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1 Introduction
Ekeland’s variational principle, a milestone in the theory of nonlinear optimization, fo-
cuses on solving an optimization problem via a perturbed optimization problem. Since
its appearance many extensions and equivalent formulations have been shown. Some of
them, related to our discussion below, are contained in [–]. In [] Azé and Corvellec gen-
eralized, in the setting of metric spaces, a result due to Lim ([]) on the existence of fixed
points for weakly inward multivalued contractions, defined on a nonempty closed subset
of a Banach space. Their argument is remarkably simple: on the one hand, it avoids the
use of transfinite induction (as in Lim’s paper) and, on the other hand, it uses Ekeland’s
variational principle as a main tool to guarantee the existence of fixed points. Ekeland’s
principle has been shown equivalent to other optimization statements, in particular, and
of interest in this paper, is the equivalence to an optimization criterion of Pareto (see [])
for which the existence of optima (critical points for dynamical systems) has been shown
in complete metric spaces (see []). Our main result (Theorem .) is a modification of
that optimization criterion of Pareto, which shows how the existence of fixed points for
set-valued maps can be extended to the setting of locally complete spaces. Among the
consequences of Theorem ., we provide a simple argument of Azé and Corvellec’s the-
orem ([], Theorem .). Although our results are set in the context of locally complete
spaces, let us say that related to Ekeland’s type variational principles, some other forms of
completeness have been use in the literature (e.g., quasi-metric spaces with Q-functions,
fuzzy metric spaces, or sequentially lower complete spaces). Some of these include equiv-
alences to Ekeland’s variational principle, for instance, to Caristi fixed point theorem or
Takahashi minimization theorem, all of them with their natural connection to solution to
equilibrium or fixed point theorems for set-valued maps (see, for instance [, –]).
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2 Preliminaries
Throughout this paper (X, τ ) will denote a Hausdorff locally convex space where the topol-
ogy τ is generated by a saturated family of seminorms {ρj}j∈J . If B is a subset of X which
is balanced and convex, we will call B a disk. Let XB be the linear span of B, endowed
with the topology generated by the Minkowski gauge of B, ρB. When B is bounded ρB is
a norm, and the norm topology is finer than the topology inherited from X. If (XB,ρB) is
a Banach space we say that B is a Banach disk. We say that X is a locally complete space if
each closed, bounded disk is a Banach disk. Local complete spaces are also known as c∞ or
convenient spaces. The notion of local completeness has become important in all sorts of
applications, for instance, in nonlinear distribution theory (see [, ] and the references
therein), or as a context where existence and uniqueness for nonlinear integro-differential
equations can be shown (see []). By lsc we refer to a lower semicontinuous functions,
f : X →R∪{∞}, which are proper, that is, their effective domain, dom(f ) := {x : f (x) < ∞},
is nonempty.

For a closed subset A ⊂ X we will consider set-valued maps T : A → A. Such maps T
are known in the literature as dynamical systems and, in our discussion, points of interest
are x∗ ∈ A such that x∗ ∈ Tx∗ (known as fixed points of T ) and, especially, critical points
of T (points x∗ ∈ A such that Tx∗ = {x∗}). Let us start with the definition and properties of
some functions that will be used in the sequel. For each j ∈ J , φj,φj : X → [,∞) will be
the functions defined by

φj(x) = ρj -diam(Tx) = sup
{
ρj

(
y – y′) : y, y′ ∈ Tx

}
()

and

φj(x) = ρj -dist(x, Tx) = inf
{
ρj(x – y) : y ∈ Tx

}
. ()

Also, for each j ∈ J , and for every pair of subsets A, B ⊂ X, we define

ej(A, B) = sup
{
ρj(x – B) : x ∈ A

}
, ()

where ρj(x – B) = inf{ρj(x – b) : b ∈ B}, is the ρj-distance from x to B. In general, we define

ρj(A – B) = inf
{
ρj(a – B) : a ∈ A

}
= inf

{
ρj(b – A) : b ∈ B

}
= ρj(B – A),

where ρj(a – B) denotes the inf{ρj(a – b) : b ∈ B} and ρj(b – A) = inf{ρj(b – a) : a ∈ A}.
It is important to note that, in general, ej(Tx, Tz) 	= ej(Tz, Tx). For instance, take X = R



equipped with the usual Euclidean norm d and consider the subsets A = {(a, ) : – ≤ a ≤
} and B = {(x, y) : x + y ≤ }. An easy computation shows that ed(A, B) =

√
 –  while

ed(B, A) = .
Now we provide sufficient conditions on the functions ej to get lower semicontinuity

and continuity properties for the functions φj and φj. We start with the following.

Proposition . If Mj ∈ R
+ is such that ej(Tx, Tz) ≤ Mjρj(x – z) for every x, z ∈ X then

φj(x) ≤ φj(z) + Mjρj(x – z). Hence, φj is ρj-continuous. In particular since τ is a unifor-
mity we see that φj is τ -uniformly continuous.
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Proof Let x, z ∈ X and y, y′ ∈ Tx. Then, for each n ∈N choose wn ∈ Tz such that

ρj(y – Tz) < ρj(y – wn) < ρj(y – Tz) +

n

,

and similarly for y′ choose the corresponding w′
n ∈ Tz. Then

ρj
(
y – y′) ≤ ρj(y – wn) + ρj

(
wn – w′

n
)

+ ρj
(
w′

n – y′)

< ρj(y – Tz) + ρj
(
wn – w′

n
)

+ ρj
(
y′ – Tz

)
+


n

≤ φj(z) + ej(Tx, Tz) +

n

.

Thus, ρj(y – y′) ≤ φj(z) + ej(Tx, Tz). By taking the supremum over all y, y′, we obtain

φj(x) ≤ φj(z) + ej(Tx, Tz) ≤ φj(z) + Mjρj(x – z).

A similar argument shows that

φj(z) – φj(x) ≤ Mjρj(z – x)

also holds. Hence φj is ρj-uniformly continuous. �

For the function φj, the result corresponding to Proposition . is as follows.

Proposition . If Mj ∈ R
+ is such that ej(Tx, Tz) ≤ Mjρj(x – z) for all x, z ∈ X then φj is

ρj-continuous hence τ -continuous.

Proof Let x ∈ X and {xλ} be a net such that xλ

ρj→ x. For z ∈ Txλ we have

φj(x) = ρj(x – Tx) ≤ ρj(x – xλ) + ρj(xλ – Tx)

≤ ρj(x – xλ) + ρj(xλ – z) + ej(Txλ, Tx)

≤ ( + Mj)ρj(x – xλ) + ρj(xλ – z).

By taking the infimum with respect to z ∈ Txλ we get

φj(x) ≤ ( + Mj)ρj(x – xλ) + ρj(xλ – Txλ) = ( + Mj)ρj(x – xλ) + φj(xλ).

Thus

φj(x) – φj(xλ) ≤ ( + Mj)ρj(xλ – x).

Similarly,

φj(xλ) – φj(x) ≤ ( + Mj)ρj(xλ – x),

and φj is ρj-continuous. �
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Definition . For j ∈ J , φj : X → [,∞) will be the function defined by φj(x) = φj(x) +
φj(x).

Lemma . Let A ⊂ X be any closed subset, and suppose that φj and φj are ρj-lsc. Suppose
that T : A → A is such that Tx is ρj-sequentially compact and for each x ∈ A and each
n ∈N there exists yn ∈ Tx with the following properties: φj(yn) ≤ φj(x) + 

n and ρj(x – yn) <
φj(x) + 

n . Then there exists y ∈ Tx such that φj(y) + ρj(x – y) ≤ φj(x).

Proof Let {yn} ⊂ Tx be a sequence such that each yn satisfies the conditions as in the state-
ment of Lemma .. Since Tx is ρj-sequentially compact, there is a subsequence {ynk }k∈N,
ρj-convergent to some, not necessarily unique, y ∈ Tx. Then

φj(ynk ) + ρj(x – ynk ) ≤ φj(x) +


nk
+ φj(x) +


nk

= φj(x) +

nk

.

By taking lim inf over k on both sides of the inequality we have

φj(y) + ρj(x – y) ≤ φj(x)

as desired. �

To close this section we define the sets that we will consider as target values for the
dynamical systems in Theorem .. Note that Lemma . is tailored to provide conditions
for these sets to be nonempty.

Definition . For each x ∈ X and each index j ∈ J let

Cj
x =

{
y ∈ Tx : φj(y) + ρj(x – y) ≤ φj(x)

}
.

Lemma . If φj is lsc then the set Cj
x is ρj-closed.

Proof Let (yn) be a sequence in Cj
x such that yn

ρj→ y ∈ X.
Note that φj(yn) + ρj(x – yn) ≤ φj(x) implies that

φj(y) + ρj(x – y) ≤ lim infφj(yn) + limρj(x – yn) ≤ φj(x).

Hence y ∈ Cj
x. �

Corollary . If φj is lsc and for each y ∈ Cj
x and y+Zρj ⊂ Cj

x, where Zρj = {x ∈ X : ρj(x) = }
is the zero set of ρj, then Cj

x is a ρj-closed linear subspace of X.

Definition . Let A ⊂ X be any closed subset. If T : A → A is a dynamical system and
ρj is one of the seminorms defining the topology τ , x∗ ∈ A is a ρj-critical point of T if
Tx∗ ⊂ x∗ + Zρj .

Note that when ρj is a norm, to be a ρj-critical point means that Tx∗ = {x∗}.
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3 Modified Pareto case
Recall that the topology τ in the lcs X is generated by a saturated family of seminorms
{ρj : j ∈ J}. Theorem  of [] provides with sufficient conditions for a given dynamical
system T : A → A, over a locally complete subset A of X, to have critical points. In [],
Theorem , one essentially sees that if for every x ∈ A and every u ∈ Tx, cjρj(x – u) ≤
�(x) – �(u) for every j ∈ J and for some function � : A → R lsc and bounded below (cj

are positive scalars such that
⋂

j∈J{x ∈ X : cjρj(x) ≤ } is a nonzero Banach disk) then T
has a critical point. In our setting, if we suppose that, for a fixed j ∈ J , A is ρj-complete
and � : A →R is ρj-lsc, that is, ρj(xn – x) →  implies �(x) ≤ lim infn �(xn) (which in turn
implies τ -lsc of �) then we have the following proposition.

Proposition . If for each x ∈ A and each u ∈ Tx we have ρj(x – u) ≤ �(x) – �(u), then
T has a ρj-critical point, x∗

j ∈ A.

The proof goes along the same lines as that of Theorem  in [] and we omit it.

Theorem . (Main Result) Let T : A → A be a dynamical system and for each j ∈ J
let Tj : A → A be the dynamical system defined by Tj(x) = Cj

x. Suppose that the following
conditions are satisfied:

. The seminorm ρj, from the family of seminorms defining the topology τ , is such that
the subset A is ρj-sequentially complete.

. The function φj (see definition .) satisfies the condition φj(x) ≤ lim infφj(xn)
whenever ρj(x – xn) → .

. Cj
x 	= ∅ for all x ∈ A.

Then there exists x∗
j ∈ A such that Tjx∗

j ⊂ x∗
j + Zρj , that is, x∗

j is a ρj-critical point of the
function Tj.

Proof The hypotheses of this theorem are essentially the same as those of Proposition .,
with T = Tj. The fact that the function φj is ρj-lsc implies that the set Tjx = Cj

x is ρj-closed
for each vector x ∈ A. Then, for all y ∈ Tjx = Cj

x,

y + Zρj = {y}ρj ⊂ Tjx.

On the other hand, the fact that A is ρj-sequentially complete implies that the set Tjx =
Cj

x is also ρj-sequentially complete. Hence, by Proposition ., we see that there exists
x∗

j ∈ A such that

Tjx∗
j ⊂ x∗

j + Zρj

as desired. �

Corollary . If x∗
j ∈ Tjx∗

j then Tjx∗
j = x∗

j + Zρj .

A weak version (in the sense of weak topology) of Theorem . can be obtained as fol-
lows. Consider X ′ = (X, τ )′, the topological dual of X, and the saturated family of semi-
norms {ρf : f ∈ X ′}, where ρf (x) = |f (x)| and Zf = ker(f ). Assume as before that A ⊂ X is
ρf -complete for some fixed, but arbitrary, f ∈ X ′, and let � : A →R be a lsc function. Then
we have the following.
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Proposition . If each x ∈ A and each u ∈ Tx satisfies |f (x – u)| ≤ �(x) – �(u), then the
dynamical system T has a ρf -critical point x∗

f ∈ A, that is,

Tx∗
f ⊂ x∗

f + Zρf = x∗
f + Zf .

We also have the following restatement of Theorem ., where the continuous linear
functions f ∈ X ′ take the place of the indices j ∈ J .

Theorem . For each f ∈ X ′, let T ′
f : A → A denote the function given by T ′

f (x) = Cf
x .

Suppose there exists a seminorm, ρf (x) = |f (x)| with f ∈ X ′, such that:
. The function φf = |f | satifies φf (x) ≤ lim infφf (xn) = lim infn |f (xn)| (lower

semicontinuity).
. Cf

x 	= ∅ for all x ∈ A.
Then there exists x∗

f ∈ A such that T ′
f x∗

j ⊂ x∗
f + Zf .

Proof Just notice that if we consider the weak topology in place of τ on X, then we have
the same hypotheses as in Theorem . above. �

4 Applications to fixed point theory
With the tools we have developed so far we can present a couple of interesting applications
to fixed point theory. Let (X, τ ) be a complete locally convex topological vector space and
take f ∈ X ′, A ⊂ X a τ -closed subset, and  < M < . Let h : A → A be any function such
that

∣∣f
(
h(x)

)
– f

(
h(z)

)∣∣ ≤ M
∣∣f (x) – f (z)

∣∣ for all x, z ∈ A. ()

Theorem . Under the above assumptions there exists x∗ ∈ A such that, for all k ∈ N,

f
(
x∗) = f

(
h
(
x∗)) = f

(
hk(x∗)). ()

Equivalently, for all k ∈ N, ρf (x∗ – hk(x∗)) = . Moreover, if x∗∗ ∈ A also satisfies () then
f (x∗) = f (x∗∗).

First note that Theorem . fails for M = . Indeed, in [] Khamsi provides an example
[], Example , to answer Kirk’s problem (in the negative) on the existence of fixed points
for a map T : X → X such that, for all x ∈ X and for some positive function η, η(d(x, Tx)) ≤
φ(x) – T(φ(x)) (φ is a non-negative lsc function). Here we see that for M =  and A =
{x, x, . . .} ⊂ X = R with xn =  + 

 + · · · + 
n ; if we take f = I ∈ (R)′ we have the inequality

∣∣h(xn) – h(xm)
∣∣ ≤ |xn – xm| for all n, m ∈ N

and then the function h(xn) = xn+ does not have a fixed point. Note that the set A is closed
but it is not bounded.

Also note that if A = X then as a consequence of inequality () we see that ĥ : X/Zf →
X/Zf , such that ĥ([x]) = [h(x)] is a function. Furthermore, if A = X and the identities in ()
hold, then the function ĥ has a unique fixed point.
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Proof of Theorem .. Let T : A → A defined by Tx = {x, h(x), h(x), . . .}. Then we have

∣∣f
(
h(x) – h(z)

)∣∣ =
∣∣f

(
h(x)

)
– f

(
h(z)

)∣∣ ≤ M
∣∣f (x) – f (z)

∣∣ = M
∣∣f (x – z)

∣∣

for every x, z ∈ A.
Consider ef : {Tx : x ∈ X} × {Tz : z ∈ X} → [,∞) given by

ef (Tx, Tz) = sup
{∣∣f (y – Tz)

∣∣ : y ∈ Tz
}

= sup
{
ρf (y – Tz) : y ∈ Tx

}
.

Observe that since Tx ⊃ Th(x) ⊃ Th(x) ⊃ · · · we have ef (Thk+m(x), Thk(x)) =  for all
k, m ∈N. Now Tx is not necessarily closed or bounded, however, if k ≤ m,

∣∣f
(
hk(x)

)
– f

(
hm(z)

)∣∣ ≤ Mk∣∣f (x) – f
(
hm–k(z)

)∣∣.

Thus,

inf
m≥k

{∣∣f
(
hkx

)
– f

(
hmz

)∣∣} ≤ inf
m≥k

{
Mk∣∣f (x) – f

(
hm–kz

)∣∣}

≤ Mk∣∣f (x) – f (z)
∣∣

= Mk∣∣f (x – z)
∣∣.

As a consequence we see that the function ef satisfies ef (Tx, Tz) ≤ M|f (x – z)| for all
x, z ∈ A.

Note that for the given function h and the seminorm ρf we can use Proposition . to see
that the function φf (x) = diamf Tx is Lipschitz and thus ρf -uniformly continuous. Also,
since x ∈ Tx, φf (x) =  and φf (x) = φf (x). Therefore φf is ρf uniformly continuous and
satisfies condition () in Theorem .. Observe that since x ∈ Tx we have trivially from
Lemma . that φf (x) + ρf (x – x) = φf (x). Also x ∈ Cf

x = {y ∈ Tx | φf (y) + ρf (x – y) ≤ φf (x)},
that is, Cf

x 	= ∅, which is condition () in Theorem ..
By Lemma ., and since ρf is continuous, we see that Cf

x is ρf -closed, thus ρf -
sequentially complete since X is ρf -sequentially complete. By Theorem . we conclude
that, for the map Tf : A → A, defined via Tf (x) = Cf

x , there exists x∗ ∈ A such that
Tf (x∗) ⊂ x∗ + Zf .

Now, since x∗ ∈ Tf (x∗), by Corollary . we see that Tf (x∗) = x∗ + Zf . Hence, for each y ∈
Tx∗ there exists z ∈ Zf (f (z) = ) such that y = x∗ + z. From which we obtain diamf Tx∗ = .
That is, f (x∗) = f (hk(x∗)) for all k ∈N. Equivalently ρf (x∗ – hk(x∗)) =  for all k ∈N.

As for the uniqueness, if x∗∗ ∈ X is such that f (x∗∗) = f (hk(x∗∗)) for all k ∈ N, we would
have

∣∣f
(
x∗ – x∗∗)∣∣ =

∣∣f
(
h
(
x∗)) – f

(
h
(
x∗∗))∣∣ ≤ M

∣∣f
(
x∗) – f

(
x∗∗)∣∣ = M

∣∣f
(
x∗ – x∗∗)∣∣.

Thus  ≤ M, which contradicts our hypothesis. This concludes Theorem .. �

There is an interesting connection with the condition of metrical inwardness and the
corresponding fixed point theorem in Caristi [], p.. Metrical inwardness hold in our
setting if we take a fixed function f ∈ X ′ such that for each x ∈ A there exists u ∈ A such that
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f (x – u) and f (u – hx) are both positive numbers (or both negative) where h is a function
satisfying the conditions of Theorem ..

All we did in the previous paragraphs can be repeated if we change the weak topology for
a generic Hausdorff topology for a lcs (X, τ ). Indeed, if we use a fixed seminorm ρj among
those that generate the topology τ , then we have the following result corresponding to
Proposition ..

Proposition . Let (X, τ ) be a complete locally convex topological vector space, take ρj

a seminorm, from those that generate the topology τ . Let A ⊂ X a closed subset and let
 < M < . Take h : A → A defined as a function not necessarily linear or continuous and
such that for ρj we have

ρj
(
h(x) – h(z)

) ≤ Mρj(x – z) for all x, z ∈ A. ()

Then there exists x∗ ∈ A such that

x∗ – hk(x∗) ∈ Zρj for all k ∈ N. ()

Equivalently

ρj
(
x∗ – h

(
x∗)) = ρj

(
x∗ – hk(x∗)) =  for all k ∈N.

If x∗∗ ∈ A also satisfies () we have, ρj(x∗ – x∗∗) = .

A consequence of () for A = X is that the relation ĥ : X/Zρj → X/Zρj defined by ĥ([x]) =
[h(x)] is a function. A consequence of () for A = X, is that the function ĥ has a unique
fixed point.

Proof of Proposition . To prove Proposition . let us define the function T : X → X

via Tx = {x, h(x), h(x), . . .}.
Then we have ρj(h(x) – h(z)) ≤ Mρj(x – z) for all x, z ∈ A. Note that Tx ⊃ Th(x) ⊃

Th(x) ⊃ · · · , which means that ef (Thk+m(x), Thk(x)) =  for all k, m ∈ N. Recall that Tx
is not necessarily closed but it is bounded. Furthermore, if k ≤ m,

ρj
(
hk(x) – hm(z)

) ≤ Mkρj
(
x – hm–k(z)

)
,

and then

inf
m≥k

{
ρj

(
hkx – hmz

)} ≤ inf
m≥k

{
Mkρj

(
x – hm–kz

)} ≤ Mkρj(x – z).

The trick now is to follow the argument in Theorem . but replacing the seminorm
ρf by the seminorm ρj in order to get x∗ ∈ X such that, by Theorems ., ., and Corol-
lary ., Tx∗ρj = x∗ + Zρj . Finally, since ̂ ∈ Zρj we obtain x∗ ∈ Tx∗. Uniqueness is proved in
the same way as in Theorem .. �

Note that in Theorem . if we had x∗ ∈ Tx∗ and x∗∗ ∈ Tx∗∗, that is, x∗ = hk(x∗) and
x∗∗ = hj(x∗∗), where k, j ∈ N are the minimum values that satisfy these equalities, then we
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would have, for each n ∈ N, x∗ = hnk(x∗), and x∗∗ = hnj(x∗∗). Thus, for j ≤ k,

∣∣f
(
x∗ – x∗∗)∣∣ =

∣∣f (hnk(x∗) – hnj(x∗∗)∣∣ ≤ Mnj∣∣f
(
hnk–nj(x∗) – x∗∗)∣∣.

Since {hn(k–j)(x∗)|n ∈N} is bounded, since it is finite with at most k points, and  < M < ,
the sequence {Mnj|f (hn(k–j)(x∗) – x∗∗)|} converges to  as n → ∞; in other words, |f (x∗ –
x∗∗)| =  hence |f (h((x∗)) – h(x∗∗))| = . We conclude that ρf (x∗ – x∗∗) =  = ρf (h(x∗) –
h(x∗∗)). In general, |f (hnj(x∗) – hnj(x∗∗))| =  = |f (hnk(x∗) – hnk(x∗∗))|.

As another application of our results, we show how the Azé and Corvellec theorem
([], Theorem .) follows easily from Theorem .. Azé and Corvellec defined the set of
fixed points for T as FT = {x ∈ X : x ∈ Tx}. For the seminorms ρj the set of fixed points
of T is described as Fj

T = {x ∈ X | ρj(x – Tx) = } or in the case of ρf , the set of fixed
point for T is Ff

T = {x ∈ X | |f (x – Tx)| = }. Note that this sets are ρj-closed (respectively,
ρf -closed). In [], Azé and Corvellec proved that for all x ∈ X, ρj(x – Fj

T ) ≤ ρj(x – Tx)
(|f (x – Ff

T )| ≤ |f (x – Tx)|). We discuss the case for ρf (the case for ρj is analogous). Let

Af =
{

x ∈ X | ∣∣f (x – Ff
T
)∣∣ >

∣∣f (x – Tx)
∣∣ = φf (x)

}
.

We can prove, under the conditions of Propositions . and ., which we assume, that
Af = ∅. Indeed, define the function ψf : (X, d) →R by

ψf (x) =
∣∣f

(
x – Ff

T
)∣∣ –

∣∣f (x – Tx)
∣∣ =

∣∣f
(
x – Ff

T
)∣∣ – φf (x).

Then we have

Af =
{

x ∈ X : ψf (x) > 
}

= ψ–
f (,∞).

Thus if the function ψf is lsc then Af is an open set, and Af ∩ Ff
T = ∅. Consider the

function γf (x) = |f (x – Ff
T )| = inf{|f (x – z)| : z ∈ Ff

T }, which is always continuous. Then,
under the conditions of Propositions . and ., the function φf is continuous. Thus,
we see that the function ψf (x) = γf (x) – φf (x) is continuous, giving us that Af is open. If
Af 	= ∅, take x ∈ Af and r >  such that

Df
r (x) =

{
z ∈ X :

∣∣f (z – x)
∣∣ ≤ r

} ⊂ Af .

Note that Df
r (x) is ρf -closed and ρf -bounded.

If we define T ′′ : Df
r (x) → X to be T ′′x = T ′

f x, T ′′ = T ′
f |Df

r (x), then T ′
f satisfies the hypothe-

ses of Theorem .. Thus, there exists z∗ ∈ Df
r (x) ⊂ Af such that z∗ ∈ T ′′z∗, in other words,

z∗ ∈ Af ∩ Ff
T = ∅ and the set Af must be empty.

As as additional consequence (and easy example) of Proposition . one can get well
known results such as the contraction mapping theorem. Indeed, if (X,ρ) is a normed
space and A is a nonempty compact subset of X then any contraction f : A → A has a
fixed point. This follows from Proposition . by letting T : A → A as Tx = {f (x)} and

�(x) =
∞∑

k=

ρ
(
f k(x) – f k+(x)

)
=


 – c

ρ
(
x – f (x)

)
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where  < c <  is the contraction constant for f . It is easy to show that � is lsc (in fact
continuous) and that ρ(x – f (x)) = �(x) –�(f (x)). Hence T must have critical points which
are, by definition of T , fixed points for f .

5 Conclusions
The paper can be considered as an extension of the Pareto optimization criterion to lo-
cally complete locally convex vector spaces [] with some applications to fixed points.
Local completeness is a very weak completeness property. This type of spaces is becom-
ing the convenient setting for several applications. Here in this setting we get a fixed point
theorem and as an application we obtain the results of Azé and Corvellec’s [].
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