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1 Introduction
Let E be a real normed linear space and C be a nonempty closed convex subset of E. The
mapping T : C → C is said to be nonexpansive if for all x, y ∈ C

‖Tx – Ty‖ ≤ ‖x – y‖. (.)

The mapping T : C → C is said to be asymptotically nonexpansive if there exists a se-
quence {kn} ⊂ [,∞) with limn→∞ kn =  such that for all x, y ∈ C and each n ≥ 

∥
∥Tnx – Tny

∥
∥ ≤ kn‖x – y‖. (.)

The class of nonexpansive mappings is one of the most important classes of mappings
in nonlinear science. The class of asymptotically nonexpansive mappings is an important
generalization of the class of nonexpansive mappings, which was introduced by Goebel
and Kirk [] in . They proved that if C is a nonempty closed convex subset of a real
uniformly convex Banach space and T is an asymptotically nonexpansive mapping, then
T has a fixed point.

Example . ([]) Let C be a unit ball in a real Hilbert space l and let S : C → C be a
mapping defined by

S : (x, x, . . .) → (

, x
 , ax, ax, . . .

)

,
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It is proved in Goebal and Kirk [] that:
(i) ‖Sx – Sy‖ ≤ ‖x – y‖, for all x, y ∈ C;

(ii) ‖Snx – Sny‖ ≤ 
∏n

j= aj‖x – y‖, for all x, y ∈ C,∀n ≥ .

Taking aj = – 
j– , j ≥ , it is easy to see that

∏∞
j= aj = 

 . So we can take k =  and
kn = 

∏n
j= aj, n ≥ , then

lim
n→∞ kn = lim

n→∞ 
n

∏

j=

– 
j– = . (.)

Therefore S is an asymptotically nonexpansive mapping from C into itself with F(S) =
{(, , . . . , , . . .)}.

Definition . ([]) A one-parameter family F := {T(t) : t ≥ } of E into itself is called a
strongly continuous semigroup of Lipschitzian mappings on E if it satisfies the following
conditions:

(i) T()x = x, for all x ∈ E;
(ii) T(s + t) = T(s)T(t), for all s, t ≥ ;

(iii) for each x ∈ E, the mapping t 
→ T(t)x is continuous;
(iv) for each t > , there exists a bounded measurable function L(t) : [,∞) → [,∞)

such that

∥
∥T(t)x – T(t)y

∥
∥ ≤ L(t)‖x – y‖, for all x, y ∈ E. (.)

If the bounded measurable function L(t) in (.) is such that L(t) ≥  for each t > ,
L(t) is nonincreasing in t, and limt→∞ L(t) = , then the strong continuous semigroup of
Lipschitzian mappings is said to be an asymptotically nonexpansive semigroup. We denote
by F(F ) the set of all common fixed points of F , that is,

F(F ) :=
{

x ∈ E : T(t)x = x,  ≤ t < ∞}

=
⋂

t≥

F
(

T(t)
)

. (.)

If F satisfies (i)-(iii) and

lim sup
t→∞,x∈D

∥
∥T(t)x – T(s)T(t)x

∥
∥ = , for all s >  and bounded D ⊆ C, (.)

then F is called uniformly asymptotically regular on C.

Example . ([] (Example of asymptotically nonexpansive semigroup)) Let E be an uni-
formly convex Banach space which admits a weakly continuous duality mapping. Let L(E)
be the space of all bounded linear operators on E. For � ∈ L(E), define F := {T(t) : t ∈ R+}
of bounded linear operators by using the following exponential expression:

T(t) = e–t� :=
∞

∑

k=

(–)k

k!
tk�k .

Then the family F := {T(t) : t ∈ R+} satisfies the semigroup properties. Moreover, this
family forms a one-parameter semigroup of self-mappings of E because et� = [e–t� ]– :
E → E exists for each t ∈ R+.
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In , in finite dimensional Hilbert spaces, Censor and Elfving [] introduced the split
feasibility problem for modeling inverse problems which arise from phase retrievals and
in medical imagine reconstruction []. It has been found that split feasibility problems
can be used in various disciplines, such as imagine restoration, computer tomograph and
radiation therapy treatment planning [–].

Let H and H be two real Hilbert spaces, C and Q be nonempty closed convex subsets
of H and H, respectively. The split feasibility problem is formulated as finding a point
q ∈ H such that

q ∈ C and Aq ∈ Q, (.)

where A : H → H is a bounded linear operator.
If (.) has a solution, it is not hard to see that x ∈ C solves (.) if and only if it solves

the following fixed point equation:

x = PC
(

I – γ A∗(I – PQ)A
)

x, x ∈ C, (.)

where PC and PQ are the projections onto C and Q, respectively, γ is a positive constant,
and A∗ denotes the adjoint of A.

When C and Q in (.) are the sets of fixed points of two nonlinear mappings, and C and
Q are nonempty closed convex subsets of H and H, respectively, then the split feasibility
problem (.) is also said to be split common fixed point problem []. It is well known
that each nonempty closed convex subset of a Hilbert space is the set of fixed points of
its projection, therefore, the split common fixed point problem may be considered as a
generalization of split feasibility problem.

In the setting of two Hilbert spaces, for demicontractive mappings, Moudafi [] pro-
posed an iteration scheme and obtained a weak convergence theorem of the split common
fixed point problem. Since then, the split common fixed point problems of other nonlinear
mappings in the setting of two Hilbert spaces have been studied by some authors; see, for
instance, [, –]. Especially, Cholamjiak et al. [] obtained a strong convergence the-
orem of split common fixed point problem involving a uniformly asymptotically regular
nonexpansive semigroup and a total asymptotically strict pseudo-contractive mapping in
Hilbert spaces.

In , in the setting of one Hilbert space and one Banach space, Takahashi [] inves-
tigated the split feasibility problem and split common null point problem, and obtained
some strong and weak convergence theorems under some mild control conditions.

Recently, in the setting of two Banach spaces, Tang et al. [] obtained a weak conver-
gence theorem and a strong convergence theorem of the split common fixed point problem
involving a quasi-strict pseudo-contractive mapping and an asymptotically nonexpansive
mapping under the following assumptions:

() E is a real uniformly convex and -uniformly smooth Banach space having the
Opial property and the best smoothness constant k satisfying  < k < √

 .
() E is a real Banach space.
() A : E → E be a bounded linear operator and A∗ is the adjoint of A.
() S : E → E is an {ln}-asymptotically nonexpansive mapping with {ln} ⊂ (,∞) and

ln → . T : E → E is a τ -quasi-strict pseudo-contractive mapping with F(S) �= ∅
and F(T) �= ∅, and T is demiclosed at zero.



Wang and Ma Fixed Point Theory and Applications  (2016) 2016:94 Page 4 of 12

Theorem . ([]) Let E, E, A, S, T , and {ln} be the same as above. For each x ∈ E, let
{xn} be the sequence generated by

{

zn = xn + γ J–
 A∗J(T – I)Axn,

xn+ = ( – αn)zn + αnSn(zn), ∀n ≥ ,
(.)

where {αn} is a sequence in (, ) with lim infn→∞ αn( – αn) > , γ is a positive constant
satisfying  < γ < min{ –k

‖A‖ , –τ

‖A‖ }, {ln} is a sequence in [,∞) with L = supn≥{ln} and
∑∞

n=(ln – ) < ∞.
(I) If � = {p ∈ F(S) : Ap ∈ F(T)} �= φ, then the sequence {xn} converges weakly to a point

x∗ ∈ �.
(II) In addition, if � = {p ∈ F(S) : Ap ∈ F(T)} �= φ and S is semi-compact, then {xn}

converges strongly to a point x∗ ∈ �.

This naturally brings about the following question:

Question Can we obtain the convergence results of split common fixed point problem
for asymptotically nonexpansive semigroups in the setting of two Banach spaces?

In this paper, motivated and inspired by the recent research going on in the direction
of split feasibility problems and split common fixed point problems, we construct an it-
eration scheme to approximate a split common fixed point of two asymptotically nonex-
pansive semigroups in the setting of two Banach spaces. Under some suitable conditions
on parameters, the iteration scheme proposed is shown to converge strongly and weakly
to a split common fixed point of asymptotically nonexpansive semigroups in two Banach
spaces.

2 Preliminaries
We now recall some definitions and elementary facts which will be used in the proofs of
our main results.

Let E be a real Banach space with the dual E∗. The normalized duality mapping J from
E to E∗ is defined by

Jx =
{

x∗ ∈ E∗ :
〈

x, x∗〉 = ‖x‖ =
∥
∥x∗∥∥}, ∀x ∈ E, (.)

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗.
A Banach space E is said to be strictly convex if ‖x+y‖

 ≤  for all x, y ∈ U = {z ∈ E : ‖z‖ = }
with x �= y. The modulus of convexity of E is defined by

δE(ε) = inf

{

 –
∥
∥
∥
∥




(x + y)
∥
∥
∥
∥

: ‖x‖,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

,

for all ε ∈ [, ]. E is said to be uniformly convex if δE() = , and δE(ε) >  for all  < ε ≤ .
A Hilbert space is -uniformly convex, while Lp is max{p, }-uniformly convex for every
p > .

Let ρE : [,∞) → [,∞) be the modulus of smoothness of E defined by

ρE(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x ∈ U ,‖y‖ ≤ t

}

.
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A Banach space E is said to be uniformly smooth if ρE(t)
t →  as t → . A typical exam-

ple of uniformly smooth Banach space is Lp, where p > . More precisely, Lp is min{p, }-
uniformly smooth for every p > . Let q be a fixed real number with q > , then a Banach
space E is said to be q-uniformly smooth if there exists a constant c >  such that ρE(t) ≤ ctq

for all t > . It is well known that every q-uniformly smooth Banach space is uniformly
smooth.

Lemma . ([]) Given a number r > . A real Banach space E is uniformly convex if
and only if there exists a continuous strictly increasing function g : [,∞) → [,∞) with
g() =  such that

∥
∥tx + ( – t)y

∥
∥

 ≤ t‖x‖ + ( – t)‖y‖ – t( – t)g
(‖x – y‖),

for all x, y ∈ E, t ∈ [, ], with ‖x‖ ≤ r and ‖y‖ ≤ r.

Let E and E be two real Banach spaces, C and Q be nonempty closed convex subsets
of E and E, respectively. A : E → E is a bounded linear operator such that A �= . Then
the split common fixed point problem is to find a point q ∈ E with the property:

q ∈ F(S) and Aq ∈ F(T), i.e., q ∈ F(S) ∩ A–F(T), (.)

where F(S) and F(T) denote the sets of fixed points of S and T , respectively.
Let T : C → C be a mapping with F(T) �= ∅. Then T is said to be demiclosed at zero if

for any {xn} ⊂ C with xn ⇀ x and ‖xn – Txn‖ → , x = Tx.
A mapping T : C → C is said to be semi-compact, if for any sequence {xn} in C such that

‖xn – Txn‖ →  (n → ∞), there exists a subsequence {xnj} of {xn} such that {xxj} converges
strongly to x∗ ∈ C.

A Banach space E is said to satisfy Opial property if for any sequence {xn} in E, xn ⇀ x,
for any y ∈ E with y �= x, we have

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖. (.)

Lemma . ([]) Let E be a real uniformly convex Banach space, C be a nonempty closed
subset of E, and let T : C → C be an asymptotically nonexpansive mapping. Then I – T is
demiclosed at zero, that is, if {xn} ⊂ C converges weakly to a point p ∈ C and limn→∞ ‖xn –
Txn‖ = , then p = Tp.

Lemma . ([]) Let {an} and {αn} be two nonnegative real number sequences and satisfy

an+ ≤ ( + αn)an, ∀n ≥ ,

where an ≥ , αn ≥  and
∑∞

n= αn < ∞. Then
() limn→∞ an exists;
() if lim infn→∞ an = , then limn→∞ an = .
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Lemma . ([]) Let E be a -uniformly smooth Banach space with the best smoothness
constants K > . Then the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 〈y, Jx〉 + ‖Ky‖, ∀x, y ∈ E. (.)

3 Main results
Theorem . Let E be a real uniformly convex and -uniformly smooth Banach space
satisfying Opial’s condition and with the best smoothness constant k satisfying  < k < √

 ,
E be a real Banach space, and A : E → E be a bounded linear operator and A∗ be the ad-
joint of A. Let {S(t) : t ≥ } : E → E be a uniformly asymptotically regular asymptotically
nonexpansive semigroup with a bounded measurable function L()(t) : [,∞) → [,∞) sat-
isfying limt→∞ L()(t) =  and C :=

⋂

t≥ F(S(t)) �= ∅, {T(t) : t ≥ } : E → E be a uni-
formly asymptotically regular family of asymptotically nonexpansive semigroup with a
bounded measurable function L()(t) : [,∞) → [,∞) satisfying limt→∞ L()(t) =  and
Q :=

⋂

t≥ F(T(t)) �= ∅, respectively. Let {xn} be a sequence generated by x ∈ E,

{

zn = xn + γ J–
 A∗J(T(tn) – I)Axn, ∀n ≥ ,

xn+ = ( – αn)zn + αnS(tn)(zn),
(.)

where {tn} is a sequence of real numbers, {αn} is a sequence in (, ), and γ is a positive
constant satisfying

() tn >  and limn→∞ tn = ∞;
() L(t) = max{L()(t), L()(t)} and

∑∞
n=(L(tn) – ) < ∞;

() M = supn L(tn), lim infn→∞ αn( – αn) >  and  < γ < min{ –k

‖A‖M , 
‖A‖ }.

(I) If � = {p ∈ C : Ap ∈ Q} �= ∅, then the sequence {xn} converges weakly to a split
common fixed point x∗ ∈ �.

(II) In addition, if � = {p ∈ C : Ap ∈ Q} �= ∅ and there exists at least one
S(t) ∈ {S(t) : t ≥ } that is semi-compact, then {xn} converges strongly to a split
common fixed point x∗ ∈ �.

Proof Now we prove the conclusion (I).
We shall divide the proof into four steps.
Step . We first show that the limit limn→∞ ‖xn – p‖ exists for any p ∈ �.
For any given p ∈ �, then p ∈ C and Ap ∈ Q. It follows from (.), (.), and Lemma .

that

‖zn – p‖ =
∥
∥(xn – p) + γ J–

 A∗J
(

T(tn) – I
)

Axn
∥
∥



≤ ∥
∥γ J–

 A∗J
(

T(tn) – I
)

Axn
∥
∥

 + γ
〈

xn – p, A∗J
(

T(tn) – I
)

Axn
〉

+ k‖xn – p‖

≤ γ ‖A‖∥∥
(

T(tn) – I
)

Axn
∥
∥

 + γ
〈

Axn – Ap, J
(

T(tn) – I
)

Axn
〉

+ k‖xn – p‖

= γ ‖A‖∥∥
(

T(tn) – I
)

Axn
∥
∥

 + k‖xn – p‖

+ γ
〈

Axn – T(tn)Axn + T(tn)Axn – T(tn)Ap, J
(

T(tn) – I
)

Axn
〉
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= γ ‖A‖∥∥
(

T(tn) – I
)

Axn
∥
∥

 – γ
∥
∥Axn – T(tn)Axn

∥
∥



+ γ
〈

T(tn)Axn – T(tn)Ap, J
(

T(tn) – I
)

Axn
〉

+ k‖xn – p‖

≤ γ ‖A‖∥∥
(

T(tn) – I
)

Axn
∥
∥

 – γ
∥
∥
(

T(tn) – I
)

Axn
∥
∥



+ γ
[∥
∥T(tn)Axn – T(tn)Ap

∥
∥

 +
∥
∥
(

T(tn) – I
)

Axn
∥
∥

] + k‖xn – p‖

≤ γ
(

γ ‖A‖ – 
)∥
∥
(

T(tn) – I
)

Axn
∥
∥

 + γ ‖A‖L(tn)‖xn – p‖ + k‖xn – p‖

=
(

γ ‖A‖L(tn) + k)‖xn – p‖ – γ
(

 – γ ‖A‖)∥∥
(

T(tn) – I
)

Axn
∥
∥

. (.)

It follows from (.), (.), and Lemma . that

‖xn+ – p‖ =
∥
∥zn – p + αn

(

S(tn)zn – zn
)∥
∥



≤ ( – αn)‖zn – p‖ + αn
∥
∥S(tn)zn – p

∥
∥

 – αn( – αn)g
(∥
∥zn – S(tn)zn

∥
∥
)

≤ ( – αn)‖zn – p‖ + αnL(tn)‖zn – p‖ – αn( – αn)g
(∥
∥zn – S(tn)zn

∥
∥
)

=
(

 + αn
(

L(tn) – 
))‖zn – p‖ – αn( – αn)g

(∥
∥zn – S

(ntn
)

zn
∥
∥
)

≤ (

 + αn
(

L(tn) – 
))[(

γ ‖A‖L(tn) + k)‖xn – p‖

– γ
(

 – γ ‖A‖)∥∥
(

T(tn) – I
)

Axn
∥
∥

] – αn( – αn)g
(∥
∥zn – S(tn)zn

∥
∥

)

≤ (

 + αn
(

L(tn) – 
))(

γ ‖A‖M + k)‖xn – p‖

–
(

 + αn
(

L(tn) – 
))

γ
(

 – γ ‖A‖)∥∥
(

T(tn) – I
)

Axn
∥
∥



– αn( – αn)g
(∥
∥zn – S(tn)zn

∥
∥
)

. (.)

Since limtn→∞ L(tn) = ,
∑∞

n=(L(tn) – ) < ∞,  < k < √
 ,  < γ < –k

‖A‖M , so  <
γ ‖A‖M + k < , and from (.) and Lemma . we see that the limn→∞ ‖xn – p‖ ex-
ists. This implies that {xn} is bounded. Further, it follows from (.) that {zn} is bounded,
too.

Step . We prove that limn→∞ ‖xn+ – xn‖ =  and limn→∞ ‖zn+ – zn‖ = .
It follows from (.) that

‖xn+ – p‖ ≤ (

 + αn
(

L(tn) – 
))(

γ ‖A‖M + k)‖xn – p‖

– γ
(

 – γ ‖A‖)∥∥
(

T(tn) – I
)

Axn
∥
∥

 – αn( – αn)g
(∥
∥zn – S(tn)zn

∥
∥
)

. (.)

From (.), we have

γ
(

 – γ ‖A‖)∥∥
(

T(tn) – I
)

Axn
∥
∥

 + αn( – αn)g
(∥
∥zn – S(tn)zn

∥
∥
)

≤ (

 + αn
(

L(tn) – 
))(

γ ‖A‖L(tn) + k)‖xn – p‖ – ‖xn+ – p‖

= ‖xn – p‖ + αn
(

L(tn) – 
)(

γ ‖A‖L(tn) + k)‖xn – p‖ – ‖xn+ – p‖. (.)

This implies that

lim
n→∞

∥
∥
(

T(tn) – I
)

Axn
∥
∥ =  (.)
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and

lim
n→∞ g

(∥
∥zn – S(tn)zn

∥
∥
)

= . (.)

By virtue of Lemma . and the property of g , we may get

lim
n→∞

∥
∥zn – S(tn)zn

∥
∥ = . (.)

It follows from (.) that

‖xn+ – xn‖ =
∥
∥( – αn)zn + αnS(tn)zn – xn

∥
∥

=
∥
∥( – αn)

[

xn + γ J–
 A∗J

(

T(tn) – I
)

Axn
]

+ αnS(tn)zn – xn
∥
∥

=
∥
∥( – αn)γ J–

 A∗J
(

T(tn) – I
)

Axn + αn
(

S(tn)zn – xn
)∥
∥

=
∥
∥( – αn)γ J–

 A∗J
(

T(tn) – I
)

Axn + αn
(

S(tn)zn – zn
)

+ αn(zn – xn)
∥
∥

=
∥
∥( – αn)γ J–

 A∗J
(

T(tn) – I
)

Axn + αn
(

S(tn)zn – zn
)

+ αnγ J–
 A∗J

(

T(tn) – I
)

Axn
∥
∥

=
∥
∥γ J–

 A∗J
(

T(tn) – I
)

Axn + αn
(

S(tn)zn – zn
)∥
∥

≤ ∥
∥γ J–

 A∗J
(

T(tn) – I
)

Axn
∥
∥ + αn

∥
∥S(tn)zn – zn

∥
∥. (.)

It follows from (.), (.), and (.) that

lim
n→∞‖xn+ – xn‖ = . (.)

In addition, since

∥
∥
(

T(tn) – I
)

Axn+
∥
∥ =

∥
∥
(

T(tn) – I
)

Axn+ –
(

T(tn) – I
)

Axn +
(

T(tn) – I
)

Axn
∥
∥

≤ (

L(tn) + 
)‖A‖‖xn+ – xn‖ +

∥
∥
(

T(tn) – I
)

Axn
∥
∥,

it follows from (.) and (.) that

lim
n→∞

∥
∥
(

T(tn) – I
)

Axn+
∥
∥ = . (.)

Similarly,

‖zn+ – zn‖
=

∥
∥xn+ + γ J–

 A∗J
(

T(tn) – I
)

Axn+ – xn – γ J–
 A∗J

(

T(tn) – I
)

Axn
∥
∥

≤ ∥
∥(xn+ – xn) + γ J–

 A∗J
(

T(tn) – I
)

Axn+ – γ J–
 A∗J

(

T(tn) – I
)

Axn
∥
∥

≤ ‖xn+ – xn‖ +
∥
∥γ J–

 A∗J
(

T(tn) – I
)

Axn+
∥
∥ +

∥
∥γ J–

 A∗J
(

T(tn) – I
)

Axn
∥
∥. (.)

In view of (.), (.), (.), and (.), we have

lim
n→∞‖zn+ – zn‖ = . (.)
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In addition,

‖xn – zn‖ =
∥
∥J(xn – zn)

∥
∥ =

∥
∥γ A∗J

(

T(tn) – I
)

Axn
∥
∥ ≤ γ ‖A‖∥∥(

T(tn) – I
)

Axn
∥
∥, (.)

from (.), we have

lim
n→∞‖xn – zn‖ = . (.)

Step . We prove that limn→∞ ‖zn – S(t)zn‖ =  and limn→∞ ‖(T(t) – I)Azn‖ =  for all
t ≥ .

Since {S(t) : t ≥ } and {T(t) : t ≥ } are uniformly asymptotically regular, and
limn→∞ tn = ∞, for all t ≥ ,

lim
n→∞

∥
∥S(t)S(tn)zn – S(tn)zn

∥
∥ ≤ lim sup

n→∞,x∈C

∥
∥S(t)S(tn)x – S(tn)x

∥
∥ =  (.)

and

lim
n→∞

∥
∥T(t)

(

T(tn) – I
)

Azn –
(

T(t) – I
)

Azn
∥
∥

≤ lim sup
n→∞,x∈C

∥
∥T(t)

(

T(tn) – I
)

Ax –
(

T(t) – I
)

Ax
∥
∥ = . (.)

Since {S(t)x} is continuous on t for all x ∈ E, and

∥
∥zn – S(t)zn

∥
∥ ≤ ∥

∥zn – S(tn)zn
∥
∥ +

∥
∥S(tn)zn – S(t)S(tn)zn

∥
∥

+
∥
∥S(t)S(tn)zn – S(t)zn

∥
∥, (.)

it follows from (.) and (.) that

lim
n→∞

∥
∥zn – S(t)zn

∥
∥ = . (.)

Similarly,

lim
n→∞

∥
∥
(

T(t) – I
)

Axn
∥
∥ = . (.)

Step . We prove that {xn} converges weakly to a point x∗ ∈ �.
By the reflexivity of Banach space E and boundedness of {xn}, there exists a subsequence

{xni} of {xn} converging weakly to x∗. By using (.) this implies that {zni} of {zn} converges
weakly to x∗, too. Since S(t) is asymptotically nonexpansive for all t ≥ , it is demiclosed
at zero, we know from Lemma . that x∗ ∈ F(S(t)).

On the other hand, since A is a bounded linear operator, we know that {Axni} converges
weakly to Ax∗. It follows from (.) that limni→∞ ‖(T(t) – I)Axni‖ = . Since T(t) is demi-
closed at zero for all t ≥ , we have Ax∗ ∈ F(T(t)). This means that x∗ ∈ �.

We now prove that {xn} converges weakly to x∗ ∈ �.
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In fact, if there exists another subsequence {xnj} of {xn} such that {xnj} converges weakly
to y∗ ∈ E, we also know that y∗ ∈ F(T(t)). By the assumption that E satisfies Opial’s con-
dition, we have

lim inf
ni→∞

∥
∥xni – x∗∥∥ < lim inf

ni→∞
∥
∥xni – y∗∥∥

= lim inf
n→∞

∥
∥xn – y∗∥∥

= lim inf
nj→∞

∥
∥xnj – y∗∥∥

< lim inf
ni→∞

∥
∥xni – x∗∥∥

= lim inf
n→∞

∥
∥xn – x∗∥∥ = lim inf

ni→∞
∥
∥xni – x∗∥∥. (.)

This is a contradiction. Therefore {xn} converges weakly to x∗ ∈ �. The proof of conclusion
(I) is completed.

Next, we prove conclusion (II).
Since there exists at least one S(t) ∈ {S(t) : t ≥ } that is semi-compact and limn→∞ ‖zn –

S(t)zn‖ =  for all t ≥ , there exists subsequence {znj} of {zn} such that {znj} converges
strongly to μ∗ ∈ E. By using (.) again, we know that the subsequence {xnj} of {xn}
converges strongly to μ∗. Due to {xn} converging weakly to x∗, we obtain μ∗ = x∗. Since
limn→∞ ‖xn – x∗‖ exists and limn→∞ ‖xnj – x∗‖ = , we know that {xn} converges strongly
to x∗ ∈ �. This completes the proof of conclusion (II). �

Corollary . Let E be a real uniformly convex and -uniformly smooth Banach space
satisfying Opial’s condition and with the best smoothness constant k satisfying  < k < √

 ,
E be a real Banach space, and A : E → E be a bounded linear operator and A∗ is the
adjoint of A, {S(t) : t ≥ } : E → E and {T(t) : t ≥ } : E → E be two-parameter nonex-
pansive semigroups satisfying C :=

⋂

t≥ F(S(t)) �= ∅ and Q :=
⋂

t≥ F(T(t)) �= ∅, respectively.
Let {xn} be a sequence generated by x ∈ E,

{

zn = xn + γ J–
 A∗J(T(tn) – I)Axn, ∀n ≥ ,

xn+ = ( – αn)zn + αnS(tn)(zn),
(.)

where {tn} is a sequence of real numbers satisfying tn >  and limn→∞ tn = ∞, {αn} is a
sequence in (, ) satisfying lim infn→∞ αn( – αn) > , γ is a positive constant satisfying
 < γ < –k

‖A‖ .
(I) If � = {p ∈ C : Ap ∈ Q} �= ∅, then the sequence {xn} converges weakly to a split

common fixed point x∗ ∈ �.
(II) In addition, if � = {p ∈ C : Ap ∈ Q} �= ∅ and there exists at least one

S(t) ∈ {S(t) : t ≥ } that is semi-compact, then {xn} converges strongly to a split
common fixed point x∗ ∈ �.

4 Application to hierarchical variational inequality problem in Banach spaces
Let E be a strictly convex and real reflexive Banach space and K be a nonempty closed
and convex subset of E. Then, for any x ∈ E, there exists a unique element z ∈ K such that
‖x–z‖ ≤ ‖x–y‖ for all y ∈ K . Putting z = PK x, we call PK the metric projection of E onto K .
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Lemma . ([]) Let E be a smooth, strictly convex, and reflexive Banach space, and K
be a nonempty, closed, and convex subset of E. Let x ∈ E and z ∈ K . Then the following
conditions are equivalent:

(i) z = PK x;
(ii) 〈z – y, J(x – z)〉 ≥ ,∀y ∈ K , where J is the normalized duality mapping on E.

Definition . ([]) Let E be a smooth, strictly convex, and reflexive Banach space, and
K be a nonempty, closed and convex subset of E. Let S : K → K be a nonlinear mapping
with F(S) being a nonempty, closed, and convex subset of K and V : K → K be a nonlinear
mapping. The so-called hierarchical variational inequality problem for a mapping S with
respect to a mapping V in Banach spaces is to find x ∈ F(S) such that

〈

x∗ – x, J
(

Vx∗ – x∗)〉 ≥ , ∀x ∈ F(S). (.)

By Lemma ., the hierarchical variational inequality problem in Banach space (.) is
equivalent to the following fixed point equation:

x∗ = PF(S)V
(

x∗). (.)

Letting C = F(S) and Q = F(PF(S)V ) (the fixed point set of PF(S)V ) and A = I (the identity
mapping on E), then the hierarchical variational inequality problem (.) for a mapping S
with respect to a mapping V in Banach space is equivalent to the following split common
fixed point problem in Banach space:

to find x ∈ C such that x ∈ Q. (.)

Therefore the set of solutions of hierarchical variational inequality problem (.) is just
the set of solutions of split common fixed point problem (.).

In Theorem ., we take E = E = E, A = I , T(t) = PF(S(t))V (t), J = J = J (where J is
the normalized duality mapping on E), the following conclusion can be obtained from
Theorem . immediately.

Theorem . Let E be a real uniformly convex and -uniformly smooth Banach space
satisfying Opial’s condition and with the best smoothness constant k satisfying  < k < √

 ,
Let {S(t) : t ≥ } : E → E be uniformly asymptotically regular family of asymptotically
nonexpansive semigroup with a bounded measurable function L()(t) : [,∞) → [,∞)
satisfying limt→∞ L()(t) =  and C :=

⋂

t≥ F(S(t)) �= ∅. Let {V (t) : t ≥ } : E → E be a
semigroup and {T(t) : t ≥ } := {PF(S(t))V (t) : t ≥ } be uniformly asymptotically regular
family of asymptotically nonexpansive semigroup with a bounded measurable function
L()(t) : [,∞) → [,∞) satisfying limt→∞ L()(t) =  and Q :=

⋂

t≥ F(T(t)) �= ∅. Let {xn}
be a sequence generated by x ∈ E,

{

zn = xn + γ (T(tn) – I)xn, ∀n ≥ ,
xn+ = ( – αn)zn + αnS(tn)(zn),

(.)

where {tn} is a sequence of real numbers, {αn} is a sequence in (, ) and γ is a positive
constant satisfying
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() tn >  and limn→∞ tn = ∞;
() L(t) = max{L()(t), L()(t)} and

∑∞
n=(L(tn) – ) < ∞;

() M = supn L(tn), lim infn→∞ αn( – αn) > , and  < γ < min{ –k

‖A‖M , 
‖A‖ }.

(I) If � �= ∅ (the set of solutions of hierarchical variational inequality problem (.) is
nonempty), then the sequence {xn} converges weakly to a split common fixed point
x∗ ∈ �.

(II) In addition, if � = {p ∈ C : Ap ∈ Q} �= ∅ and there exists at least one
S(t) ∈ {S(t) : t ≥ } that is semi-compact, then {xn} converges strongly to a split
common fixed point x∗ ∈ �.
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