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Abstract
We establish some new common coupled fixed point theorems for a pair of operators
not assumed to satisfy mixed monotone type properties in the ordered Banach space
setting. For that purpose, the notions of weakly inflationary and weakly deflationary
operators are introduced in the two-dimensional setting, and existence and
uniqueness common coupled fixed point theorems for such operators are
established under certain condensing and contractive conditions involving the
two-dimensional setting. As an application, we study the existence and uniqueness of
nonnegative solutions for nonlinear integral equations.
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1 Introduction and preliminaries
The notion of a coupled fixed point was introduced and studied by Opoitsev [] and in-
vestigated later by Guo-Lakshmikantham []. Among investigations of coupled fixed point
results for nonlinear operators in the ordered Banach space setting, there are more results
on the existence of coupled fixed points than on the existence of common coupled fixed
points of a pair of operators, and most of these results were established for mixed mono-
tone operators; see for instance [–] and the references therein. The notion of a mixed
monotone operator was introduced in [] as follows.

Definition . Let (�,≤) be a partially ordered set. An operator A : � × � → � is said
to be mixed monotone if A(x, y) is nondecreasing in x and nonincreasing in y, in the sense
that

(∀x, x, y ∈ �) x ≤ x ⇒ A(x, y) ≤ A(x, y)

and

(∀x, y, y ∈ �) y ≤ y ⇒ A(x, y) ≥ A(x, y).
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In some recent work, the authors have followed a line of research consisting in replacing
the mixed monotonicity of operators by other properties, since the mixed monotonicity
is not often easy to check; see [] for a property based on the comparability of elements in
ordered metric spaces, and [, ] for the following alternative mixed monotone property.

Definition . Let (�,≤) be a partially ordered set, and let A : � × � → �, g : � → �

be two operators. A is said to be mixed g-monotone if A(x, y) is g-nondecreasing in x and
g-nonincreasing in y, in the sense that

(∀x, x, y ∈ �) g(x) ≤ g(x) ⇒ A(x, y) ≤ A(x, y)

and

(∀x, y, y ∈ �) g(y) ≤ g(y) ⇒ A(x, y) ≥ A(x, y).

Hence, the mixed g-monotone property of an operator A : �×� → � extends its mixed
monotone property (which is the mixed Id-monotone property where Id is the identity
mapping on �).

In this paper, we continue on this path by investigating the existence of common cou-
pled fixed points of a pair of operators A, B : � × � → �, where mixed monotone type
properties of the operators are not assumed, while the pair of operators is assumed to sat-
isfy a new two-dimensional order type property, extending a well-known one-dimensional
equivalent property (Definition . and the remarks following), and guaranteeing the use
of monotone iterative technique. To prove the existence of a common coupled fixed point
for such pair of operators, it is assumed for operators to satisfy a useful condensing and
contractive conditions (conditions (C) and (C) hereafter) involving the two-dimensional
setting. The consideration of the latter condensing and contractive conditions is motivated
by the fact that these conditions are satisfied in particular when the operators satisfy the
standard condensing and contractive conditions as defined in the literature; see Defini-
tion . and the remarks following Lemma ..

The first main result extends the well-known results in the literature on a fixed point
theorem for monotone operators and coupled fixed point theorem for mixed monotone
operators; see [], Theorem .. and Theorem ... We look, also, at the equivalent of our
main result when the Banach space is endowed with its weak topology. Finally, we illustrate
the applicability of our results by studying the existence and uniqueness of nonnegative
solution for a two-dimensional nonlinear integral equations.

Throughout this paper X will be a real Banach space, Br will denote the closed ball in X
centered at  with radius r > . In particular, we use the notation BX := B. For a subset � ⊂
X, π� : �×� → � will denote the first projection mapping, i.e. π�(x, y) = x (x, y ∈ �). We
will mean in the sequel by the term ‘operator’ between two Banach spaces a mapping which
is (nonlinear in general) continuous and bounded (i.e. takes bounded sets to bounded sets).

A cone K in X is a subset of X with K + K ⊂ K , αK ⊂ K for all α ≥ , and K ∩ (–K) = {}.
As usual X will be ordered by the (partial) order relation

x ≤ y ⇔ y – x ∈ K
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and the cone K = {x ∈ X : x ≥ } will be denoted by X+. (X,≤) is said to be an ordered
Banach space, if the positive cone X+ is closed. For two vectors x, y ∈ X, [x), (y], and the
order interval [x, y] are the sets defined by [x) = {z ∈ X : x ≤ z}, (y] = {z ∈ X : z ≤ y}, and
[x, y] = {z ∈ X : x ≤ z ≤ y}. Note that if x � y then [x, y] = φ. A cone X+ of an ordered
Banach space X is said to be normal whenever there is a constant N >  (called the normal
constant of X+ when N is the smallest constant) such that for every x, y ∈ X

 ≤ x ≤ y ⇒ ‖x‖ ≤ N‖y‖.

The following two lemmas will be useful in the proofs of our results.

Lemma . ([], Lemmas . and .) Let X be an ordered Banach space. Then the fol-
lowing assertions hold:

() X is Hausdorff and the order intervals of X are closed;
() if the cone X+ is normal, then every order interval is bounded.

Lemma . Let X be an ordered Banach space with a normal cone X+. Then a monotone
sequence (un) ⊂ X is convergent if and only if it has a weakly convergent subsequence.

Proof The ‘only if ’ part is obvious. For the ‘if ’ part, assume that (un) is nondecreasing and
let (unk ) ⊂ (un) be a subsequence such that unk → u weakly for some u ∈ X. Let m ∈N be
fixed. For each k ≥ m, we see that

um ≤ uk ≤ unk . (.)

Since the cone X+ is convex and closed, it is weakly closed. Thus, since unk → u weakly,
we see from (.) that um ≤ u for each m ∈N. Thus, it follows from [], Lemma . that
lim unk = u. Now, if m ≥ nk then  ≤ u – um ≤ u – unk and hence ‖u – um‖ ≤ N‖u – unk ‖,
where N denotes the normal constant of X+. Letting k → ∞, we see that lim um = u as
required. The desired conclusion is proved similarly when (un) is nonincreasing. �

For a subset D ⊂ X, denote by B(D), W(D), Wr(D) the family of all bounded subsets of
D, weakly compact subsets of D and relatively weakly compact subsets of D. A function φ :
B(X) →R+ is said to be a Sadovskij functional [] if it satisfies the following requirements
(U , V ∈ B(X), λ ∈R):

() φ(U ∪ V ) = max(φ(U),φ(V )) (the set additivity);
() φ(U + V ) ≤ φ(U) + φ(V ) (the algebraic subadditivity);
() φ(λU) = |λ|φ(U) (the homogeneity);
() φ(U) ≤ φ(V ) if U ⊂ V (the monotonicity);
() φ([, ] · U) = φ(U) (the absorption invariance);
() φ(coU) = φ(U) (the convex closure invariance).
φ is said to be a measure of noncompactness if it is a regular Sadovskij functional in the

sense that

φ(U) =  if and only if U is relatively compact.
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An important example of a measure of noncompactness (see [] for other examples) is
the so called Kuratowski measure of noncompactness defined for U ∈ B(X) by

α(U) = inf{d >  : U is covered by a finite number of sets with diameter ≤ d},

where the diameter of a bounded subset V of X is defined by

dia(V ) = sup
{‖x – y‖ : x, y ∈ V

}
.

Another type of Sadovskij functional is the so called measure of weak noncompactness
introduced by De Blasi in [], and defined for U ∈ B(X) by

ω(U) = inf
{

r >  : there exists W ∈W(X) such that U ⊆ W + Br
}

.

Also, ω satisfies the following regular property (see for more properties []):

ω(U) =  if and only if U is relatively weakly compact.

In L-spaces, ω enjoys the following useful formula, which was established by Appell
and De Pascale []:

ω(U) = lim
ε→

sup
f ∈U

{
sup

{∫

M

∣∣f (t)
∣∣dt : M ⊂ S,λ(M) ≤ ε

}}
(.)

for every M ∈ B(L(S)), where S is a measure space and λ is the Lebesgue measure.

Definition . ([], p.) Let X and Y be two real Banach spaces, let φ and ψ be two
measures of (weak) noncompactness in X and Y , respectively, and let � ⊂ X be a subset.
An operator T : � → Y is called (φ,ψ)-condensing if

ψ
(
T(U)

)
< φ(U)

for all U ∈ B(�) with φ(U) > . The operator T is said to be a k-(φ,ψ)-contraction (k ≥ )
if

ψ
(
T(U)

) ≤ kφ(U)

for all U ∈ B(�). A k-(φ,ψ)-contraction is called a strict (φ,ψ)-contraction if k < .

When X = Y and φ = ψ , we shall simply say ‘φ-condensing’ and ‘k-φ-contraction’. The
following implications are now evident:

T is a strict (φ,ψ)-contraction ⇒ T is (φ,ψ)-condensing

⇒ T is  – (φ,ψ)-contraction.
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Furthermore, T : � → Y is called a ϕ-nonlinear contraction, if there exists a continuous
and nondecreasing real function ϕ : [,∞) → [,∞) with ϕ(r) < r for r > , such that

‖Tu – Tv‖Y ≤ ϕ
(‖u – v‖X

)

for all u, v ∈ � (in particular, if ϕ(r) = kr;  ≤ k < , then T is called a contraction operator
with contraction constant k). Also, T : � → Y is called a nonlinear (φ,ψ)-set-contraction,
if

ψ
(
T(U)

) ≤ ϕ
(
φ(U)

)

for all U ∈ B(�).

Remark . Clearly every nonlinear (φ,ψ)-set-contraction T : � → Y is (φ,ψ)-con-
densing. Also, it is easy to see that every ϕ-nonlinear contraction T : � → Y is a nonlinear
(αX ,αY )-set-contraction, where αX , αY denote, respectively, the Kuratowski measures of
noncompactness in X, Y .

When Y = X, an operator T : � → � is said to be nondecreasing (resp. nonincreasing)
if for all x, y ∈ �, x ≤ y implies Tx ≤ Ty (resp. Tx ≥ Ty).

A point x∗ ∈ � is called a fixed point (resp. lower fixed point, resp. upper fixed point)
if x∗ = Tx∗ (resp. x∗ ≤ Tx∗, resp. x∗ ≥ Tx∗). A lower (resp. upper) fixed points are also
called a post-fixed points (resp. pre-fixed points); see [], p.. Also, for an operator
A : � × � → �, let us recall from [] the following two-dimensional fixed point notions:

- A point (x∗, y∗) ∈ � × � is said to be a coupled fixed point of A if

A(x∗, y∗) = x∗ and A(y∗, x∗) = y∗.

x∗ ∈ � is called a fixed point of A if A(x∗, x∗) = x∗. Evidently, if (x∗, y∗) is a coupled
fixed point of A, then (y∗, x∗) is also a coupled fixed point of A. Also, (x∗, x∗) is a
coupled fixed point of A whenever x∗ is a fixed point of A.

- A point (x, y) ∈ � × � is said to be a lower (resp. upper) coupled fixed point of A if

x ≤ A(x, y)
(
resp. x ≥ A(x, y)

)

and

A(y, x) ≤ y
(
resp. A(y, x) ≥ y

)
.

Clearly, if (x, y) is a lower (resp. upper) coupled fixed point of A then (y, x) is an
upper (resp. lower) coupled fixed point of A.

2 Main results
In the sequel, we consider the product space X × X equipped with ‖(x, y)‖∞ = max{‖x‖,
‖y‖} and the Kuratowski measure of noncompactness and the De Blasi measure of weak
noncompactness α× and ω×, respectively, and γ = α or ω. The facts in the following lemma
are obtained in a simple way and therefore their proofs are omitted.
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Lemma . Let X be a Banach space. For each D, D ∈ B(X) the following assertions hold:
() dia(D × D) = max{dia(D), dia(D)}.
() γ ×(D × D) = max{γ (D),γ (D)}.

For a subset � ⊂ X, it follows from Lemma . that if an operator A : � × � → � is
(γ ×,γ )-condensing then A satisfies the following γ -condensing condition:

(C) γ
(
A(U × V )

)
< max

(
γ (U),γ (V )

)

for all U , V ∈ B(�) with γ (U) >  or γ (V ) > . Also, if A is a k-(γ ×,γ )-contraction then A
satisfies the following k-γ -contraction condition:

(C) γ
(
A(U × V )

) ≤ k max
(
γ (U),γ (V )

)

for all U , V ∈ B(�).

Example .
() Let  < k < . Define the (continuous and bounded) operator A : BX × BX → BX by

A(x, y) =
k

(‖x‖ · x + ‖y‖ · y

)
.

Then A satisfies the α-condensing condition (C). Indeed, let G : BX × BX → BX

and T : BX → BX be such that

G(x, y) = k · ‖y‖ · x,

T(x) = G(x, x).

Since G(·, y) is contractive with contraction constant k for every y ∈ BX , and G(x, ·)
is compact for every x ∈ BX (because the range of G(x, ·) lies in a finite dimensional
subspace of X , for every x ∈ BX ), T is α-condensing (see [], p.). Now, let
U , V ⊂ BX be such that α(U) >  or α(V ) > . Then, from
A(U × V ) = 

 (T(U) + T(V )), we see that

α
(
A(U × V )

) ≤ 

(
α
(
T(U)

)
+ α

(
T(V )

))

<


(
α(U) + α(V )

)

≤ max
(
α(U),α(V )

)
,

which proves that A satisfies the α-condensing condition (C).
() More generally, if T , S : � → � are two operators such that both T and S are

γ -condensing, then the operator A : � × � → � defined by

A(x, y) =


(
T(x) + S(y)

)

satisfies the γ -condensing condition (C).
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() In (), if B = k′ · A (k′ ≥ ), then it follows that the operator B satisfies the
k′-α-contraction condition (C).

Recall from [], p. that an operator T : � → � on a partially ordered set is said to be
inflationary (or progressing, see [], p.) if Tx ≥ x for every x ∈ �. An example of such
operator is the operator that associates to every element of a vector lattice its positive part.
We introduce the following similar two-dimensional concepts.

Definition . Let (�,≤) be a partially ordered set. For an operator A : � × � → �, let
TA : � × � → � × � be the operator defined by

TA(x, y) =
(
A(x, y), A(y, x)

)
.

() An operator A : � × � → � is said to be inflationary, if A is inflationary with
respect to its first argument, that is, A(x, y) ≥ x for every x, y ∈ �;

() a pair of operators A, B : � × � → � is said to be weakly inflationary if A is
inflationary on TB(� × �) and B is inflationary on TA(� × �), that is,

A
(
B(x, y), B(y, x)

) ≥ B(x, y)

and

B
(
A(x, y), A(y, x)

) ≥ A(x, y)

for all x, y ∈ �. If the preceding inequalities are satisfied only on TB(D) and TA(D)
respectively, where D is a subset of � × �, then the pair A, B is said to be weakly
inflationary on D;

() an operator A : � × � → � is said to be weakly inflationary, if the pair A, A is
weakly inflationary, that is,

A
(
A(x, y), A(y, x)

) ≥ A(x, y)

for all x, y ∈ �.

If in the preceding definition the order is reversed then we will use the term ‘deflationary’
instead of inflationary. On the other hand, if we take A = T ◦ π� and B = S ◦ π�, where
T , S : �→� are two operators, then we obtain the equivalent one-dimensional notion of
[], that is, T and S are weakly isotone increasing (resp. weakly isotone decreasing if the
order is reversed) in the sense that

T(Sx) ≥ Sx and S(Tx) ≥ Tx

for all x ∈ �; we opted for the terms (weakly) inflationary-(weakly) deflationary instead of
(weakly) isotone increasing-(weakly) isotone decreasing, as the latter are used also to mean
that the operators are increasing-decreasing (resp. strictly increasing-strictly decreasing);
see for instance [], p., [], p..

Clearly, if A and B are both inflationary (resp. deflationary), then the pair A, B is weakly
inflationary (resp. weakly deflationary). The converse does not hold in general.
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Example . Let f : R×R →R, f (x, y) = e–(x+y) + , � = {(x, x) : x ∈ [, ]}, �′ = {(y, y) : y ∈
f (�)}, g(x) = f (x, x), x ∈R, and h(x) = g(x) – x, x ∈R.

() Since h′(x) = –e–x –  <  for all x ∈R, it follows that

h(x) ≥ h() = e– > 

for all x ∈ [, ]. This shows that f (x, x) ≥ x for all x ∈ [, ], i.e., f is inflationary
on �. Since g is decreasing,

f
(
f (x, x), f (x, x)

) ≤ f (x, x) (.)

for all x ∈ [, ]. This shows that f is weakly deflationary on �. Therefore, the
restriction of f on � is a weakly deflationary mapping which is not deflationary.

() On the other hand, it follows from (.) that f is deflationary on �′, and since g is
decreasing, then

f
(
f (y, y), f (y, y)

) ≥ f (y, y)

for all y ∈ f (�). This shows that the restriction of f on �′ is a weakly inflationary
mapping which is not inflationary.

() The function f does not satisfy the mixed monotone property since f is decreasing
in x.

() From () and (), it follows that the pair f , g (i.e. f , g ◦ πR) is weakly deflationary on
� (resp. weakly inflationary on �′), but f is not mixed g-monotone. Indeed, if
x, y, y ∈ R such that g(y) ≤ g(y), since g is decreasing and one to one from R to
(, +∞), then y ≥ y and hence f (x, y) ≤ f (x, y) since f is decreasing in y. This
shows that f is not g-nonincreasing in y.

Theorem . Let X be an ordered Banach space with a normal cone X+ and let � be a
nonempty closed and bounded subset of X. Consider two operators A, B : � × � → � such
that:

() A satisfies the α-condensing condition (C);
() B satisfies the  – α-contraction condition (C);
() the pair A, B is weakly inflationary (resp. weakly deflationary).
Then A and B have at least one common coupled fixed point (u∗, v∗) in �×�; moreover,

we have

u∗ = lim un and v∗ = lim vn,

where the common coupled fixed point iteration is given by

un+ = A(un, vn), un+ = B(un+, vn+) (.)

and

vn+ = A(vn, un), vn+ = B(vn+, un+) (.)

for each n = , , , . . . , and (u, v) is any element in � × �.
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From the above theorem, we derive the following two corollaries, which extend the well-
known results in the literature; see Remark . hereafter.

Corollary . Let X be an ordered Banach space with a normal cone X+, and let � be a
nonempty closed and bounded subset of X. Let T , S : � → � be two nondecreasing operators
such that

() T and S commute, that is, TSx = STx for each x ∈ �;
() T and S have at least one common lower (resp. upper) fixed point u ∈ � (resp.

v ∈ �);
() T is α-condensing;
() S is a  – α-contraction.
Then T and S have a minimal common fixed point u∗ in [u)∩� (resp. maximal common

fixed point u∗ in (v] ∩ �); moreover, we have

u∗ = lim un and u∗ = lim vn

where the common fixed point iteration is given by

un+ = Tun, un+ = Sun+, (.)

and

vn+ = Tvn, vn+ = Svn+ (.)

for each n = , , , . . . .

Proof Consider the bounded set  = {u ∈ [u) ∩ � : u ≤ Tu and u ≤ Su}. By assumption
()  is nonempty (u ∈ ). Since T and S are continuous and the cone X+ is closed, 

is closed. Now, consider the operators A, B :  ×  →  defined by A = T ◦ π and B =
S ◦π . Since T and S are nondecreasing and commute, it is easy to verify that A( ×) ⊂
, B( × ) ⊂ , and the pair A, B is weakly inflationary. Since T and S are continuous
and bounded, A and B are so. The condition () of Theorem . follows from the  – α-
contraction property of S. For the condition () of Theorem ., let U , V ⊂ � with α(U) > 
or α(V ) > . If α(U) > , then

α
(
A(U × V )

)
= α

(
T(U)

)
< α(U) ≤ max

{
α(U),α(V )

}
.

If α(U) = , then U is relatively compact and hence so is T(U). Therefore, since α(V ) > ,
we have

α
(
A(U × V )

)
= α

(
T(U)

)
=  < α(V ) ≤ max

{
α(U),α(V )

}
.

Now, applying Theorem ., there exists a common coupled fixed point (u∗, v∗) ∈  ×

of A and B, that is, u∗ is a common fixed point of T and S. From (.) we see that u∗ = lim un

and (.) holds true. Finally, to prove the minimality of u∗, let u ∈ [u) ∩ � be such that
Tu = Su = u. Since T is nondecreasing, it follows from u ≤ u that Tu ≤ Tu, that is, u ≤ u.



Machrafi Fixed Point Theory and Applications  (2017) 2017:2 Page 10 of 20

Again, since S is nondecreasing, Su ≤ Su, that is, u ≤ u. Proceeding inductively, we get
un ≤ u for each n = , , , . . . . Now, taking the limit n → ∞, we obtain u∗ ≤ u as desired.

For the existence of a maximal common fixed point u∗ of T and S, consider the sub-
set ′ = {v ∈ (v] ∩ � : Tv ≤ v and Sv ≤ v}, and by the same preceding arguments, such
common fixed point exists with u∗ = lim vn and (.) holds true. �

Now, consider in the product space (X × X,‖ · ‖∞) the following partial order:

(x, y) ≤ (x, y) if x ≤ x and y ≥ y. (.)

It is easy to see that if X+ is a normal cone in X then (X × X)+ is also a normal cone in
X × X.

Corollary . Let X be an ordered Banach space with a normal cone X+, and let � be a
nonempty closed subset of X. Let A, B : �×� → � be two mixed monotone operators such
that

() A and B satisfy the following commutation property:

A
(
B(x, y), B(y, x)

)
= B

(
A(x, y), A(y, x)

)

for all x, y ∈ �;
() A and B have at least one common lower (resp. upper) coupled fixed point (u, v)

with u ≤ v (resp. u ≥ v);
() A is (α×,α)-condensing;
() B is a  – (α×,α)-contraction.
Then A and B have a minimal common coupled fixed point (u∗, v∗) ∈ � × � such that

(v∗, u∗) is a maximal common coupled fixed point of A and B, that is,

(u∗, v∗) ≤ (
∼
u,

∼
v) ≤ (v∗, u∗)

for each common coupled fixed point (
∼
u,

∼
v) ∈ � × � of A and B, where � = [u, v] ∩ �;

moreover, we have

u∗ = lim un and v∗ = lim vn

where the common coupled fixed point iteration is given by (.) and (.).

Proof Consider the (continuous and bounded) operators TA,TB : � × � → � × �

(where � is closed and bounded since X+ is normal) defined by

TA(u, v) =
(
A(u, v), A(v, u)

)
and TB(u, v) =

(
B(u, v), B(v, u)

)
.

Clearly (u, v) ∈ X × X is a common coupled fixed point of A and B if and only if (u, v) is a
common fixed point of TA and TB. From assumption () and (.) we see that (u, v) is
a common lower fixed point of TA and TB. Also, it can be shown easily from the mixed
monotone property of A and B that TA and TB are nondecreasing. Furthermore, from
assumption () we see that TA and TB commute. Let us show that TA is α×-condensing.



Machrafi Fixed Point Theory and Applications  (2017) 2017:2 Page 11 of 20

To this end, let D ⊂ � ×� with α×(D) > , and set D∗ = {(v, u) : (u, v) ∈ D}, and note by a
simple computation that α×(D∗) = α×(D). Then, since A is (α×,α)-condensing and taking
into account Lemma ., we see from TA(D) ⊂ A(D) × A(D∗) that

α×(
TA(D)

) ≤ α×(
A(D) × A

(
D∗))

= max
{
α
(
A(D)

)
,α

(
A

(
D∗))}

< max
{
α×(D),α×(

D∗)}

= α×(D).

Therefore TA is α×-condensing. Similarly, it can be shown that TB is a  – α×-contraction.
Now, applying Corollary ., the operators TA and TB have a minimal common fixed

point (u∗, v∗) ∈ � × �, that is, (u∗, v∗) is a minimal common coupled fixed point of A
and B, and (.) and (.) follow from (.) and (.) applied for TA and TB.

Now, since (u∗, v∗) is a common coupled fixed point of A and B, then so is (v∗, u∗). Finally,
to prove the maximality of (v∗, u∗), let (u, v) ∈ � ×� be any common coupled fixed point
of A and B. Since A is mixed monotone, it follows from u ≤ u ≤ v and u ≤ v ≤ v that

u = A(u, v) ≤ A(u, v) ≤ A(u, v) = u ≤ A(v, v) ≤ A(v, u) = v

and

u = A(u, v) ≤ A(u, u) ≤ A(v, u) = v ≤ A(v, u) ≤ A(v, u) = v.

Again, since B is mixed monotone, it follows by similar arguments from u ≤ u ≤ v and
u ≤ v ≤ v that

u ≤ B(u, v) = u ≤ v and u ≤ B(v, u) = v ≤ v.

Proceeding inductively, we get

un ≤ u ≤ vn and un ≤ v ≤ vn

for each n = , , , . . . . Now, taking the limit n → ∞ in the preceding inequalities, we
obtain u∗ ≤ u ≤ v∗ and u∗ ≤ v ≤ v∗, that is, (u∗, v∗) ≤ (u, v) ≤ (v∗, u∗).

Note that in the case (u, v) is a common upper coupled fixed point of A and B, (v, u)
is a common lower coupled fixed point of A and B, and the required conclusions follow
from the preceding case. �

Remark .
() If we take S = T in Corollary . and A = B in Corollary . then we obtain the

well-known results [], Theorem .. and Theorem ...
() In Corollary ., the operator A is supposed to be only (α×,α)-condensing, which is

an hypothesis weaker than the complete continuity supposed in [], Theorem ...
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In order to establish the equivalent of Theorem . for the De Blasi measure of weak
noncompactness, we need for an operator A : � × � → � the following two conditions:

(C) A(U × V ) is relatively weakly compact for every U , V ∈Wr(�),

(C) A(U × V ) is relatively weakly compact for every U , V ∈ B(�).

Remark .
() Weakly continuous operators A : � × � → � satisfy the condition (C). However,

the converse is false in general. Indeed, if Nϕ : L[, ] → L[, ] is the Nemytskii
operator generated by a Caratheodory function ϕ : [, ] ×R →R, then Nϕ ◦ πL[,]

satisfies the condition (C) (see Lemma . hereafter for n = ), but Nϕ is weakly
continuous if and only if ϕ is linear (see [], Theorem .). Furthermore, it is clear
that the condition (C) is in particular satisfied by weakly compact operators (i.e.,
operators that map bounded sets to a relatively weakly compact ones);

() clearly, if A satisfies the condition (C), then A satisfies the condition (C) and the
ω-condensing condition (C).

Theorem . Let X be an ordered Banach space with a normal cone X+ and let � be a
nonempty closed and bounded subset of X. Consider two operators A, B : � × � → � such
that:

() A satisfies the condition (C);
() A satisfies the ω-condensing condition (C);
() B satisfies the  – ω-contraction condition (C);
() the pair A, B is weakly inflationary (resp. weakly deflationary).
Then A and B have at least one common coupled fixed point (u∗, v∗) in �×�; moreover,

we have

u∗ = lim un and v∗ = lim vn

where (un) and (vn) are defined, respectively, as in (.) and (.).

Corollary . Let X be an ordered Banach space with a normal cone X+ and let � be a
nonempty closed and bounded subset of X. Consider two operators A, B : � × � → � such
that:

() A satisfies the condition (C);
() B satisfies the  – ω-contraction condition (C);
() the pair A, B is weakly inflationary (resp. weakly deflationary).
Then A and B have at least one common coupled fixed point (u∗, v∗) in �×�; moreover,

we have

u∗ = lim un and v∗ = lim vn

where (un) and (vn) are defined as in (.) and (.).

Note that, as shown in Remark ., if A : � × � → � is a ϕ-nonlinear contraction, that
is,

‖Au – Av‖ ≤ φ
(‖u – v‖∞

)
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for all u, v ∈ � × �, then A is a nonlinear (α×,α)-set-contraction and hence satisfies the
α-condensing condition (C). For the De Blasi measure of weak noncompactness, we have
the following lemma.

Lemma . For a subset � ⊂ X, every ϕ-nonlinear contraction A : �×� → � satisfying
the condition (C) satisfies the following nonlinear ω-set-contraction condition:

ω
(
A(U × V )

) ≤ ϕ
(
max

(
ω(U),ω(V )

))

for all U , V ∈ B(�). In particular, A satisfies the ω-condensing condition (C).

Proof Let r > max(ω(U),ω(V )). Then there exist W , W ′ ∈ W(�) such that U ⊂ W + Br

and V ⊂ W ′ + Br . Since A is a ϕ-nonlinear contraction, it follows easily that

A(U × V ) ⊂ A
(
W × W ′) + Bϕ(r) ⊂ A

(
W × W ′)σ (X,X′)

+ Bϕ(r).

Therefore, from the condition (C), we see that ω(A(U × V )) ≤ ϕ(r). Now, since ϕ is
continuous, letting r → max(ω(U),ω(V )), we get the required conclusion. �

Corollary . Let assumptions of Theorem . (resp. Theorem .) be satisfied. Then
the following assertions hold true:

() The operators A and B have at least one common fixed point u∗ ∈ �, and the
common fixed point iteration is given by

un+ = A(un, un) and un+ = B(un+, un+) (n = , , , . . .).

() If for the operator A, we replace the condensing condition with “A is a ϕ-nonlinear
contraction”, then A and B have a unique common fixed point u∗ and (u∗, u∗) is their
unique common coupled fixed point.

() If A satisfies in addition the following weak ϕ-nonlinear contraction condition:

∥∥A(x, y) – A(y, x)
∥∥ ≤ ϕ

(‖x – y‖)

for all x, y ∈ �, then all coupled fixed points of A (and hence all common coupled
fixed points of A and B) are in the form (u∗, u∗), u∗ is a fixed point of A (common
fixed point of A and B).

3 Proofs of the main theorems

Proof of Theorem . Assume that the pair A, B is weakly inflationary. Set U = {un : n =
, , , . . .}, U = {un+ : n = , , , . . .} and U = U ∪ U, where the sequence (un) ⊂ � is
defined as in (.). Similarly, the sets V, V, and V are defined by the sequence (vn) ⊂ �

instead of (un). Since A, B are weakly inflationary, it follows that

un+ = A(un, vn) ≤ B
(
A(un, vn), A(vn, un)

)

= B(un+, vn+) = un+
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and

un+ = B(un+, vn+) ≤ A
(
B(un+, vn+), B(vn+, un+)

)

= A(un+, vn+) = un+

hold for each n = , , , . . . , which proves that the sequence (un) (n ≥ ) is nondecreasing.
Similarly, (vn) (n ≥ ) is also nondecreasing.

Now, set � = {(un, vn) : n = , , , . . .}, �∗ = {(vn, un) : n = , , , . . .}, � = {(un+,
vn+) : n = , , , . . .}, and �∗ = {(vn+, un+) : n = , , , . . .}. We shall see that the sets
U and V are relatively compact. Assume by way of contradiction that α(U) >  or
α(V) > . It follows from U = A(�) ⊂ A(U × V), U = B(�) ∪ {u} ⊂ B(U × V) ∪ {u},
V = B(�∗) ∪ {v} ⊂ B(V × U) ∪ {v}, and assumptions () and () that

α(U) ≤ α
(
A(U × V)

)

< max
{
α(U),α(V)

}

≤ max
{
α
(
B(U × V)

)
,α

(
B(V × U)

)}

≤ max
{
α(U),α(V)

}
.

Similarly, we have α(V) < max{α(V),α(U)} which is a contradiction. Therefore, U

and V are a relatively compact sets. Since A is continuous, A(U × V) and A(V × U) are
relatively compact, and hence so are U ⊂ A(U ×V) and V = A(�∗) ⊂ A(V ×U). Thus,
we conclude that U and V are a relatively compact sets. It follows from Lemma . that
lim un = u∗ and lim vn = v∗ for some (u∗, v∗) ∈ � × �. Now, since A and B are continuous
then by (.) and (.) we get A(u∗, v∗) = B(u∗, v∗) = u∗ and A(v∗, u∗) = B(v∗, u∗) = v∗, that
is, (u∗, v∗) is a common coupled fixed point of A and B.

If A, B is weakly deflationary, then in this case the sequences of common coupled fixed
point iteration are nonincreasing, and the desired conclusions are obtained by similar ar-
guments. �

Proof of Theorem . Let U and V be the sets defined as in the proof of Theorem ..
Using the condition (C), it can be shown by a similar arguments of the proof of The-
orem . that U and V are relatively weakly compact. Since the sequences (un) and
(vn) are nondecreasing, it follows from Lemma . that lim un = u∗ and lim vn = v∗ for
some (u∗, v∗) ∈ � × �. Now, since A and B are continuous, by (.) and (.) we get
A(u∗, v∗) = B(u∗, v∗) = u∗ and A(v∗, u∗) = B(v∗, u∗) = v∗, that is, (u∗, v∗) is a common coupled
fixed point of A and B. �

4 Application to nonlinear integral equations
We give an application of Corollary . to the following nonlinear integral equation:

g
(
t, u(t)

)
=

∫ 


K(t, x)f

(
x,

(
u(x), v(x)

))
dx, t ∈ I = [, ], u, v ∈ X = L(I), (.)

where the kernel mapping K : I × I → R is measurable on I × I , and g : I × R → R, f :
I ×R →R are two given mappings.
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A pair u, v ∈ X is said to be a coupled solution of (.) if both (u, v) and (v, u) are solutions
of (.), i.e.,

g
(
t, u(t)

)
=

∫ 


K(t, x)f

(
x,

(
u(x), v(x)

))
dx, t ∈ I,

and

g
(
t, v(t)

)
=

∫ 


K(t, x)f

(
x,

(
v(x), u(x)

))
dx, t ∈ I.

An element u ∈ X is called a solution of (.) if (u, u) is a solution of (.).
Now, recall that a function ϕ : I × Rn → R is said to be a Caratheodory function if it

satisfies the Caratheodory condition in the following sense:
- the function t → ϕ(t, u) is measurable on I for any u ∈Rn;
- the function u → ϕ(t, u) is continuous on Rn for almost all t ∈ I .
A function ϕ : I × Rn → R is said to have the separated domination property if there

exist a constant k >  and a positive function u ∈ X such that

∣∣ϕ(t, x)
∣∣ ≤ u(t) + k|x| (.)

for almost all t ∈ I and for all x ∈Rn, where |x| :=
∑n

i= |xi|, x = (x, x, . . . , xn). If the function
ϕ is a Caratheodory function and satisfies the separated domination property, then clearly
ϕ defines a mapping Nϕ : Xn → X by Nϕ(u, . . . , un)(t) = ϕ(t, (u(t), . . . , un(t))), where Xn

is the Cartesian product of n copies of X. In the case n = , this mapping is called the
Nemytskii operator generated by ϕ. The following lemmas will be useful in the proof of
our results.

Lemma . ([], p.) If a Caratheodory function ϕ : I ×Rn →R satisfies the separated
domination property, then the operator Nϕ : Xn → X is continuous and bounded.

Lemma . Let ϕ : I ×Rn →R be a Caratheodory function satisfying the separated dom-
ination property (.). Then

ω
(
Nϕ(W × · · · × Wn)

) ≤ k
(
ω(W) + · · · + ω(Wn)

)

for every W, . . . , Wn ∈ B(X). In particular, Nϕ(W ×· · ·×Wn) is relatively weakly compact
for every relatively weakly compact sets W, . . . , Wn ⊂ X.

Proof Let ε >  and (u, . . . , un) ∈ W × · · · × Wn. Let M ⊂ I be a measurable set with
λ(M) ≤ ε. From (.) it follows that

∫

M

∣∣Nϕ(u, . . . , un)(t)
∣∣dt ≤

∫

M
u(t) dt + k

(∫

M

∣∣u(t)
∣∣dt + · · · +

∫

M

∣∣un(t)
∣∣dt

)
.

So, since ω({u}) = , under the supremum on all subsets M and all (u, . . . , un) ∈ W ×
· · · × Wn respectively, and letting ε → , the desired conclusion follows from equation
(.). �

Now, we consider the following assumptions:
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(A) f is a Caratheodory function satisfying the following positivity property:

f
(
t, (x, y)

)
> 

for almost all t ∈ I and for all x, y ∈R+.
(A) f satisfies the separated domination property, that is, there exist a constant k >  and

a positive function w ∈ X such that

∣∣f (t, u)
∣∣ ≤ w(t) + k|u| (.)

for almost all t ∈ I and for all u ∈R.
(A) The kernel mapping K is positive, i.e. K(t, x) >  for all t, x ∈ I , and satisfies the fol-

lowing upper estimate:

K(t, x) ≤ ψ(t)ϕ(x)

for almost all t, x ∈ I , and for some positive functions ψ ,ϕ ∈ L∞(I) such that

δ = ‖ψ‖∞ · ‖ϕ‖∞ ≤ ρ

 + ρk
, (.)

where ρ is some (arbitrary) positive number.
(A) g is a Caratheodory function such that there exists a nondecreasing mapping φ : R+ →

R+ with φ(r) ≤ r, r > , such that, for almost all t ∈ I and for all x ≥ , we have

μ

‖ψ‖∞
ψ(t) ≤ g(t, x) ≤ φ(x), (.)

where μ = ρ‖w‖.
(A) g is nonexpansive with respect to the second variable, that is, for almost all t ∈ I and

every x, y ∈R, we have

∣∣g(t, x) – g(t, y)
∣∣ ≤ |x – y|.

Theorem . Under the assumptions (A)-(A), the integral equation (.) has in the in-
terval [θ ,μ] ⊂ X at least one coupled solution u∗, v∗, where θ ,μ ∈ X are respectively
the almost everywhere null function and the constant function equal to μ. Moreover, the
sequences (un) and (vn) converge in X monotonically to u∗ and v∗, respectively, where

un+(t) =
∫ 


K(t, x)f

(
x,

(
un(x), vn(x)

))
dx, un+(t) = g

(
t, un+(t)

)
, (.)

and

vn+(t) =
∫ 


K(t, x)f

(
x,

(
vn(x), un(x)

))
dx, vn+(t) = g

(
t, vn+(t)

)
, (.)

for each n = , , , . . . and each t ∈ I , and u, v are any two elements in X such that

 ≤ u(t), v(t) ≤ c

for each t ∈ I , where c = δ‖w‖
–kδ

.
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Proof We know that X is an ordered Banach space under the standard λ-almost every-
where pointwise order and under the L-norm (denoted here ‖ · ‖), and that X+ := {u ∈ X :
u ≥  a.e.} is a normal cone in X (since  ≤ u ≤ v implies ‖u‖ ≤ ‖v‖). Set � = [θ , c], where
c is the constant function in X equal to c, and note from (.) that  < c ≤ μ. Define the
operators A, B : � × � → � by

A(u, v)(t) = L ◦Nf (u, v)(t) and B(u, v)(t) = Ng ◦ πX(u, v)(t), t ∈ I,

where L : X → X is the linear integral operator defined by

L(u)(t) =
∫ 


K(t, x)u(x) dx, t ∈ I.

Let u, v ∈ �. Then from the separated domination property of f , we have

 ≤ A(u, v)(t) ≤ δ
(‖w‖ + k

(‖u‖ + ‖v‖))

≤ δ
(‖w‖ + kc

)
= c

for almost all t ∈ I . Therefore, A is well defined and bounded (since � is bounded). From
assumption (A) it follows that L is a bounded linear operator, and from assumption (A)
and Lemma . Nf is continuous. Therefore, the operator A is continuous. Now, if u ∈ �,
it follows from assumption (A) that

 ≤ g
(
t, u(t)

) ≤ φ
(
u(t)

) ≤ φ(c) < c

for almost all t ∈ I , and hence the operator B is also well defined and bounded. Since g is
nonexpansive with respect to the second variable,

∣∣g(t, x)
∣∣ ≤ ∣∣g(t, )

∣∣ +
∣∣g(t, x) – g(t, )

∣∣ ≤ ∣∣g(t, )
∣∣ + |x| =

∣∣Ng(θ )(t)
∣∣ + |x| (.)

for almost all t ∈ I and all x ∈R. Therefore, by Lemma . again, the operator B is contin-
uous.

Now, clearly a pair u, v is a coupled solution of (.) if and only if (u, v) is a common
coupled fixed point of A and B. In the following we prove

(a) B satisfies the  – ω-contraction condition (C);
(b) A satisfies the condition (C);
(c) the pair A, B is weakly deflationary.
By (.) and Lemma . (applied for ϕ = g and n = ) we see that

ω
(
B(U × V )

)
= ω

(
Ng(U)

) ≤ ω(U) ≤ max
(
ω(U),ω(V )

)

for all U , V ⊂ �. This shows that the operator B satisfies the  – ω-contraction condition
(C), and (a) is proved.

Now, to prove (b), let U , V ⊂ �. Let ε >  and (u, v) ∈ U × V , and let M ⊂ I be a mea-
surable set with λ(M) ≤ ε. Since X+ is normal, ‖u‖, ‖v‖ ≤ c and hence, for almost all t ∈ I ,
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we have

∣∣A(u, v)(t)
∣∣ ≤

∫ 


K(t, x)

∣∣Nf (u, v)(x)
∣∣dx

≤ ψ(t)‖ϕ‖∞
(‖w‖ + k

(‖u‖ + ‖v‖))

≤ ψ(t)‖ϕ‖∞
(‖w‖ + kc

)
.

Hence, integrating again we get
∫

M

∣∣A(u, v)(t)
∣∣dt ≤ ‖ϕ‖∞

(‖w‖ + kc
)∫

M
ψ(t) dt.

So, under the supremum on all subsets M and all (u, v) ∈ U ×V , respectively, and letting
ε → , we get from equation (.)

ω
(
A(U × V )

) ≤ ‖ϕ‖∞
(‖w‖ + kc

)
ω

({ψ}) = ,

since the set {ψ} is weakly compact in X. Therefore, A(U × V ) is a relatively weakly com-
pact set in X, and (b) is proved.

For the proof of (c), let u, v ∈ �. From assumption (A) and the positivity of the Kernel
mapping K we see that A(u, v)(t) >  for all t ∈ I , and hence by assumption (A), for almost
all t ∈ I we have

B
(
A(u, v), A(v, u)

)
(t) = Ng

(
A(u, v)

)
(t)

= g
(
t, A(u, v)(t)

)

≤ φ
(
A(u, v)(t)

)
< A(u, v)(t).

Therefore, B(A(u, v), A(v, u)) ≤ A(u, v). Now, from assumptions (A), (A), for almost all
t ∈ I we have

A
(
B(u, v), B(v, u)

)
(t) =

∫ 


K(t, x)Nf

(
Ng(u), B(v, u)

)
(x) dx

≤ ψ(t)‖ϕ‖∞
(‖w‖ + k

∥∥Ng(u)
∥∥ + k

∥∥B(v, u)
∥∥)

≤ ψ(t)‖ϕ‖∞
(‖w‖ + kc + k

∥∥Ng(u)
∥∥)

=
ψ(t)

‖ψ‖∞
δ

(
c
δ

– kc + k
∥∥Ng(u)

∥∥
)

=
ψ(t)

‖ψ‖∞

(
( – kδ)c + kδ

∥∥Ng(u)
∥∥)

.

Since Ng(u) ∈ � and X+ is normal, it follows that ‖Ng(u)‖ ≤ c. Therefore, by assumption
(A) the preceding inequality becomes

A
(
B(u, v), B(v, u)

)
(t) ≤ ψ(t)

‖ψ‖∞
c

≤ ψ(t)
‖ψ‖∞

μ

≤ g
(
t, u(t)

)
= B(u, v)(t)

for almost all t ∈ I . Thus, A(B(u, v), B(v, u)) ≤ B(u, v), and (c) is proved.
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Finally, applying Corollary ., we obtain all conclusions of Theorem .. �

Corollary . Under the assumptions (A), (A)-(A) and f is nonexpansive with respect
to the second variable, in the sense that

∣∣f (t, x) – f (t, y)
∣∣ ≤ |x – y|

for almost all t ∈ I and for all x, y ∈R, the integral equation (.) has a unique solution u
in [θ ,μ] and (u, u) is its unique coupled solution.

Proof Since f is nonexpansive with respect to the second variable,

∣∣f (t, x)
∣∣ ≤ f

(
t, (, )

)
+ |x| (.)

for almost all t ∈ I and for all x ∈ R. Therefore f satisfies assumption (A) with w =
Nf (θ , θ ) and k = . Now, by assumption (A) again and the nonexpansive property of f , it
follows by an easy computation that

∥∥A(u, v) – A
(
u′, v′)∥∥ ≤ δ

(∥∥u – u′∥∥ +
∥∥v – v′∥∥)

≤ δ max
(∥∥u – u′∥∥,

∥∥v – v′∥∥)

= δ
∥∥(u, v) –

(
u′, v′)∥∥∞

for every u, v, u′, v′ ∈ �. From (.) we have δ ≤ ρ

+ρ
< . Now, the desired conclusions

follow from Theorem . and Corollary .. �

Remark .
() If we assume g to be nondecreasing with respect to the second variable, i.e.,

x ≤ y ⇒ g(t, x) ≤ g(t, y)

for almost all t ∈ I and for all x, y ∈R, then assumption (A) may be reduced to

μ

‖ψ‖∞
ψ(t) ≤ g(t, ) (.)

and

 ≤ g(t, x) ≤ x

for almost all t ∈ I and for all x > .
() If the function Ng(θ ) ∈ L∞(I), then it is easy to see that the upper estimate of K in

assumption (A) and assumption (.) are, respectively, guaranteed by the
following inequalities:

K(t, x) ≤ g(t, ) ≤ ρ

 + ρk
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and

w(t) ≤ 
ρ

g(t, )

for almost all t, x ∈ I (here ψ = Ng(θ ) and ϕ is the constant function equal to one).
() If f is nonexpansive with respect to the second variable, then from (.) we have

w = Nf (θ , θ ) and k = , and hence the preceding inequalities become

K(t, x) ≤ g(t, ) ≤ ρ

 + ρ

and

f
(
t, (, )

) ≤ 
ρ

g(t, )

for almost all t, x ∈ I .
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