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Abstract

In the paper general theorems on common fixed point for four mappings are
presented. The results are compact and they extend and unify the respective part of
the fixed point theory.
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1 Introduction

The present paper was inspired by the advanced and sophisticated article of Liu et al. [1].
Our assumptions are weaker, as the comparison function is much more general, and we
do not assume the spaces under consideration to be metric. In addition the general con-
traction condition is compact and abstract. Also the proofs are relatively simple.

2 Theorems

Let us recall (see [2]) that @ is the family of all mappings ¢ : [0,00) — [0, 00) such that

(o) <o, a >0, and P consists of mappings ¢ € ® such that ¢(0) = 0. In turn, ®p is

the family of all mappings ¢ : [0,00) — [0, 00) for which every sequence (a,),cn such that

ann < ¢(a,), n €N, converges to zero. It is well known ([2], Proposition 16) that ®p C Py.
In turn, ¥p (see [3]) consists of all mappings of ® for which every sequence (a,),cn

such that 0 < a,,,; < ¢(a,), n € N converges to zero. It is known ([4], Corollary 2.4) that

Wy consists of all mappings ¢ € ¢ satisfying

for each « > 0,¢(:) < o on some interval (o, o + €). 1)

Clearly, ®p C ¥p holds and consequently, all members of ®p satisfy (1).
Lemma 2.1 Ifa ¢ € & satisfies (1), then ¢ € Op.

Proof Let (a,),cn be a sequence such that a,,,; < ¢(a,), n € N for a ¢ € ;. Then we have

Apsl = (p(ﬂn) = apy, neN.
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Therefore, (a,),cn is nonincreasing and it converges, say to «. Suppose « > 0. Then from
(1) it follows that there exists an interval (&, + €) on which ¢(-) < «. For large n all a4,

belong to this interval, as

O<a < (p(an+1) <apsy1 = ap,

and ¢ € ® yield @ < ¢(ay41) < dys1. Now, we have « < 4,1 < ¢(a,) < a, a contradiction.

Consequently, o =0, i.e. ¢ € p. g
Corollary 2.2 ®p consists of all mappings ¢ € g satisfying (1).

The notion of dislocated metric space presented below is due to Hitzler and Seda [5].

Let X be a nonempty set, and p: X x X — [0, 00) a mapping satisfying

p(x,y)=0yieldsx =y, xyeX, (2a)
pxy) =plx), xyeX, (2b)
px,2) <plx,y) +p,2), xyzeX. (2¢)

Then p is called a dislocated metric (briefly a d-metric), and (X, p) is called a dislocated

metric space (briefly a d-metric space). The topology of (X, p) is generated by balls.
Many authors applied sophisticated contraction conditions. To present a general idea

let us consider a mapping 4 : X* — [0, 00) satisfying the following requirements for each

a>0:
(a=d or b=c)yields h(a, b,c,d) < max{p(a,b), p(c,a),p(d, b)}, (3a)
(p(a,b) > o and p(c, a), p(d, b) — 0) yields limsup h(a, b,c,d) <, (3b)
if p(d, b) > o and p(a, b), p(c, a) are small, then h(a, b, c,d) < p(d, b), (3¢)
if p(c,a) > « and p(a, b), p(d, b) are small, then k(a, b, c,d) < p(c, a), (3d)
h(a,b,a,b) < p(a,b). (3e)

In order to present an example let us recall the notion of partial metric due to Matthews
([6], Definition 3.1).
A partial metric is a mapping p : X X X — [0, 00) such that

x=yiff p(x,x) = p(x,y) =p(y), xy€X, (42)
pxx) <py), xyeX, (4b)
px%y) =p(y,x), xyeX, (4c)
px,2) <plxy) + p(,2) - p(:y),  xy,z€X. (4d)

Conditions (4b), (4a) yield (2a) and therefore each partial metric is a d-metric. As re-
gards the respective spaces, the situation is more complicated because their topologies are
different.
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Example 2.3 Let p be a partial metric on X and let
ha,b,c,d) = [pla,d) + plb, 0)]/2. (5)
Then for a = d we have

[p(a,d) + p(b,)]/2 < [pla,d) + pb,d) + p(d, c) - pd, d)]/2
= [p(b, d) + p(a, c)]/2 < max{p(c, a),p(d, b)}.

Similarly, for b = ¢ we obtain

[p(@,d) + p(b,0)]/2 < [p(a, b) + p(b,d) - p(b,b) + p(b, ]2
= [p(a, b) + p(b, d)]/2 < max{p(a, b),p(d, b)}.

Consequently, (3a) holds. From

[p(u, d) + p(b, c)]/2
< [p(a,b) + p(b,d) - p(b, b) + p(b,a) + p(a,c) - p(a,a)]/2
:p(ﬂ,b) + [p(drb) —P(b,b) +P(C;ﬂ) —P(ﬂrﬂ)]/z

we obtain (3b), (3¢), (3d), and (3e).

The notion of a 0-complete d-metric space (or a set) was presented in [3], Definition 2.3
(condition (2.5)). Let us note that if lim,,_, o p(y,%,,) = lim,_, 5 p(x,%,) = 0 holds, then from
px,y) < plx,x,) + p(y,x,) it follows that x = y. In addition, p(x,x) < 2p(x,x,) means that
p(x,x) = 0. Therefore, condition (2.5) of [3] is equivalent to

for each sequence (x,),en in X with  lim  p(x,,x,,) =0
m,n— 00

(6)

there exists a unique x € X for which lim p(x,x,) = p(x,x) = 0.
n—00

The idea of 0-completeness for partial metric spaces is due to Romaguera ([7], Defi-
nition 2.1). A partial metric space (X, p) is called 0-complete if any 0-Cauchy sequence
(*u)nen in X (i.e. such that limy,,—, o0 p(x,, %,,) = 0), converges (in the topology of (X, p)) to
a point x € X for which p(x,x) = 0.

It is well known (e.g. [6]) that x € lim,_ %, in a partial metric space (X,p) iff
lim,,_, o p(x, %,,) = p(x,x). In addition, as it was noticed before, each partial metric is a
d-metric. Hence we obtain the following.

Corollary 2.4 Any partial metric space (X, p) is 0-complete iff (X, p) treated as a d-metric
space is 0-complete, and iff (6) is satisfied.

Proposition 2.5 Let (X, p) be a d-metric space and let (x,,),cn be a sequence of points of X
such that

p(xn+27xn+l) = ¢(P(xn+1,xn)), ne N¢
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holds for a ¢ € ®p. Then we have
lim p(%,.1,%,) = lim p(x,,%,) = 0. (7)
n—0o0 n—00

Proof Let us adopt a,, = p(x,41,%,). Clearly, a,,1 < ¢(ay), n € N holds, and lim,, .o a, = 0,
as ¢ € ®p. Now, p(x,,, x,) < 2p(x,41,%,) = 2a,, completes (7). O

In the following f(X) is replaced by fX, f(x) is replaced by fx, etc. The precise order in
max{p(a, b), p(c,a), p(d,b)} informs on the variables of the mapping /4, and they are not

shown in the proofs.

Lemma 2.6 Let (X,p) be a d-metric space and let f,g,1i,j be self mappings in X satisfying

the following conditions:

X CjX, gX CiX and at least one of these sets is 0-complete, (8)

p(fx,gy) < o(max{p(ix, jy), p(fx, ix), p(gy, jy), h(ix,jy, fx, g0)}), )

forah:X* — [0,00) such that (3a), (3b) hold, and a ¢ € ®p (see Corollary 2.2). Then there

exist sequences (%) ueN, (Vn)nen in X such that

Xok+1 = Y2k fOT KXok = JYok and

(10)
KXok = fyakar  for xok_1 = iya1, keN,
and (x,)nen converges to a point x such that p(x,x) = 0, and
x=lim x, = lim fyo_; = lim iys
n—00 k— 00 k— 00 (11)

i = lim v
kggogyzk kggo]m
Proof From (8), (9), and (3a) (for b = ¢) it follows that

for each x € X there exists a y € X such that fx = jy and

p(gy.fx) = p(fx, gy) < p(max{p(ix, fx), p(gy, fx)}),
and (for a = d)

for each x € X there exists a y € X such that gx = iy and

p(fy.gx) < p(max{p(gx,jx), p(fy,gx)}).

If e.g. p(fx, ix) < p(gy,fx) holds, then p(gy, fx) < p(p(gy,fx)) means that p(gy,fx) = 0,as ¢ €
®,. Consequently, (8) and (9) yield

for each x € X there exists a y € X such that

fx = jy and p(gy, fx) < o(p(fx, ix))
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and

for each x € X there exists a y € X such that
(13)
gx = iy and p(fy, gx) < ¢(p(gx, jx)).

For an xy € X let us adopt x; = gxo = iy1, X2 = fy1, where p(x,x1) < o(p(x1,jx0)) (see (13)).
Now, we define x3 = gy, for y, such that x; = fy; = jy, and p(x3, ;) < @(p(x2,%1)) (see (12)).
In turn x4 = fys for ys such that x5 = gy, = iys and p(x4,x3) < @(p(xs3,x2)) (see (13)). By
induction we define two sequences (x,,),en, (Vn)nen satisfying (10) and

P&n2s%ni1) < @(pxni1,%4)), neN.

In view of Proposition 2.5 we have lim,,_, o, p(x,11,%,,) = 0.

Suppose that there exists an infinite set K C N such that for each k € K there exists an
n € N for which 0 < & < p(xox, %2,4142¢) holds. Let n = n(k) > 0 be the smallest numbers
satisfying this inequality for k € K. We have (see (2c))

o = p(Xag, X2k-1) = P(Kans2k X2n+142k)
< P2k Xons142k) — PXokr X2k-1) — P(KX212k X24142k)
< p(X2k-1, X20+2k)
< p(or—1,%2k) + p(Xoks X2n-142k) + P(X2n-142k X2142k)

< p(Xok—1,%21) + & + P(X20-142k X2n+2k)

for n = n(k), and therefore (see (7)),
li 1L %Xon =a.
k‘g{gl’(’czk 1 X242k) = O
Now, (9), (10), (7), and the above equality yield

P2k, X2n1142k) = P(fV2k-1, €V 2n42k)
< g(max{p(iyak-1, /y2n+26)s PY2k-1> V21-1)s D@V 2ms200 JY2ms2k), B () })
= (/J(max{p(ka—l;x2n+2k);p(x2k;x2k—l);p(x2n+l+2krx2n+2k)rh(')})

=¢ (max {p(ka—lx X2n42k)s h()})

for large k. In turn, (3b) yields

limsup A(-) < limp(xox_1, X2n42k) = ,
keK keK

and hence we obtain max{p(xax_1, %2,12k), A(-)} < & + € for large k. From ¢(8) < « for B < «,
and (1) we get

@ < P&, Xoneraak) < @ (max{p(ear, Xonean), () }) < a,
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for large k, a contradiction. Therefore
lim p(xog, %2n41424) = 0
k,n—00

holds, and (7) with the triangle inequality (2c) yield lim,,; ;o0 p(%4, %,,,) = 0. Consequently
(see (6)), there exists an x € X such that lim,,_. », p(x,x,) = p(x,x) =0, and (11) holds. [

Let usrecall (see [8]) that a pair (f, i) of mappings f,i : X — X is called weakly compatible
if

for each x € X, fx = ix yields fix = ifx.
Now, we are ready to prove our theorem.

Theorem 2.7 Let (X, p) be a d-metric space such that (4b) holds. Assume thatf, g, i, j are
self mappings in X satisfying

(f,i), (g,j) areweakly compatible, (14)
(8), and (9) for a ¢ € ®p (see Corollary 2.2) and a mapping h : X* — [0, 00) for which the
system of conditions (3a)-(3e) holds. Then f, g, i, j have a unique common fixed point, say

x, and p(x,x) = 0.

Proof Let (%,)uen> (Vn)nen, and x be as in Lemma 2.6. Assume e.g. that x € jX (for 0-
complete jX or fX). Then there exists a v such that x = jv. Let us prove that gv = x. We

have

p(gv,x) = p(x,gv) < p(x, %) + px2ic, gV).-
Suppose p(gv,x) > 0. Then we obtain

P(x24,8v) = p(fyau-1,8v)
< <P(maX{P(i)’Zk—ler):P(fyzk—l: ika—l)’p(gver)! h()})
= §0(maX{P(x2k-1; x)»P(xzk: x2k—1)»P(gV; x)7 h() }) = (p(p(gV, x))’

for large k (see (9), (3c). Hence,
pgv,®) < Jim plx, ) + ¢ (p(gv, »))
yields p(gv,x) = 0 (¢ € ®p), and gv = x. Thus we have x = gv = jv.

From gX C iX it follows that there exists a w such that x = iw. Let us show that fw = x.
We have

p(fw,x) < p(fw, gyak) + p(yar, %) = p(fw, gyar) + P(Xoks1,X).
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Suppose p(fw,x) > 0. Then we have

P(fw,gyar) < o(max{p(iw, jyar), p(fw, iw), p(gyax: jyax), B(-) })

= ¢ (max{p(x, x21), (W, ), p(2ics1, %20 }) = @ (p(fw, %))

for large k (see (9)), (3d)). Hence, we obtain
pfw,x) < o(p(fw,x)) + Jim p(oki, x) = o(p(fw,x)),

and p(fw,x) = 0, i.e. x = fw = iw.
Now, (14) yields

jx=jgv=gjv=gx and ix=ifw=fiw=fx.
Let us show that fx = gx. We have (see (9), (3e), (4b))

p(fx, gx) < p(max{p(ix, jx), p(fx, ix), p(gx, jx), h(-) })
= o(max{p(fx, gx), p(fx, fx), p(gx, gx)}) = 0 (p(fx, %)),

and therefore p(fx, gx) = 0, i.e. fx = gx (let us note that p(fx, fx) = 0 not necessarily holds if
p is a d-metric).

Now, it is clear that fx = gx = ix = jx holds.

Let us prove that gx = x. We have (see (9), (3e), (4b))

plx,gx) = p(fw, gx) < (p(max{p(iw,jx),p(fw, iw),p(gx,jx),h(~)})
= p(max{p(x, gx), p(x, %), p(gx.gx)}) = ¢(p(x,gx)),

and consequently, p(x,gx) = 0, i.e. gx = x.
We have proved that x = fx = gx = ix = jx.
If y is a common fixed point of our mappings, then (see (9), (3e), (4b))

p(x,9) = p(fr, gy) < ¢(max{p(ix, jy), p(fx, ix), p(gy,j¥), h()}) = ¢ (p(x,y))
yields p(x,y) = 0, i.e. x = y. O

The authors of [1] consider (in metric spaces) formulas M;, M,, and M3 instead of
‘max..." from our condition (9). It would be rather exhausting to cite M; or M;, never-
theless all three formulas are applied in conditions that are particular cases of (9) for &
satisfying (3a)-(3e).

The next theorem is a consequence of Corollary 2.4, and Theorem 2.7 (see also Exam-
ple 2.3).

Theorem 2.8 Let (X,p) be a partial metric space. Assume that f, g, i, j are self map-
pings in X satisfying (14), (8), and (9) for a ¢ € ®p (see Corollary 2.2) and a mapping
h: X* — [0,00) for which the system of conditions (3a)-(3e) holds. Then f, g, i, j have a
unique common fixed point, say x, and p(x,x) = 0.
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The above theorem is a far extension of [9], Theorem 2.8 in its part concerning a unique

common fixed point; our mapping ¢ need not be continuous (see also Example 2.3).
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