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If we consider � =  and � =  in (.), then we have the classical variational inequality
problem which is to find a point x � K such that

�Ax, y – x� � , �y � K . (.)

The solution set of (.) is denoted by VI(K ,A).
To proceed we need to recall some definitions and concepts.

Definition . Let K be a nonempty closed convex subset of a real Hilbert space H .
(i) A mapping S : K � K is called nonexpansive if �Sx – Sy� 	 �x – y�, for all x, y � K .

(ii) A mapping T : K � K is called k-strict pseudo contractive mapping, if for all
x, y � K there exists a constant  	 k <  such that

�Tx – Ty� 	 �x – y� + k
∥
∥(I – T)x – (I – T)y

∥
∥
, �x, y � K , (.)

where I is the identity mapping on K .
(iii) A mapping A :H �H is called monotone if for each x, y �H ,

�Ax –Ay,x – y� � .

(iv) A mapping A :H �H is called �-inverse strongly monotone if there exists � > 
such that

�Ax –Ay,x – y� � ��Ax –Ay�, �x, y �H .

(v) The mapping A : K � H is L-Lipschitz continuous if there exists a positive real
number L such that �Ax –Ay� 	 L�x – y� for all x, y � H . If  < L < , then the
mapping A is a contraction with constant L.

Clearly a nonexpansive mapping is a -strict pseudo contractive mapping []. Note that
in a Hilbert space, (.) is equivalent to the following inequality:

�Tx – Ty,x – y� 	 �x – y� –
 – k


∥
∥(x – y) – (Tx – Ty)

∥
∥
, �x, y � K . (.)

We denote F(T) = {x � K : Tx = x}, the set of fixed points of T . It can be shown that, for
a k-strict pseudo contractive mapping T : K � K , the mapping I – T is demiclosed, i.e.,
if {xn} is a sequence in K with xn � q and xn – Txn � , then q � F(T) (refer to []). The
symbols � and � denote weak and strong convergence, respectively.
A set valued mapping Q : H � H is called monotone if for all x, y � H , f � Q(x) and

g � Q(y) imply �x – y, f – g� � . A monotone mapping Q : H � H is maximal if the
graph G(Q) of Q is not properly contained in the graph of any other monotone mapping.
It is well known that a monotone mapping Q is maximal if and only if for (x, f ) � H ×H ,
�x – y, f – g� �  for every (y, g) �G(Q) implies f �Q(x) [].
For any x � H there exists a unique point in K denoted by PKx such that �x – PKx� 	

�x – y� for all y � K . It is well known that the operator PK : H � K , which is called the
metric projection, is a nonexpansive mapping and has the properties that, for each x �H ,
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PKx � K and �x – PKx,PKx – y� � , for all y � K . It is also known that �PKx – PKy� 	
�x – y,PKx – PKy�, for all x, y � K []. In the context of the variational inequality problem,
we obtain

q � VI(K ,A) if and only if q = PK (q – �Aq), �� > . (.)

Let I be an index set. For each i � I , let �i be a real valued bifunction on K × K , Ai a
nonlinear mapping, and �i : K � R a function. The system of generalized mixed equilib-
rium problems as an extension of problems (.), (.), and (.) is to find a point x � K
such that

�i(x, y) + �Aix, y – x� + �i(y) – �i(x)� , �y � K ,�i � I. (.)

Note that
⋂

i�I GMEP(�i,Ai,�i) is the solution set of (.).
Vast range of problems which arise in economics, finance, image reconstruction, trans-

portation, network and so on, appear as a special case of problem (.); see for example [–
]. This problem also covers various forms of feasibility problems. So, it seems reasonable
to study the system of generalized mixed equilibrium problems. There are many authors
who introduced some iterative processes for finding the solution set of these problems or
common solution of someone with others, for instance see [, –] and the references
therein. In , Peng et al. [] introduced the following iterative algorithm for finding
a common element of fixed points of a family of infinite nonexpansive mappings and the
set of solutions of a system of finite family of equilibrium problems:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

z = z �H ,
un = TFm

�n T
Fm–
�n • • •TF

�n T
F
�nzn,

vn = PK (I – snA)un,
zn+ = �n� f (Wnzn) + (I – �nB)WnPK (I – rnA)vn.

Under suitable conditions, they presented and proved a strong convergence theorem for
finding an element of 	 =

⋂

i= F(Ti) � VI(K ,A) �

⋂m
k= EP(Fk). In , Cai and Bu []

proposed an iterative method as follows:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x = x � K ,
zn = T (FM ,�M)

rM,n (I – rM,nBM)T
(FM–,�M–)
rM–,n (I – rM–,nBM–) • • •T

(F,�)
r,n (I – rB)xn,

un = PK (I – �N ,nAN )PK (I – �N–,nAN–) • • •PK (I – �,nA)zn,
xn+ = �nf (Snxn) + �nxn + (I – �n – �n)W (
n)Sun.

They proved that under appropriate conditions, the sequences {xn}, {zn}, and {un} con-
verge strongly to z = P	f (z), where 	 = F(W ) �

⋂

i= F(Ti) �

⋂m
k= GMEP(Fk ,�k ,Bk) �

⋂N
j= VI(K ,Aj) and f is a contractive mapping. The iterative method for solving a system of

equilibrium problem has studied by many other authors; for example [, , ] and so on.
Note that, for finding common fixed point of a finite family of mapping and solution set of
other problems, authors usually have been using the so-calledW -mapping [, , ]. For
example Thianwan [] proposed the following method for finding a common element of
the set of solutions of an equilibrium problem, the set of common fixed points of a finite
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family of nonexpansive mappings, and the set of solutions of the variational inequality of
an �-inverse strongly monotone mapping in a real Hilbert space:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

�(un, y) + 
rn

�y – un,un – xn� � ,
wn = �nxn + ( – �n)WnPK (un – �nAun),
Kn+ = {z � Kn : �wn – z� 	 �xn – z�},
xn+ = PKn+ (x).

He showed that under suitable conditions, the above algorithm strongly converges to
⋂N

i= F(Ti) � EP(�) � VI(K ,A), where for each i = , . . . ,N , Ti is a nonexpansive mapping
and A is an �-inverse strongly monotone mapping.
In this paper, we present an iterative algorithm for finding a common solution of a sys-

tem of finite generalized mixed equilibrium problems, a variational inequality problem
for an inverse strongly monotone mapping and common fixed points of a finite family
of strictly pseudo contractive mappings. We show that the algorithm strongly converges
to a solution of the problem under certain conditions. Our results modify, improve and
extend corresponding results of Takahashi and Takahashi [], Zhang et al. [], Shehu
[], Thianwan [], and others. The rest of the paper is organized as follows. Section 
briefly explains the necessary mathematical background. Section  presents the main re-
sults. A numerical example is provided in the final section.

2 Preliminaries
It is well known that in a (real) Hilbert space H

�x + y� 	 �x� + �y,x + y�, (.)

for all x, y � H []. Furthermore, it is easy to see that

∥
∥
∥
∥
∥

m
∑

i=

xi

∥
∥
∥
∥
∥



=
m

∑

i,j=

�xi,xj�. (.)

Lemma . ([]) Let {an}, {bn}, and {cn} be three nonnegative real sequences satisfying

an+ 	 ( – tn)an + bn + cn

with {tn} � [, ],
∑


n= tn = 
, bn = o(tn), and
∑


n= cn <
. Then limn�
 an = .

Lemma . ([]) Let H be a (real)Hilbert space and {xn}Nn= be a bounded sequence in H .
Let {an}Nn= be a sequence of real numbers such that

∑N
n= an = . Then

∥
∥
∥
∥
∥

N
∑

i=

aixi

∥
∥
∥
∥
∥



	
N

∑

i=

ai�xi�.

Lemma . ([]) Let {xn} and {zn} be bounded sequences in a Banach space and �n be
a sequence of real numbers such that  < lim infn�
 �n < lim supn�
 �n <  for all n � .
Suppose that xn+ = ( – �n)zn + �nxn for all n �  and lim supn�
(�zn+ – zn� – �xn+ –
xn�) 	 . Then limn�
 �zn – xn� = .
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Let us assume that the bifunction � satisfies the following conditions:
(A) �(x,x) = , �x � K ;
(A) � is monotone on K , i.e., �(x, y) +�(y,x)	 , �x, y � K ;
(A) for all x, y, z � K , limt�+ �(tz + ( – t)x, y) 	 �(x, y);
(A) for all x � K , y � �(x, y) is convex and lower semicontinuous.

Lemma . ([]) Let K be a nonempty closed convex subset of Hilbert space H and � be a
real valued bifunction on K ×K satisfying (A)-(A). Let r >  and x �H , then there exists
z � K such that

�(z, y) +

r
�y – z, z – x� � , �y � K .

Lemma . ([]) Suppose all conditions in Lemma . are satis�ed. For any given r > ,
de�ne a mapping Tr :H � K as

Trx =
{

z � K : �(z, y) +

r
�y – z, z – x� � ,�y � K

}

,

for all x � H . Then the following conditions hold:
. Tr is single valued;
. Tr is firmly nonexpansive, i.e.,

�Trx – Try� 	 �Trx – Try,x – y�, �x, y �H ;

. F(Tr) = EP(�);
. EP(�) is a closed and convex set.

Remark . For the generalized mixed equilibrium problem (.), if the nonlinear opera-
tor A is a monotone, Lipschitz continuous mapping, � is a convex and lower semicontin-
uous function, and the real valued bifunction � admits the conditions (A)-(A), then it
is easy to show that G(x, y) = �(x, y) + �Ax, y – x� + �(y) – �(x) also satisfies the conditions
(A)-(A), and the generalized mixed equilibrium (.) is still the following equilibrium
problem:

find x � K such that G(x, y) � , �y � K .

3 Main results
As is well known, the strict pseudo contraction mappings have more useful applications
than nonexpansive mappings like in solving inverse problems []. In addition, various
problems reduced to find the common element of the fixed point set of a family of nonlin-
ear mappings such as image restoration (see for example []). For construction an algo-
rithmwhich can used to obtain the fixed point set of a family of strictly pseudo contractive
mappings we need to introduce the following proposition.
In the sequel, I = {, , . . . ,m} and J = {, , . . . , l} are two index sets.

Proposition . Let Tj : K � K , j � J , be kj-strict pseudo contractive mappings. De�ne
S : K � K by S = �I +�T + • • •+�lTl ,where the {�j}, j � J , are in (, ) and, for each n �N ,
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∑l
j= �j = . If � � [k, ) such that k = max{k, . . . ,kl}, then S is a nonexpansivemapping and

F(S) =
⋂

j�J F(Tj).

Proof By the definition of the mapping S, we have

�Sx – Sy� = � 
 �x – y� +

∥
∥
∥
∥

∑

j�J

�j(Tjx – Tjy)
∥
∥
∥
∥



+ �
∑

j�J

�j�x – y,Tjx – Tjy�. (.)

On the other hand, from (.) and (.) we have

∥
∥
∥
∥

∑

j�J

�j(Tjx – Tjy)
∥
∥
∥
∥



=
∑

j,i�J

�j�i�Tjx – Tjy,Tix – Tiy�

	
∑

j,i�J

�j�i�Tjx – Tjy��Tix – Tiy�

	



∑

j,i�J

�j�i
(

�Tjx – Tjy� + �Tix – Tiy�
)

	



∑

j,i�J

�j�i
[

�x – y� + kj
∥
∥(x – y) – (Tjx – Tjy)

∥
∥


+ �x – y� + ki
∥
∥(x – y) – (Tix – Tiy)

∥
∥
]

=
∑

j,i�J

�j�i�x – y�

+
∑

j�J

�j
∑

i�J

�ikj
∥
∥(x – y) – (Tjx – Tjy)

∥
∥
. (.)

Furthermore, (.) implies that, for each j � J ,

�x – y,Tjx – Tjy� 	 �x – y� –
 – kj


∥
∥(x – y) – (Tjx – Tjy)

∥
∥
. (.)

By substituting (.) and (.) in (.), we have

�Sx – Sy� 	
(

� 
 +

∑

j,i�J

�j�i + 
∑

j�J

��j
)

�x – y�

+
∑

j�J

�j
∑

i�J

�ikj
∥
∥(x – y) – (Tjx – Tjy)

∥
∥


–
∑

j�J

��j( – kj)
∥
∥(x – y) – (Tjx – Tjy)

∥
∥


= �x – y� –
∑

j�J

�j
[

�( – kj) –
∑

i�J

�ikj
]
∥
∥(x – y) – (Tjx – Tjy)

∥
∥


= �x – y� –
∑

j�J

�j
[

�( – kj) – ( – �)kj
]∥
∥(x – y) – (Tjx – Tjy)

∥
∥
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= �x – y� –
∑

j�J

�j(� – kj)
∥
∥(x – y) – (Tjx – Tjy)

∥
∥


	 �x – y� –
∑

j�J

�j(� – k)
∥
∥(x – y) – (Tjx – Tjy)

∥
∥


	 �x – y�. (.)

Then S is a nonexpansivemapping. Now, by the definition of Swe obtain I–S =
∑

j�J �j(I–
Tj) and clearly F(S) =

⋂

j�J F(Tj). �

Theorem . Let �i : K ×K � R, i � I , be bifunctions satisfying (A)-(A). Suppose that,
for each i � I , the Bi are �i-inverse strongly monotone mappings, the Ci are monotone and
Lipschitz continuous mappings from K into H , and the �i are convex and lower semicon-
tinuous functions from K into R. Let Tj : K � K , j � J , be kj-strict pseudo contractive map-
pings and A : K � H be a  -inverse strongly monotone mapping. Let f : K � K be an
�-contraction mapping and {vn} be a convergent sequence in K with limit point v. Suppose
that	 =

⋂

i�I GMEP(�i,Bi,Ci,�i)�
⋂

j�J F(Tj)�VI(A,K) is nonempty. For any initial guess
x � K , de�ne the sequence {xn} by

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�i(un,i, y) + �Ciun,i + Bixn, y – un,i� + �i(y) – �i(un,i)
+ 

rn,i
�y – un,i,un,i – xn� � , �y � K ,�i � I,

yn = �nvn + (I – �n(I – f ))PK (
∑

i�I �n,iun,i – �nA
∑

i�I �n,iun,i),
xn+ = �nxn + ( – �n)(�I +

∑

j�J �jTj)PK (yn – �nAyn),

(.)

where for all n � N , {�n}, {rn,i}i�I � (,
), and {�n}, {�n}, {�n,i}i�I , {�j}j�J � (, ) are se-
quences satisfying the following control conditions:

. limn�
 �n = ,
∑


n= �n = 
;
.  < lim infn�
 �n 	 lim supn�
 �n < ;
. for some a,b � (,  ), �n � [a,b] and limn�
 |�n+ – �n| = ;
. for some d > ,  < d 	 �n,i 	 ,

∑

i�I �n,i =  and
∑


n= |�n+,i – �n,i| < 
;
. for some c > , k 	 � 	 c <  such that k = maxj�J{kj} and

∑

j�J �j = ;
. for some 
i,�i � (, �i), rn,i � [
i,�i] and

∑

n= |rn+,i – rn,i| <
, i � I .

Then the sequences {xn} converges strongly to z � 	, where z = P	(v + f (z)).

Proof For x, y � K and i � I , putGi(x, y) = �i(x, y)+�Cix, y–x�+�i(y)–�i(x). ByRemark .,
Gi satisfies the conditions (A)-(A) and so the algorithm (.) can be rewritten as fol-
lows:

⎧

⎪⎨

⎪⎩

Gi(un,i, y) + �Bixn, y – un,i� + 
rn,i

�y – un,i,un,i – xn� � , �y � K , i � I,
yn = �nvn + (I – �n(I – f ))PK (

∑

i�I �n,iun,i – �nA
∑

i�I �n,iun,i),
xn+ = �nxn + ( – �n)(�I +

∑

j�J �jTj)PK (yn – �nAyn).
(.)

Claim  The sequences {xn}, {yn}, {un}, {tn}, and {kn} are bounded where, for each n � N ,
un =

∑

i�I �n,iun,i, tn = PK (yn – �nAyn), and kn = PK (un – �nAun).

To prove the claim from (.) we have

Gi(un,i, y) +

rn,i

〈

y – un,i,un,i – (I – rn,iBi)xn
〉

� , �y � K , i � I. (.)
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Then, by using Lemma ., for each i � I , we have un,i = Trn,i (xn – rn,iBixn), and, for any
q � 	, q = Trn,i (q – rn,iBiq). Thus

�un,i – q� =
∥
∥Trn,i (xn – rn,iBixn) – Trn,i (q – rn,iBiq)

∥
∥


	
∥
∥(xn – rn,iBixn) – (q – rn,iBiq)

∥
∥


	 �xn – q� + rn,i�Bixn – Biq� – rn,i�xn – q,Bixn – Biq�

	 �xn – q� + rn,i�Bixn – Biq� – rn,i�i�Bixn – Biq�

= �xn – q� + rn,i(rn,i – �i)�Bixn – Biq�

	 �xn – q�. (.)

So, we have

�un – q� 	
∑

i�I

�n,i�un,i – q� 	
∑

i�I

�n,i�xn – q� = �xn – q�. (.)

By the definition of tn and kn we have

�tn – q� 	
∥
∥(yn – �nAyn) – (q – �nAq)

∥
∥

	 �yn – q� (.)

and

�kn – q� 	
∥
∥(un – �nAun) – (q – �nAq)

∥
∥

	 �un – q�. (.)

Since limn�
 vn = v, {vn} is bounded,

�yn – q� 	 �n�vn – q� + �n
∥
∥f (kn) – q

∥
∥ + ( – �n)�kn – q�

	 �nM + �n��kn – q� + �n
∥
∥f (q) – q

∥
∥ + ( – �n)�xn – q�

=
[

 – �n( – �)
]

�xn – q� + �n
(

M +
∥
∥f (q) – q

∥
∥
)

	 max

{

�xn – q�,


 – �
(

M +
∥
∥f (q) + q

∥
∥
)
}

, (.)

where M = supn�{�vn – q�}. Putting S = �I +
∑

j�J �jTj, by Proposition ., S is nonex-
pansive. On the other hand, for all n �N , we have

�xn+ – q� 	 �n�xn – q� + ( – �n)�Stn – q�

	 �n�xn – q� + ( – �n)�tn – q�

	 �n�xn – q� + ( – �n)�yn – q�

	 max

{

�xn – q�,


 – �
(

M +
∥
∥f (q) + q

∥
∥
)
}

. (.)
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By induction, we deduce that

�xn+ – q� 	 max

{

�x – q�,


 – �
(

M +
∥
∥f (q) + q

∥
∥
)
}

, �n �N . (.)

Therefore, {xn} is bounded, and so are {yn}, {un}, {un,i}, {tn}, and {kn}.

Claim  �xn+ – xn� �  as n� 
.

Let zn = 
–�n

xn+ – �n
–�n

xn. Hence

�zn+ – zn� =
∥
∥
∥
∥


 – �n+

(xn+ – �n+xn+) –


 – �n
(xn+ – �nxn)

∥
∥
∥
∥

= �Stn+ – Stn�

	 �tn+ – tn�. (.)

Now, by the definition of tn we have

�tn+ – tn� 	
∥
∥(yn+ – �n+Ayn+) – (yn – �nAyn)

∥
∥

	 �yn+ – yn� + |�n+ – �n|�Ayn�. (.)

Similarly,

�kn+ – kn� 	 �un+ – un� + |�n+ – �n|�Aun�. (.)

By (.) and the definition of yn we obtain

�yn+ – yn� 	 �n+µ�vn+ – vn� + |�n+ – �n|�vn� + |�n+ – �n|
∥
∥f (kn)

∥
∥

+ |�n+ – �n|�kn� +
∥
∥
(

I – �n+(I – f )
)

(kn+) –
(

I – �n+(I – f )
)

(kn)
∥
∥

	 �n+�vn+ – vn� + |�n+ – �n|
(

�vn� +
∥
∥f (kn)

∥
∥ + �kn�

)

+
(

 – �n+( – �)
)

�kn+ – kn�

	 �n+�vn+ – vn� + |�n+ – �n|
(

�vn� +
∥
∥f (kn)

∥
∥ + �kn�

)

+
(

 – �n+( – �)
)(

�un+ – un� + |�n+ – �n|�Aun�
)

. (.)

Furthermore, by the definition of un,

�un+ – un� =
∥
∥
∥
∥

∑

i�I

(�n+,iun+,i – �n,iun,i)
∥
∥
∥
∥

	
∥
∥
∥
∥

∑

i�I

�n+,i(un+,i – un,i)
∥
∥
∥
∥
+

∥
∥
∥
∥

∑

i�I

(�n+,i – �n,i)un,i
∥
∥
∥
∥

	
∑

i�I

�n+,i�un+,i – un,i� +
∑

i�I

|�n+,i – �n,i|�un,i�. (.)
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From (.), since for each i � I , un,i,un+,i � K ,

Gi(un+,i,un,i) +


rn+,i

〈

un,i – un+,i,un+,i – (I – rn+,iBi)xn+
〉

�  (.)

and

Gi(un,i,un+,i) +

rn,i

〈

un+,i – un,i,un,i – (I – rn,iBi)xn
〉

� . (.)

By adding the two inequalities (.), (.), and the monotonicity of Gi we have

〈

un+,i – un,i,
un,i – (I – rn,iBi)xn

rn,i
–
un+,i – (I – rn+,iBi)xn+

rn+,i

〉

� , �i � I.

So

〈

un+,i – un,i,un,i – (I – rn,iBi)xn – rn,iBixn+ –
rn,i
rn+,i

(un+,i – xn+)
〉

� , �i � I.

Thus, for each i � I ,

〈

un+,i–un,i, (I–rn,iBi)xn+ –(I–rn,iBi)xn+(un,i–un+,i)+
(

–
rn,i
rn+,i

)

(un+,i–xn+)
〉

� .

This yields

�un+,i – un,i� 	
〈

un+,i – un,i, (I – rn,iBi)xn+ – (I – rn,iBi)xn

+
(

 –
rn,i
rn+,i

)

(un+,i – xn+)
〉

	 �un+,i – un,i�
[
∥
∥(I – rn,iBi)xn+ – (I – rn,iBi)xn

∥
∥

+
∣
∣
∣
∣
 –

rn,i
rn+,i

∣
∣
∣
∣
�un+,i – xn+�

]

	 �un+,i – un,i�
[

�xn+ – xn� +
∣
∣
∣
∣
 –

rn,i
rn+,i

∣
∣
∣
∣
�un+,i – xn+�

]

, �i � I,

or

�un+,i – un,i� 	 �xn+ – xn� +


rn+,i
|rn+,i – rn,i|�un+,i – xn+�

	 �xn+ – xn� +




|rn+,i – rn,i|M, �i � I, (.)

where 
 = infn�{rn,i} andM = supn�{�un,i – xn�}. Thus, from (.), (.), (.), (.),
and (.) we obtain

�zn+ – zn� 	 �xn+ – xn� + �n+�vn+ – vn�

+ |�n+ – �n|
(

�vn� + �kn� +
∥
∥f (kn)

∥
∥
)
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+ |�n+ – �n|�Ayn� +
(

 – �n+( – �)
)
[
∑

i�I

�n+,i




|rn+,i – rn,i|M

+ |�n+ – �n|�Aun� +
∑

i�I

|�n+,i – �n,i|�un,i�
]

.

So, by assumptions - of the theorem

lim sup
n�


{

�zn+ – zn� – �xn+ – xn�
}

	 ,

and by Lemma ., we have

lim
n�


�zn – xn� = .

But, since xn+ – xn = ( – �n)(zn – xn), we have

lim
n�


�xn+ – xn� = . (.)

Claim  limn�
 �xn – Sxn� = .

Note that

�xn – Sxn� 	 �xn+ – xn� + �xn+ – Stn� + �Stn – Sxn�

	 �xn+ – xn� + �xn+ – Stn� + �tn – xn�. (.)

First we show that limn�
 �xn+ – Stn� = . From (.)

�xn+ – Stn� 	 �n�xn – Stn�

	 �n�xn – xn+� + �n�xn+ – Stn�.

Hence

�xn+ – Stn� 	
�n

 – �n
�xn – xn+�.

This implies that

lim
n�


�xn+ – Stn� = . (.)

Now, we prove that limn�
 �tn – xn� = . To do this, it suffices to show that limn�
 �xn –
un� =  and limn�
 �un – tn� = . By the definition of tn we have

�tn – q� 	
∥
∥(yn – �nAyn) – (q – �nAq)

∥
∥


	 �yn – q� + �n(�n –  )�Ayn –Aq�

	 �xn – q� + �n(�n –  )�Ayn –Aq�. (.)
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So, by (.) and the convexity of � • �, we have

�xn+ – q� 	 �n�xn – q� + ( – �n)�Stn – q�

	 �n�xn – q� + ( – �n)�tn – q�

	 �n�xn – q� + ( – �n)
(

�xn – q� + �n(�n –  )�Ayn –Aq�
)

= �xn – q� + ( – �n)�n(�n –  )�Ayn –Aq�.

Hence

( – �n)�n( – �n)�Ayn –Aq� 	 �xn – q� – �xn+ – q�

	 �xn – xn+�
(

�xn – q� + �xn+ – q�
)

,

and then

lim
n�


�Ayn –Aq� = . (.)

Using the projection properties gives us

�tn – q� =
∥
∥PK (yn – �nAyn) – PK (q – �nAq)

∥
∥


	
〈

(yn – �nAyn) – (q – �nAq), tn – q
〉

=


[∥
∥(yn – �nAyn) – (q – �nAq)

∥
∥
 + �tn – q�

–
∥
∥(yn – �nAyn) – (q – �nAq) – (tn – q)

∥
∥
]

	


[

�yn – q� + �tn – q� –
∥
∥yn – tn – �n(Ayn –Aq)

∥
∥
]

	


[

�yn – q� + �tn – q� – �yn – tn� – �
n�Ayn –Aq�

+ �n�yn – tn,Ayn –Aq�
]

.

This implies that

�tn – q� 	 �yn – q� – �yn – tn� – �
n�Ayn –Aq�

+ �n�yn – tn,Ayn –Aq�

	 �yn – q� – �yn – tn� + �n�yn – tn,Ayn –Aq�. (.)

From (.) and the convexity of � • �, one can see that, for q � 	,

�xn+ – q� 	 �n�xn – q� + ( – �n)�Stn – q�

	 �n�xn – q� + ( – �n)�tn – q�

	 �n�xn – q� + ( – �n)
[

�yn – q� – �yn – tn�

+ �n�yn – tn,Ayn –Aq�
]
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	 �n�xn – q� + ( – �n)
[

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥


+ ( – �n)�kn – q� – �yn – tn� + �n�yn – tn,Ayn –Aq�
]

	 �n�xn – q� + ( – �n)
[

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥


+ ( – �n)�xn – q� – �yn – tn� + �n�yn – tn,Ayn –Aq�
]

.

Hence

( – �n)�yn – tn� 	 ( – �n)
[

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥


+ �n�yn – tn,Ayn –Aq�
]

+ �xn – q� – �xn+ – q�

	 ( – �n)
[

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥


+ �n�yn – tn��Ayn –Aq�
]

+ �xn – xn+�
(

�xn – q� + �xn+ – q�
)

,

and so by (.)

lim
n�


�yn – tn� = . (.)

Next, we show that limn�
 �yn – un� = . The definition of kn and a similar argument to
(.) give us

�kn – q� 	 �xn – q� + �n(�n –  )�Aun –Aq�. (.)

Then

�xn+ – q� 	 �n�xn – q� + ( – �n)�Stn – q�

	 �n�xn – q� + ( – �n)�tn – q�

	 �n�xn – q� + ( – �n)�yn – q�

	 �n�xn – q� + ( – �n)
(

�n�vn – q�

+ �n
∥
∥f (kn) – q

∥
∥
 + ( – �n)�kn – q�

)

	 �xn – q� + ( – �n)
(

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥
)

+ ( – �n)( – �n)�n(�n –  )�Aun –Aq�.

Hence

( – �n)( – �n)�n( – �n)�Aun –Aq� 	 �xn – q� – �xn+ – q�

	 �xn – xn+�
(

�xn – q� + �xn+ – q�
)

,

and therefore

lim
n�


�Aun –Aq� = . (.)
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Similar to (.) we can see that

�kn – q� 	 �un – q� – �un – kn� + �n�un – kn,Aun –Aq�

	 �xn – q� – �un – kn� + �n�un – kn,Aun –Aq�. (.)

From (.) and the convexity of � • �, we have

�xn+ – q� 	 �n�xn – q� + ( – �n)�Stn – q�

	 �n�xn – q� + ( – �n)�tn – q�

	 �n�xn – q� + ( – �n)�yn – q�

	 �n�xn – q� + ( – �n)
[

�n�vn – q�

+ �n
∥
∥f (kn) – q

∥
∥
 + ( – �n)�kn – q�

]

	 �n�xn – q� + ( – �n)
[

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥


+ ( – �n)
(

�xn – q� – �un – kn� + �n�un – kn,Aun –Aq�
)]

	 �xn – q� + ( – �n)
[

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥


+ ( – �n)�n�un – kn,Aun –Aq�
]

– ( – �n)( – �n)�un – kn�.

So

( – �n)( – �n)�un – kn� 	 ( – �n)
[

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥
]

+ ( – �n)( – �n)�n�un – kn,Aun –Aq�

+ �xn – q� – �xn+ – q�

	 ( – �n)
[

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥
]

+ ( – �n)( – �n)�n�un – kn��Aun –Aq�

+ �xn – xn+�
(

�xn – q� + �xn+ – q�
)

.

Then the above inequality and (.) imply that

lim
n�


�un – kn� = . (.)

But from (.),

�yn – un� 	 �n�vn – un� + �n
∥
∥f (kn) – un

∥
∥ + ( – �n)�kn – un�.

So, from (.) we have

lim
n�


�yn – un� = . (.)

Then by (.) and (.) we have

lim
n�


�un – tn� = . (.)
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Now, we show that limn�
 �xn – un� = . To do this, note that, for any i � I ,

�un,i – q� =
∥
∥Trn,i (xn – rn,iBixn) – Trn,i (q – rn,iBiq)

∥
∥


	
〈

Trn,i (xn – rn,iBixn) – Trn,i (q – rn,iBiq), (xn – q) – rn,i(Bixn – Biq)
〉

= �un,i – q,xn – q� – rn,i�un,i – q,Bixn – Biq�

	 �un,i – q,xn – q� – rn,i�i�Bixn – Biq�

	 �un,i – q,xn – q�. (.)

So, from (.) and the definition of un, we obtain

�un – q� 	
∑

i�I

�n,i�un,i – q�

	
∑

i�I

�n,i�un,i – q,xn – q�

=
〈
∑

i�I

�n,iun,i – q,xn – q
〉

= �un – q,xn – q�

	


[

�un – q� + �xn – q� – �un – xn�
]

.

Thus,

�un – q� 	 �xn – q� – �un – xn�. (.)

Since S is nonexpansive, we have

�xn+ – q� 	 �n�xn – q� + ( – �n)�Stn – q�

	 �n�xn – q� + ( – �n)�tn – q�

	 �n�xn – q� + ( – �n)�yn – q�

	 �n�xn – q� + ( – �n)
(

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥
)

+ ( – �n)( – �n)�kn – q�

	 �n�xn – q� + ( – �n)
(

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥
)

+ ( – �n)( – �n)�un – q�

	 �n�xn – q� + ( – �n)
(

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥
)

+ ( – �n)( – �n)
(

�xn – q� – �xn – un�
)

.

Hence

( – �n)( – �n)�xn – un� 	 ( – �n)
(

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥
)

+ �xn – q� – �xn+ – q�
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	 ( – �n)
(

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥
)

+
(

�xn – q� – �xn+ – q�
)(

�xn – q� + �xn+ – q�
)

	 ( – �n)
(

�n�vn – q� + �n
∥
∥f (kn) – q

∥
∥
)

+
(

�xn – q� + �xn+ – q�
)

�xn – xn+�,

which yields

lim
n�


�xn – un� = . (.)

Since �tn – xn� 	 �tn – un� + �un – xn�, from (.) and (.) we obtain

lim
n�


�tn – xn� = . (.)

Inequality (.) and equations (.), (.), and �xn – xn+� �  imply that

lim
n�


�xn – Sxn� = . (.)

Claim  lim supn�
�v + f (z) – z, yn – z� 	 , where z = P	(v + f (z)).

To prove the claim, let {ynk } be a subsequence of {yn} such that

lim sup
n�


〈

v + f (z) – z, yn – z
〉

= lim sup
n�


〈

v + f (z) – z, ynk – z
〉

. (.)

By boundedness of {ynk }, there exists a subsequence of {ynk } which is weakly convergent
to z � K . Without loss of generality, we can assume that ynk � z. So, (.) reduces to

lim sup
n�


〈

v + f (z) – z, yn – z
〉

=
〈

v + f (z) – z, z – z
〉

. (.)

Therefore, by projection properties, to prove �v + f (z) – z, z – z� � , it suffices to show
that z � 	.
(a) First we prove that z �

⋂m
j�J F(Tj). From (.) and the demiclosedness property of

S we obtain z � F(S). So, by Proposition ., z �
⋂m

j�J F(Tj).
(b) Next we show that z � VI(A,K). Note that from boundedneess of {xn}, {un}, and

equation (.), there exist subsequences {xnk } and {unk } of {xn} and {un}, respectively,
which converge weakly to z. Suppose that NKx is a normal cone to K at x and Q is a
mapping defined by

Q(x) =

{

Ax +NKx, x � K ,
�, x /� K .

(.)

It is well known that Q is a maximal monotone mapping and  � Q(x) if and only if
x � VI(A,K). For details see []. If (x,u) � G(Q), then u – Ax � NKx. Since kn = PK (un –
�nAun) � K , we have

�x – kn,u –Ax� � . (.)



Payvand and Jahedi Fixed Point Theory and Applications  (2016) 2016:93 Page 17 of 23

In addition, from projection properties we have �x – kn,kn – (un – �nAun)� � . Then �x –
kn, kn–un�n

+Aun� � . Hence, from (.) we have

�x – knk ,u� � �x – knk ,Ax�

� �x – knk ,Ax� –
〈

x – knk ,
knk – unk

�nk
+Aunk

〉

= �x – knk ,Ax –Aknk � + �x – knk ,Aknk –Aunk �

–
〈

x – knk ,
knk – unk

�nk

〉

� �x – knk ,Aknk –Aunk � –
〈

x – knk ,
knk – unk

�nk

〉

. (.)

Since A is a continuous mapping, from (.) and (.) we deduce that

�x – z,u� � , as k � 
.

Therefore, frommaximalmonotonicity ofQ, we obtain  �Q(z) and hence z � VI(A,K).
(c) Now we prove that z �

⋂

i�I GEP(Gi,Bi). For all i � I , by (.),

�un,i – q� 	 �un,i – q,xn – q�

	


[

�un,i – q� + �xn – q� – �un,i – xn�
]

and then

�un,i – q� 	 �xn – q� – �un,i – xn�.

This implies that

�un – q� 	
∑

i�I

�n,i�un,i – q�

	 �xn – q� –
∑

i�I

�n,i�un,i – xn�.

Therefore, for any i � I ,

�un,i – xn� 	
∑

i�I

�n,i�un,i – xn� 	 �xn – q� – �un – q�

	 �xn – un�
(

�xn – q� + �un – q�
)

.

So by (.),

lim
n�


�un,i – xn� = , �i � I. (.)

Since {un,i}i�I is bounded, by (.), there exists a weakly convergent subsequence {unk ,i}
of {un,i} to z. Now, we will show that, for any i � I , z is a member of GEP(Gi,Bi). Since
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un,i = Trn,i (xn – rn,iBixn), for all y � K we have

Gi(un,i, y) + �Bixn, y – un,i� +

rn,i

�y – un,i,un,i – xn� � , �i � I.

From (A) we obtain

�Bixn, y – un,i� +

rn,i

�y – un,i,un,i – xn� � Gi(y,un,i), �y � K ,�i � I.

Hence, for all y � K ,

�Bixnk , y – unk ,i� +
〈

y – unk ,i,
unk ,i – xnk

rnk ,i

〉

� Gi(y,unk ,i), �i � I. (.)

Let yt = ty + ( – t)z, where t � (, ] and y � K . Then yt � K and by (.),

�yt – unk ,i,Biyt� � �yt – unk ,i,Biyt� – �yt – unk ,i,Bixnk �

–
〈

yt – unk ,i,
unk ,i – xnk

rnk ,i

〉

+Gi(yt ,unk ,i)

= �yt – unk ,i,Biyt – Biunk ,i� + �yt – unk ,i,Biunk ,i – Bixnk �

–
〈

yt – unk ,i,
unk ,i – xnk

rnk ,i

〉

+Gi(yt ,unk ,i), �i � I.

But Bi is a �i-inverse strongly monotone mapping and �unk ,i – xnk� � , so �Biunk ,i –
Bixnk� �  and �yt – unk ,i,Biyt – Biunk ,i� � , for all i � I . As k � 
, the relations
unk ,i–xnk

rnk ,i
� , unk ,i � , and condition (A) imply that

�yt – z,Biyt� � Gi(yt , z), �i � I. (.)

From (A), (A), and (.) we have

 =Gi(yt , yt) 	 tGi(yt , y) + ( – t)Gi(yt , z)

	 tGi(yt , y) + ( – t)�yt – z,Biyt�

= tGi(yt , y) + ( – t)t�y – z,Biyt�

	 Gi(yt , y) + ( – t)�y – z,Biyt�, �i � I.

Letting t � , so for each y � K ,

Gi(z, y) + �y – z,Biz� � , �i � I.

That is, z � GEP(Gi,Bi), for all i � I . Now by parts (a), (b) and (c), z � 	. Therefore, from
(.) we obtain

lim sup
n�


〈

v + f (z) – z, yn – z
〉

=
〈

v + f (z) – z, z – z
〉

	 . (.)
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Claim  The sequence {xn} converges to z, where z = P	(v + f (z)).

From the convexity of � • � and (.) we deduce that

�xn+ – z� 	 �n�xn – z� + ( – �n)�Stn – z�

	 �n�xn – z� + ( – �n)�tn – z�

	 �n�xn – z� + ( – �n)�yn – z�

	 �n�xn – z� + ( – �n)
∥
∥�n

[

vn + f (kn) – z
]

+ ( – �n)(kn – z)
∥
∥


	 �n�xn – z� + ( – �n)( – �n)�kn – z�

+ �n( – �n)
〈

vn + f (kn) – z, yn – z
〉

	 �n�xn – z� + ( – �n)( – �n)�xn – z� (.)

+ �n( – �n)
〈

vn + f (kn) – z, yn – z
〉

=
(

 – �n( – �n)
)

�xn – z� + �n, (.)

where �n = �n( – �n)�vn + f (xn) – z, yn – z�. On the other hand

�n = �n( – �n)
〈

vn + f (kn) – z, yn – z
〉

= �n( – �n)
〈

(vn – v) +
(

f (kn) – f (z)
)

, yn – z
〉

+ �n( – �n)
〈

v + f (z) – z, yn – z
〉

	 �n( – �n)
{

�vn – v� + ��kn – z�
}

�yn – z�

+ �n( – �n)
〈

v + f (z) – z, yn – z
〉

	 �n( – �n)
(

�vn – v� + �yn – z�
)

+ �n( – �n)�
(

�kn – z� + �yn – z�
)

+ �n( – �n)
〈

v + f (z) – z, yn – z
〉

.

Suppose thatM = supn�N {�yn – z�}. So

�n 	 �n( – �n)��xn – z� + �n( – �n)
[

M
 + ( + �)M


]

+ �n( – �n)
〈

v + f (z) – z, yn – z
〉

. (.)

Substitute (.) in (.), then

�xn+ – z� 	
(

 – �n( – �n)
)

�xn – z� + �n( – �n)��xn – z�

+ �n( – �n)
[

( + �)M
 +M


]

+ �n( – �n)
〈

v + f (z) – z, yn – z
〉

	
[

 – �n( – �n)( – �)
]

�xn – z� + �n( – �n)M

+ �n( – �n)
〈

v + f (z) – z, yn – z
〉

,
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where M = ( + �)M
 + M

. Therefore from (.) and Lemma ., we conclude that
limn�
 �xn – z� = . Also from (.) and (.) we can see that yn � z and un � z.
This completes the proof. �

Let m =  in the index set I and take �n, = , so (.) becomes the following algorithm:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

�(un, y) + �Cun + Bxn, y – un� + �(y) – �(un)
+ 

rn
�y – un,un – xn� � , �y � K ,

yn = �nvn + (I – �n(I – f ))PK (un – �nAun),
xn+ = �nxn + ( – �n)SPK (yn – �nAyn).

(.)

Put � = , C = , and {vn} = {} in (.). If A = , then by the projection properties, kn =
P	un. Since un � C, we have kn = un. So, we get the following corollary which is the so-
called viscosity approximation method.

Corollary . Let � : K × K � R be a bifunction satisfying (A)-(A) and B a � -inverse
strongly monotone. Let S : K � K be a nonexpansive and f : K � K be an �-contraction
mapping. Suppose that 	 = GEP(�,B) � F(S) is nonempty. For any initial guess x � K ,
de�ne the sequence {xn} by

⎧

⎪⎨

⎪⎩

�(un, y) + �Bxn, y – un� + 
rn

�y – un,un – xn� � , �y � K ,
yn = �nf (xn) + ( – �n)un,
xn+ = �nxn + ( – �n)Syn,

(.)

where {rn} is a positive real sequence, {�n} and {�n} are sequences in (, ) satisfying the
following conditions:

. limn�
 �n = ,
∑


n= �n = 
;
.  < lim infn�
 �n 	 lim supn�
 �n < ;
. for some 
 ,� � (, � ), rn � [
 ,�] and limn�
(rn+ – rn) = .

Then the sequence {xn} converges strongly to z � 	, where z = P	fz.

4 Numerical example
In this section, we present a numerical example which supports our algorithm.

Example  Suppose H = R and K = [–, ]. A system of generalized mixed equilib-
rium problem is to find a point x � K such that, for each i � I ,

�i(x, y) + �Aix, y – x� + �i(y) – �i(x)� , �y � K . (.)

For any i � I , define �i = ,�i(x, y) = (y+ ix)(y–x) andAix = ix. It is easy to see that, for each
i � I , �i(x, y) satisfies the conditions (A)-(A) and Ai is 

i+ -inverse strongly monotone
mapping. We know that, for each i � I , Tri is single valued. Thus for any y � k and ri > ,
we have

�i(ui, y) + �Aix, y – ui� +

ri

�y – ui,ui – x� � 

�� �i(ui, y) +

ri

〈

y – ui,ui – (I –Ai)x
〉

� 

�� riy +
[(

 + ri(i – )
)

ui – ( – iri)x
]

y +
[

( – iri)uix – ( + iri)ui
]

� .
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Let Qi(y) = riy + [( + ri(i – ))ui – ( – iri)x]y + [( – iri)uix – ( + iri)ui ]. Since Qi is a
quadratic function relative to y, Qi(y) �  for all y � K , if and only if the coefficient of y is
positive and the discriminant �i 	 . But

�i =
[(

 + ri(i – )
)

ui – ( – iri)x
]

– ri
[

( – iri)uix – ( + iri)ui
]

=
[(

 + ri(i + )
)

ui – ( – iri)x
],

so we obtain

ui =
( – iri)

 + ri(i + )
x

and then

Tri (x) =
( – iri)

 + ri(i + )
x.

Table 1 The behavior of xn with x0 = 10 and x0 = –10

Iterative
number

Initial point

x0 = 10 x0 = –10

1 3.3333 –3.5157
2 0.9411 –1.5857
3 0.2374 –0.6642
4 0.0556 –0.2619
5 0.0124 –0.0989
6 0.0027 –0.0362
7 0.0006 –0.0129
8 0.0001 –0.0045
9 0.0000 –0.0016
10 0.0000 –0.0005
11 0.0000 –0.0002
12 0.0000 –0.0001
13 0.0000 –0.0000

Figure 1 Convergence of the algorithm with initial values x0 = 10 and x0 = –10.
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FromLemma., we have F(Tri ) = GEP(�,Ai) = .Define S : K � K by S(x) = sin(x). Then
S is nonexpansive and F(sin(x)) = {}. So, 	 = {}. Assume that I = {, }, A = , {vn} = {},
f (x) = x

 , rn,i =
n

(n+)(i+) , �n = 
n , �n = 

 and �n,i = 
 , Ci = , i � I . Hence,

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un, = 
n+xn,

un, = –n+
n+ xn,

yn = –n+n–n–
n+n+n xn,

xn+ = 
xn +


 sin( –n

+n–n–
n+n+n xn).

Then, by Theorem ., the sequence {xn} converges strongly to  � 	. Table  and Figure 
indicate the behavior of xn for algorithm (.) with x =  and x = –. We have used
MATLAB with � = –.
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