), we have




(
θn– – θn

θn
K

)
=




[(
 +


n

)b

– 
]

· K ≤ bK
n

< .

This completes the verification.

Remark  We remark, following Lindenstrauss and Tzafriri [], that in applications, we
do not often use the precise value of the modulus of convexity but only a power type esti-
mate from below.

A uniformly convex space X has modulus of convexity of power type p if, for some
 < K < ∞, δX(ε) ≥ Kεp. For instance, Lp spaces have modulus of convexity of power type
, for  < p ≤ , and of power type p, for p >  (see, e.g., [], p.). We observe that the
condition for modulus of convexity of power type p corresponds to that of p-uniformly
convex spaces. However, we see that Lp spaces are p-uniformly convex, for  < p < , and
are -uniformly convex, for p ≥ . These lead us to prove the following corollary of The-
orem ., which will be crucial in several applications.

Corollary . For p > , q > , let E be a p-uniformly convex and q-uniformly smooth real
Banach space and let E∗ be its dual. Let T : E → E∗ be a J-pseudocontractive and bounded
map. Suppose FJ

E(T) := {u∗ ∈ E : Tu∗ = Ju∗} �= ∅. For arbitrary x, u ∈ E, define a sequence
{xn} iteratively by:

xn+ = J–[( – λn)Jxn + λnηn – λnθn(Jxn – Ju)
]
, n ≥ , where ηn ∈ Txn, (.)

where {λn} and {θn} are sequences in (, ) satisfying conditions (i)-(iii) of Theorem ..
Then the sequence {xn} converges strongly to a J-fixed point of T .

Proof We observe, for p-uniformly convex space, using Remark , that conditions (i)-(iv)
of Theorem . reduce to:

(i)∗ λn ≤ γθn,
(ii)∗

∑∞
n= λnθn = ∞,

(iii)∗ ( θn––θn
θn

)/p → ,
M∗( θn––θn

θn )/p

λnθn
→ , (λ(/p)

n M∗∗
 )

θn
→ , as n → ∞, for some M∗∗

 , M∗ > ,

and for p-uniformly convex spaces, we have from (.), using equation (.),

c–
 ‖xn+ – xn‖p ≤ LMλn‖xn+ – xn‖,

‖xn+ – xn‖ ≤ λ/p
n M∗∗

 for some M∗∗
 > .

(.)

Following the proof of Theorem ., we have from inequality (.), using (.):

φ(yn, xn+) ≤ ( – λnθn)φ(yn–, xn)

+ λnθnMa

(
λ/p

n M∗∗
 + K

(
θn– – θn

θn

)/p

+ K

(
θn– – θn

θn

)/p)

+ Mb

(
λ+(/p)

n M∗∗
 + K

(
θn– – θn

θn

)/p

+ K

(
θn– – θn

θn

)/p)
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≤ ( – λnθn)φ(yn–, xn)

+ λnθnM∗
a

(
λ/p

n M∗∗
 + M∗

(
θn– – θn

θn

)/p

+
M∗( θn––θn

θn
)/p

λnθn

+
(λ(/p)

n M∗∗
 )

θn

)
, where M∗ = max{K, K}, M∗

a =  max{Ma, Mb}. (.)

Now, setting

an := φ(yn–, xn); σn := λnθn; cn ≡ ,

and

bn :=
[

M∗
a

(
λ/p

n M∗∗
 + M∗

(
θn– – θn

θn

)/p

+
M∗( θn––θn

θn
)/p

λnθn
+

(λ(/p)
n M∗∗

 )
θn

)]
,

an+ ≤ ( – σn)an + σnbn + cn, n ≥ .

It now follows from Lemma . that φ(yn–, xn) →  as n → ∞. From Lemma ., we have
‖xn – yn–‖ → , and since yn → y∗ ∈ (J – T)–, this completes the proof. �

Example  Real sequences that satisfy the conditions (i)∗-(iv)∗ in Corollary . are the
following:

λn = (n + )–a and θn = (n + )–b, n ≥ ,

 < b <

p

· a, a + b < /p.

For example, one can choose a := 
(p+) and b := 

p(p+) . We now check these prototypes.
Clearly conditions (i)∗-(ii)∗ are satisfied. We verify condition (iii)∗. Using the fact that

( + x)s ≤  + sx, for x > – and  < s < , we have

 ≤ M∗( θn–
θn

– )/p

λnθn
= M∗

[(
 +


n

)b

– 
]/p

· (n + )a+b

≤ M∗b/p · (n + )a+b

n/p = a+bM∗b/p · na+b–(/p) → .

Also,

 ≤
(

θn–

θn
– 

)/p

=
[(

 +

n

)b

– 
]/p

≤ b/p

n/p → 

and

 ≤ λ
(/p)
n M∗∗


θn

= M∗∗
 (n + )b–(a/p) → . (.)

4 Application to zeros of maximal monotone maps
Corollary . Let E be a uniformly convex and uniformly smooth real Banach space and
let E∗ be its dual. Let A : E → E∗ be a multi-valued maximal monotone and bounded map
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such that A– �= ∅. For fixed u, x ∈ E, let a sequence {xn} be iteratively defined by

xn+ = J–[Jxn – λnμn – λnθn(Jxn – Ju)
]
, n ≥ ,μn ∈ Axn, (.)

where {λn} and {θn} are sequences in (, ). Then the sequence {xn} converges strongly to a
zero of A.

Proof Recall that A is monotone if and only if T = (J – A) is J-pseudocontractive and that
zeros of A correspond to J-fixed points of T .. Now, if we replace A by J – T in equation
(.), the equation reduces to (.) and hence the proof follows. �

5 Complement to proximal point algorithm
The proximal point algorithm of Martinet [] and Rockafellar [] was introduced to
approximate a solution of  ∈ Au where A is the subdifferential of some convex functional
defined on a real Hilbert space. A solution of this inclusion gives the minimizers of the
convex functional. Let E be a real normed space with dual space, E∗ and f : E → R be a
convex functional. The subdifferential of f , ∂f : E → E∗ at u ∈ E, is defined as follows:

(∂f )(u) =
{

x∗ ∈ E∗ : f (y) – f (x) ≥ 〈
y – x, x∗〉 ∀y ∈ E

}
.

It is well known that ∂f is a maximal monotone map on E and that  ∈ (∂f )(u) if and only
if u is a minimizer of f . Following this, the proximal point algorithm has been studied for
minimizers of f in real Banach spaces more general than Hilbert spaces.

Rockafellar [] proved that the proximal point algorithm defined as follows:

xk+ =
(

I +

λk

A
)–

(xk) + ek , x ∈ H , (.)

where λk >  is a regularizing parameter; converges weakly to a solution of  ∈ Au where
A is the subdifferential of a convex functional on a Hilbert space provided a solution exists.
He then asked if the proximal point algorithm always converge strongly.

This was resolved in the negative by Güler [] who produced a proper closed convex
function g in the infinite dimensional Hilbert space l for which the proximal point al-
gorithm converges weakly but not strongly (see also Bauschke et al. []). Several authors
modified the proximal point algorithm to obtain strong convergence (see, e.g., Bruck [];
Kamimura and Takahashi []; Lehdili and Moudafi []; Reich []; Solodov and Svaiter
[]; Xu []). We remark that in every one of these modifications, the recursion formula
developed involved either the computation of (I + λkA)–(xk) at each point of the iteration
process or the construction, at each iteration, of two subsets of the space, intersecting
them and projecting the initial vector onto the intersection. As far as we know, the first
iteration process to approximate a solution of  ∈ Au in real Banach spaces more gen-
eral than Hilbert spaces and which does not involve either of these setbacks was given by
Chidume and Djitte [] who proved a special case of Theorem . in which the space E is
a -uniformly smooth real Banach space. These spaces include Lp spaces,  ≤ p < ∞, but
do not include Lp spaces,  < p < . This result of Chidume and Djitte has recently been
proved in uniformly convex and uniformly smooth real Banach spaces (which include Lp

spaces,  < p < ∞) (Chidume (Theorem .) above).
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Corollary . of this paper is an analog of Theorem . for maximal monotone maps
when A : E → E∗ is a maximal monotone and bounded map, a result which complements
the proximal point algorithm, under this setting, in the sense that it yields strong conver-
gence to a solution of  ∈ Au and without requiring either the computation of (J +λA)–(zn)
at each iteration process, or the construction of two subsets of E, and projection of the ini-
tial vector onto their intersection, at each stage of the iteration process.

6 Application to solutions of Hammerstein integral equations
Definition . Let � ⊂ R

n be bounded. Let k : � × � → R and f : � × R → R be mea-
surable real-valued functions. An integral equation (generally nonlinear) of Hammerstein-
type has the form

u(x) +
∫

�

k(x, y)f
(
y, u(y)

)
dy = w(x), (.)

where the unknown function u and inhomogeneous function w lie in a Banach space E of
measurable real-valued functions.

By a simple transformation (.) can put in the form

u + KFu = w, (.)

which, without loss of generality can be written as

u + KFu = . (.)

Interest in Hammerstein integral equations stems mainly from the fact that several prob-
lems that arise in differential equations, for instance, elliptic boundary value problems
whose linear part posses Green’s function can, as a rule, be transformed into the form
(.) (see, e.g., Pascali and Sburian [], p.).

Among the first early results on the approximation of solution of Hammerstein equa-
tions is the following result of Brézis and Browder.

Theorem . (Brézis and Browder []) Let H be a separable Hilbert space and C be a
closed subspace of H . Let K : H → C be a bounded continuous monotone operator and
F : C → H be angle-bounded and weakly compact mapping. For a giving f ∈ C, consider
the Hammerstein equation

(I + KF)u = f (.)

and its nth Galerkin approximation given by

(I + KnFn)un = P∗f , (.)

where Kn = P∗
nKPn : H → C and Fn = PnFP∗

n : Cn → H , where the symbols have their usual
meanings (see []). Then, for each n ∈ N, the Galerkin approximation (.) admits a unique
solution un in Cn and {un} converges strongly in H to the unique solution u ∈ C of the
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equation (.) where Kn = P∗
nKPn : H → C and Fn = PnFP∗

n : Cn → H , where the symbols
have their usual meanings (see []). Then, for each n ∈ N, the Galerkin approximation
(.) admits a unique solution un in Cn and {un} converges strongly in H to the unique
solution u ∈ C of the equation (.).

It is obvious that if an iterative algorithm can be developed for the approximation of
solutions of equation of Hammerstein-type (.), this will certainly be preferred.

Attempts have been made to approximate solutions of equations of Hammerstein-type
using Mann-type iteration scheme. However, the results obtained were not satisfactory
(see, e.g., []). The recurrence formulas used in early attempts involved K– which is also
required to be strongly monotone, and this, apart from limiting the class of mappings to
which such iterative schemes are applicable, it is also not convenient in applications. Part
of the difficulty is the fact that the composition of two monotone operators need not to be
monotone.

The first satisfactory results on iterative methods for approximating solutions of Ham-
merstein equations in real Banach spaces more general Hilbert spaces, as far as we know,
were obtained by Chidume and Zegeye [–]. For the case of real Hilbert space H ,
for F , K : H → H , they defined an auxiliary map on the Cartesian product E := H × H ,
T : E → E by

T[u, v] = [Fu – v, Kv + u].

We note that

T[u, v] =  ⇐⇒ u solves (.) and v = Fu.

With this, they were able to obtain strong convergence of an iterative scheme defined in
the Cartesian product space E to a solution of Hammerstein equation (.). The method of
proof used by Chidume and Zegeye provided the clue to the establishment of the following
couple explicit algorithm for computing a solution of the equation u + KFu =  in the
original space X. With initial vectors u, v ∈ X, sequences {un} and {vn} in X are defined
iteratively as follows:

un+ = un – αn(Fun – vn), n ≥ , (.)

vn+ = vn – αn(Kvn + un), n ≥ , (.)

where αn is a sequence in (, ) satisfying appropriate conditions.
Some typical results obtained using the recursion formulas described above in ap-

proximating solutions of nonlinear Hammerstein equations involving monotone maps in
Hilbert spaces can be found in [, ].

In real Banach space X more general than Hilbert spaces, where F , K : X → X are of
accretive-type, Chidume and Zegeye considered an operator A : E → E where E := X ×
X and were able to successfully approximate solutions of Hammerstein equations using
recursion formulas described above. These schemes have now been employed by Chidume
and other authors to approximate solutions of Hammerstein equations in various Banach
spaces under various continuity assumptions (see, e.g., [, , –]). This success has
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not carried over to the case of monotone-type mappings in Banach spaces where K and F
map a space into its dual. In this section, we introduce a new iterative scheme and prove
that a sequence of our scheme converges strongly to a solution of a Hammerstein equation
under this setting. For this purpose, we begin with the following preliminaries and lemmas.

We now prove the following lemmas.

Lemma . Let X, Y be real uniformly convex and uniformly smooth spaces. Let E = X ×Y
with the norm ‖z‖E = (‖u‖q

X + ‖v‖q
Y )


q , for arbitrary z = [u, v] ∈ E. Let E∗ = X∗ × Y ∗ denote

the dual space of E. For arbitrary x = [x, x] ∈ E, define the map jE
q : E → E∗ by

jE
q (x) = jE

q [x, x] :=
[
jX
q (x), jY

q (x)
]
,

so that for arbitrary z = [u, v], z = [u, v] in E, the duality pairing 〈·, ·〉 is given by

〈
z, jE

q
〉

:=
〈
u, jX

q (u)
〉
+

〈
v, jY

q (v)
〉
.

Then
(a) E is uniformly smooth and uniformly convex,
(b) jE

q is single-valued duality mapping on E.

Proof (a) Let p > , q > . Let x = [x, x], y = [y, y] be arbitrary elements of E. Using
Condition (iii)′ of Corollary r in [], we have

〈
x – y, jq(x) – jq(y)

〉

=
〈
[x – y, x – y],

[
jX
q (x) – jX

q (y), jY
q (x) – jY

q (y)
]〉

=
〈
x – y, jX

q (x) – jX
q (x)

〉
+

〈
x – y, jY

q (x) – jY
q (y)

〉

≤ g∗

(‖x – y‖

)
+ g∗


(‖x – y‖

)
,

where g∗
 , g∗

 are strictly increasing continuous and convex functions on R
+ and g∗

 () =
g∗

 () = . It follows that

〈
x – y, jE

q (x) – jE
q (y)

〉 ≤ g∗(‖x – y‖),

where g∗(‖x – y‖) = g∗
 (‖x – y‖) + g∗

 (‖x – y‖). Hence the result follows from Corollary ′

that E is uniformly smooth.
Also, using condition (iii) of Corollary  in [], we have

〈
x – y, jp(x) – jp(y)

〉

=
〈
[x – y, x – y],

[
jX
p (x) – jX

p (y), jY
p (x) – jY

p (y)
]〉

=
〈
x – y, jX

p (x) – jX
p (x)

〉
+

〈
x – y, jY

p (x) – jY
p (y)

〉

≥ g
(‖x – y‖

)
+ g

(‖x – y‖
)
,

where g, g are strictly increasing continuous and convex functions on R
+ and g() =

g() = . It follows that

〈
x – y, jE

p (x) – jE
p (y)

〉 ≥ g
(‖x – y‖),
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where g(‖x – y‖) = g(‖x – y‖) + g(‖x – y‖). Hence the result follows from Corollary 
that E is uniformly convex. Since E is uniformly smooth, it is smooth and hence any duality
mapping on E is single-valued.

(b) For arbitrary x = [x, x] ∈ E, let jE
q (x) = jE

q [x, x] = ψq. Then ψq = [jX
q (x), jY

q (x)] ∈ E∗.
We have, for p >  such that /p + /q = ,

‖ψq‖E∗ =
(∥∥[

jX
q (x), jY

q (x)
]∥∥)/p =

(∥∥jq(x)
∥∥p

X∗ +
∥∥jq(x)

∥∥p
Y∗

)/p

=
(‖x‖(q–)p

X + ‖x‖(q–)p
Y

)/p =
(‖x‖q

X + ‖x‖q
Y
)(q–)p

= ‖x‖q–
E .

Hence, ‖ψ‖E∗ = ‖x‖q–
E . Furthermore,

〈x,ψq〉 =
〈
[x, x],

[
jX
q (x), jY

q (x)
]〉

=
〈
x, jX

q (x)
〉
+

〈
x, jY

q (x)
〉

= ‖x‖q
X + ‖x‖q

Y =
(‖x‖q

X + ‖x‖q
Y
)/q(‖x‖q

X + ‖x‖q
Y
)(q–)/q

= ‖x‖E · ‖ψ‖q–
E∗ .

Hence, jE
q is a single-valued normalized duality mapping on E. �

The following lemma will be needed in the following.

Lemma . (Browder []) Let X be a strictly convex reflexive Banach space with a strictly
convex conjugate space X∗, T a maximal monotone mapping from X to X∗, T a hemicon-
tinuous monotone mapping of all of X into X∗ which carries bounded subsets of X into
bounded subsets of X∗. Then the mapping T = T + T is a maximal monotone map of X
into X∗.

Using Lemma ., we prove the following important lemma which will be used in the
sequel.

Lemma . Let E be a Banach space. Let F : E → E∗ and K : E∗ → E be bounded and
maximal monotone mappings with D(F) = D(K) = E. Let T : E × E∗ → E∗ × E be defined
by

T[u, v] = [Ju – Fu + v, J∗v – Kv – u] for all (u, v) ∈ E × E∗,

then the mapping A := (J – T) is maximal monotone.

Proof We show that the mapping A = (J – T) : E × E∗ → E∗ × E defined as

A[u, v] = [Fu – v, Kv + u]

is maximal monotone. Let S, T : E × E∗ → E∗ × E be defined as

S[u, v] = [Fu, Kv], T[u, v] = [–v, u].
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Then A = S + T . It suffices to show S, T are maximal monotone.
Observe that S is monotone. Let h = [h, h] ∈ E∗ ×E. Since F , K are maximal monotone,

take u = (J + λF)–h and v = (J∗ + λK)–h. Then (J + λS)w = h, where w = [u, v]. Hence, S
is maximal monotone.

Clearly, T is bounded and monotone. Furthermore it is continuous. Hence, it is hemi-
continuous. Therefore by Lemma ., A = S + T is maximal monotone. �

Lemma . Let E be a uniformly convex and uniformly smooth real Banach space. Let
F : E → E∗ and K : E∗ → E be monotone mappings with D(F) = D(K) = E. Let T : E ×E∗ →
E∗ × E be defined by T[u, v] = [Ju – Fu + v, J∗v – Kv – u] for all (u, v) ∈ E × E∗, then T is
J-pseudocontractive. Moreover, if the Hammerstein equation u + KFu =  has a solution in
E, then u∗ is a solution of u + KFu =  if and only if (u∗, v∗) ∈ FJ

E(T), where v∗ = Fu∗.

Proof Using the monotonicity of F and K , we easily obtain 〈Tw – Tw, w – w〉 ≤ 〈Jw –
Jw, w – w〉 for all w = [u, v], w = [u, v] ∈ E × E∗.

Moreover, we observe that

T
(
u∗, v∗) = J

(
u∗, v∗)

⇐⇒ [
Ju∗ – Fu∗ + v∗, J∗v∗ – Kv∗ – u∗] =

[
Ju∗, J∗v∗]

⇐⇒ Ju∗ – Fu∗ + v∗ = Ju∗ and J∗v∗ – Kv∗ – u∗ = J∗v∗

⇐⇒ v∗ = Fu∗ and u∗ + Kv∗ =  ⇐⇒ u∗ + KFu∗ = . �

We now prove the following theorem.

Theorem . Let E be a uniformly smooth and uniformly convex real Banach space
and F : E → E∗, K : E∗ → E be maximal monotone and bounded maps, respectively. For
(x, y), (u, v) ∈ E × E∗, define the sequences {un} and {vn} in E and E∗ respectively, by

un+ = J–[Jun – λn(Fun – vn) – λnθn(Jun – Ju)
]
, n ≥ , (.)

vn+ = J–
∗

[
Jvn – λn(Kvn + un) – λnθn(J∗vn – J∗y)

]
, n ≥ . (.)

Assume that the equation u+KFu =  has a solution. Then the sequences {un}∞n= and {vn}∞n=

converge strongly to u∗ and v∗, respectively, where u∗ is the solution of u + KFu =  with
v∗ = Fu∗.

Proof From Lemma . we see that T : E × E∗ → E∗ × E defined by T[u, v] = [Ju – Fu +
v, J∗v – Kv – u] for all (u, v) ∈ E × E∗ is J-pseudocontractive, and A := (J – T) is maximal
monotone.

Applying Theorem . where X = E × E∗, from Lemma ., X is uniformly convex and
uniformly smooth. We obtain (.) and (.) and the proof follows. �

7 Application to convex optimization problem
The following lemma is well known (see, e.g., [], p., for similar proof in the Hilbert
space case).
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Lemma . Let X be a normed space. Let f : X →R be a convex function that is bounded
on bounded subsets of X. Then the subdifferential, ∂f : X → X∗ is bounded on bounded
subsets of E.

We now prove the following strong convergence theorem.

Theorem . Let E be a uniformly convex and uniformly smooth real Banach space with
dual E∗. Let f : E → (–∞,∞] be a lower semi-continuously Frèchet differentiable convex
and bounded functional such that (∂f )– �= ∅. For given u, x ∈ E, let {xn} be generated by
the algorithm

xn+ = J–[Jxn – λn(∂f )xn – λnθn(Jxn – Ju)
]
, n ≥ . (.)

Then {xn} converges strongly to some x∗ ∈ (∂f )–.

Proof Since f is convex and bounded, we see that ∂f is bounded. By Rockafellar [, ]
(see also, e.g., Minty [], Moreau []), we see that (∂f ) is maximal monotone mapping
from E∗ into E and  ∈ (∂f )–v if and only if f (v) = minx∈E f (x). Since f is convex and
bounded, from Lemma . we see that ∂f is bounded, hence, the conclusion follows from
Corollary .. �

Remark  The analytical representations of duality mappings are known in a number of
Banach spaces. For instance, in the spaces Lp(G) and W p

m(G), p ∈ (,∞) we have, respec-
tively,

Jx = ‖x‖–p
Lp

∣∣x(s)
∣∣p–x(s) ∈ Lq(G), s ∈ G,

and

Jx = ‖x‖–p
W p

m

∑

|α|≤m

(–)|α|Dα
(∣∣Dαx(s)

∣∣p–Dαx(s)
) ∈ W q

–m(G), m > , s ∈ G,

where p– + q– = . (See, e.g., Alber and Ryazantseva [], p..)

8 Conclusion
Let E be a uniformly convex and uniformly smooth real Banach space with dual E∗. Ap-
proximation of zeros of accretive-type maps of E to itself, assuming existence, has been
studied extensively within the past  years or so (see, e.g., Agarwal et al. []; Berinde
[]; Chidume []; Reich []; Censor and Reich []; William and Shahzad [], and the
references therein). The key tool for this study has been the study of fixed points of
pseudocontractive-type maps.

Unfortunately, for approximating zeros of monotone-type maps from E to E∗, the nor-
mal fixed point technique is not applicable. This motivated the study of the notion of
J-pseudocontractive maps introduced in this paper. The main result of this paper is The-
orem . which provides an easily applicable iterative sequence that converges strongly to
a J-fixed point of T , where T : E → E∗ is a J-pseudocontractive and bounded map such
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that J – T is maximal monotone. The two parameters in the recursion formula of the theo-
rem, θn and λn, are easily chosen in any possible application of the theorem (see Example 
above).

The theorem is, in particular, applicable in Lp and lp spaces,  < p < ∞. In these spaces,
the normalized duality maps J and J– which appear in the recursion formula of the theo-
rem are precisely known (see Remark  above).

Consequently, while the proof of the theorem is very technical and nontrivial, with the
simple choices of the iteration parameters and the exact explicit formula for J and J–, the
recursion formula of the theorem which does not involve the resolvent operator, (J +λA)–,
is extremely attractive and user friendly.

Theorem . is applicable in numerous situations. In this paper, it has been applied to
approximate a zero of a bounded maximal monotone map A : E → E∗ with A–() �= ∅.

Furthermore, the theorem complements the proximal point algorithm by providing
strong convergence to a zero of a maximal monotone operator A and without involving
the resolvent Jr := (J + rA)– in the recursion formula. In addition, it is applied to approx-
imate solutions of Hammerstein integral equations and also to approximate solutions of
convex optimization problems. Theorem . continues to be applicable in approximating
solutions of nonlinear equations. It has recently been applied to approximate a common
zero of an infinite family of J-nonexpansive maps, Ti : E → E∗ , i ≥  (see Chidume et al.
[]). In the case that E = H is a real Hilbert space, the result obtained in Chidume et al.
[] is a significant improvement of important known results. We strongly believed that
the results of this paper will continue to be applied to approximate solutions of equilibrium
problems in nonlinear operator theory.
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