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Abstract
The first purpose of this paper is to define a homotopy for fuzzy spaces. We continue
our work by showing that the property of having a fixed point is invariant by this
homotopy. These theorems generalize and improve well-known results.
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1 Introduction and preliminaries
The study of fuzzy metric spaces has been developing since . The well-known fixed
point theorem of Banach was extended by Grabiec []. On the other hand, a number of
authors have studied the conditions under which the property of having a fixed point is
invariant in metric spaces. For example, see [, ].

To seek completeness, we briefly recall some basic concepts used in the following.

Definition . ([]) A binary operation ∗ : [, ] × [, ] → [, ] is called a continuous
t-norm if ([, ],∗) is an abelian topological monoid with unit  such that a ∗ b ≤ c ∗ d
whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [, ].

Definition . ([]) The -tuple (X, M,∗) is called a fuzzy metric space if X is an arbitrary
non-empty set, ∗ is a continuous t-norm, M is a fuzzy set on X × [,∞) satisfying the
following conditions, for each x, y, z ∈ X and t, s > ,

() M(x, y, t) > ,
() M(x, y, t) =  if and only if x = y,
() M(x, y, t) = M(y, x, t),
() M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s),
() M(x, y, t) : (,∞) → [, ] is continuous.

Example . ([]) Let X = N, define a ∗ b = ab for all a, b ∈ [, ], let M be a fuzzy set on
X × [,∞) as follows:

M(x, y, t) =

⎧
⎨

⎩

x+t
y+t , x ≤ y,
y+t
x+t , y > x.

Then (X, M,∗) is a fuzzy metric space.
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Example . ([]) Let (X, d) be a metric space. Define a ∗ b = ab for all x, y ∈ X and t > ,

M(x, y, t) =
t

t + d(x, y)
.

Then (X, M,∗) is a fuzzy metric space. We call this fuzzy metric M induced by the metric
d the standard fuzzy metric. If (X, d) is a complete metric space, then also (X, M,∗) is
complete.

Lemma . ([]) M(x, y, ·) is non-decreasing for all x, y ∈ X.

Remark . ([])
(a) In a fuzzy metric space (X, M,∗), whenever M(x, y, t) >  – r for x, y in X, t > ,

 < r < , we can find  < t < t such that M(x, y, t) >  – r.
(b) For any r > r , we can find r such that r ∗ r ≥ r, and for any r, we can find r

such that r ∗ r ≥ r (r, r, r, r, r ∈ (, )).

George and Veeramani introduced Hausdorff topology in fuzzy metric spaces. They
showed that this topology is first countable.

Definition . ([]) Let (X, M,∗) be a fuzzy metric space. For t >  and  < r < , the open
ball B(x, r, t) with center x ∈ X is defined by B(x, r, t) = {y ∈ X : M(x, y, t) >  – r}.

A subset A ⊆ X is called open if for each x ∈ A there exist t >  and  < r <  such that
B(x, r, t) ⊆ A. Let τ denote the family of all open subsets of X. Then τ is a topology on X
induced by the fuzzy metric (X, M,∗). This topology also is metrizable (see []).

Definition . Let (X, M,∗) be a fuzzy metric space.
() A sequence {xn} is said to be convergent to a point x ∈ X if limn→∞ M(xn, x, t) =  for

all t > .
() A sequence {xn} is said to be Cauchy sequence if

lim
n,m→∞ M(xn, xm, t) = 

for all t > .
() A fuzzy metric space in which every Cauchy sequence is convergent to a point x ∈ X

is said to be complete.

Definition . Let (X, M∗) be a fuzzy metric space and A ⊆ X. Closure of the set A is the
smallest closed set containing A, denoted by A. Interior of the set A is the largest open set
contained in A, denoted by A◦. Obviously, having in mind the Hausdorff topology and the
definition of converging sequences, we have that the next remark holds.

Remark . x ∈ A if and only if there exists a sequence {xn} in A such that xn → x.

We also need the following definitions.

Definition . Let (X, M,∗) be a fuzzy metric space, A ⊆ X A \ A◦ is called boundary of
A and denoted by ∂A.
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Definition . ([]) Let A be a non-empty subset of fuzzy metric space (X, M,∗). For
each x ∈ X and t >  , define

M(x, A, t) = sup
{

M(x, y, t) : y ∈ A
}

.

The following lemma is essential in proving our result.

Lemma . ([]) Let (X, M,∗)be a fuzzy metric space such that for every x, y ∈ X, t > 
and h > ,

lim
n→∞∗∞

i=nM
(
x, y, thi) = . (.)

Suppose that {xn} is a sequence in X such that, for all n ∈N,

M(xn, xn+, kt) ≥ M(xn–, xn, t),

where  < K < , then {xn} is a Cauchy sequence.

Definition . Let (X, M,∗) be a fuzzy metric space. A map F : X → X is said to be fuzzy
contraction if there exists a constant  < α <  with

M(Fx, Fy,αt) ≥ M(x, y, t).

Kiany and Amini proved the following improvement of Gregori and Sapena’s fixed point
theorem.

Theorem . ([]) Let (X, M,∗) be a complete fuzzy metric space. Suppose that F : X →
X is a fuzzy contractive map. Furthermore, assume that (X, M,∗) satisfies (.) for some
x ∈ X, each t >  and h > . Then F has a fixed point.

2 Main results
Let (X, M,∗) be a complete fuzzy metric space.

Lemma . If  < a < ,  < p < , t, N >  all are given, then there exists ε >  such that, if
we have |λ – λ| ≤ ε, then

at
N |λ – λ| + at

≥ p.

Proof Put  < ε ≤ at(–p)
pN . We have

εpN ≤ at( – p),

εpN ≤ at – atp,

εpN + atp ≤ at,

p(εN + at) ≤ at,

p ≤ at
εN + at

.
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Since |λ – λ| ≤ ε, we get

p ≤ at
N |λ – λ| + at

or

at
N |λ – λ| + at

≥ p. �

Definition . Let (X, M,∗) be a fuzzy metric space and A be a closed subset of X and
x /∈ A, then we say X has a real distance if sup{M(x, A, t) : ∀t > } < .

Example . Then (X, M,∗) is a complete standard fuzzy metric, then X has a real dis-
tance, because if A is a closed subset of X and x /∈ A, then inf{d(x, A)} > .

Example . Suppose that (X, M,∗) is the same as in Example ., A ∈ X is an arbitrary
subset of X and x /∈ A, then M(x, A, t) ≤ 

 .

Definition . Let F : U → X and G : U → X be two fuzzy contractions. We say that F
and G are fuzzy homotopic • maps if there exists H : U × [, ] → X with the following
properties:

(a) H(·, ) = G and H(·, ) = F ;
(b) x �= H(x, s) for x ∈ ∂U and s ∈ [, ];
(c) there exists K ,  < K < , such that M(H(x, s), H(y, s), Kt) ≥ M(x, y, t) for every

x, y ∈ U , s ∈ [, ] and t > ;
(d) there exists N , N ≥ , such that M(H(x, s), H(y, s), t) ≥ t

t+N |s–s| for every x ∈ U ,
t >  and s, s ∈ [, ].

Theorem . Let (X, M,∗) be a fuzzy complete metric space and U be an open subset of X.
Suppose that F : U → X and G : U → X are two homotopic fuzzy maps and G has a fixed
point in U . Assume that (X, M,∗) satisfies (.) for some x ∈ X and also X has a real
distance, then F has a fixed point in U .

Proof Consider the set

A =
{
λ ∈ [, ] : x = H(x,λ) for some x ∈ U

}
,

where H is a homotopy between F and G as described in Definition .. Notice that A is
non-empty since G has a fixed point, that is,  ∈ A. We will show that A is both open and
closed in [, ] and, by connectedness, we have that A = [, ]. As a result, F has a fixed
point in U . We break the argument into two steps.

Step one. A is open in [, ].
Since A is non-empty, there exists x ∈ U with x = H(x,λ). Since X has a real distance,

there exists  < r∗ <  such that

M(x, ∂U , t) >  – r∗.

So we can choose r,  < r < , such that  – r∗ >  – r.
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Now if

x ∈ B(x, r, t) �⇒ M(x, x, t) >  – r.

From Remark .(a) we can find t,  < t < t, such that M(x, x, t) >  – r. Let

r = M(x, x, t) >  – r. ()

Since r >  – r, we can find s,  < s < , such that

r >  – s >  – r. ()

Now, for given r and s, from Remark .(b) we can find p,  < p < , such that

r ∗ p ≥  – s. ()

Now consider Lemma . with a = ( – K), p, N , t, we can find ε such that if |λ – λ| ≤ ε,
then we have

( – K)t

( – K)t + N |λ – λ| ≥ p. ()

Thus, for each fixed λ ∈ (λ – ε,λ + ε) and x ∈ •B(x, r, t), we have

M
(
x, H(x,λ), t

) ≥ M
(
x, H(x,λ), t

)

≥ M
(
H(x,λ), H(x,λ), ( – K)t

) ∗ M
(
H(x,λ), H(x,λ), Kt

)
. ()

By Definition .(d) we know that

M
(
H(x,λ), H(x,λ), ( – K)t

) ≥ ( – K)t

( – K)t + N |λ – λ| .

Also by Definition .(c) we know that

M
(
H(x,λ), H(x,λ), Kt

) ≥ M(x, x, t).

Substitution of these expressions into () reveals

M
(
x, H(x,λ), t

) ≥ ( – K)t

( – K)t + N |λ – λ| ∗ M(x, x, t). ()

Now from substitution of () and () into the () we have

M
(
x, H(x,λ), t

) ≥ p ∗ r.

From () we get

M
(
x, H(x,λ), t

) ≥  – s.
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Then from () we get

M
(
x, H(x,λ), t

) ≥  – r.

Thus, for each fixed λ ∈ (λ – ε,λ + ε),

H(·,λ) : B(x, r, t) → B(x, r, t).

We can apply Theorem . to deduce that H(·,λ) has a fixed point in U . Thus λ ∈ A for
any λ ∈ (λ – ε,λ + ε) and therefore A is open in [, ].

Step two. A is closed in [, ].
To see this, let

{λn}∞n= ⊆ A with λn → λ ∈ [, ] as n → ∞.

We must show that λ ∈ A. Since λn ∈ A for n = , , . . . , there exists xn ∈ U with xn =
H(xn,λn). Hence, by Lemma ., we know {xn} is a Cauchy sequence. Since (X, M,∗) is a
fuzzy complete metric space, then there exists x ∈ X such that limn→∞ xn = x, that means

lim
n→∞ M(xn, x, t) =  for each t > . ()

On the other hand, from λn → λ, we have

( – K)t
N |λn – λ| + ( – K)t

→ .

In addition, x = H(x,λ) since

M
(
xn, H(x,λ), t

)
= M

(
H(xn,λn), H(x,λ), t

)

≥ M
(
H(xn,λn), H(xn,λ), ( – K)t

) ∗ M
(
H(xn,λ), H(x,λ), Kt

)
. ()

By Definition .(d) we have

M
(
H(xn,λn), H(xn,λ), ( – K)t

) ≥ ( – K)t
( – K)t + N |λn – λ| . ()

Also, by Definition .(c), we have

M
(
H(xn,λ), H(x,λ), Kt

) ≥ M(xn, x, t). ()

Now from substitution of () and () in () we get

M
(
xn, H(x,λ), t

) ≥ ( – K)t
( – K)t + N |λn – λ| ∗ M(xn, x, t).

As seen above, on the left-hand side of this inequality, both limits exist and are equal to
one. So, for each t > , we must have

lim
n→∞ M

(
xn, H(x,λ), t

)
= .

From () we get H(x,λ) = x. Thus λ ∈ A, and A is closed in [, ]. �
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Example . Let X = R, M(x, y, t) = t
t+|x–y| , a ∗ b = ab, then (X, M,∗) is a complete fuzzy

metric space. Also (X, M,∗) satisfies (.). Let N >  be a fixed real number and f (x) : X →
X be given by

f (x) =

⎧
⎨

⎩

x
 ,  ≤ x ≤ N ;

N , else.

Also define

g(x) = ( – β)f (x) for  < β < .

It is easy to show |f (x) – f (y)| ≤ 
 |x – y| for all x, y ∈ X . Now we have M(f (x), f (y), t

 ) ≥
M(x, y, t). Because f is a fuzzy contraction (α = 

 ), g is a fuzzy contraction, too. Let s, s, s ∈
[, ], t > . We define H : X × [, ] → X

H(x, s) = sf (x) + ( – s)g(x).

It is obvious that H satisfies Definition .(a) and Definition .(b). We need only check
that Definition .(c) and Definition .(d) are true. For Definition .(c), we have

∣
∣H(x, s) – H(y, s)

∣
∣ =

∣
∣sf (x) + ( – s)g(x) – sf (y) – ( – s)g(y)

∣
∣

=
∣
∣s

(
f (x) – f (y)

)
+ ( – s)( – β)

(
f (x) – f (y)

)∣
∣

=
∣
∣f (x) – f (y)

(
s + ( – s)( – β)

)∣
∣

≤ ∣
∣f (x) – f (y)

(
s + ( – s)

)∣
∣

=
∣
∣f (x) – f (y)

∣
∣ ≤

∣
∣
∣
∣




(x – y)
∣
∣
∣
∣.

For K = 
 , we have

M
(
H(x, s), H(y, s), Kt

) ≥ M(x, y, t).

For Definition .(d), we have

∣
∣H(x, s) – H(x, s)

∣
∣ =

∣
∣sf (x) + ( – s)g(x) – sf (x) – ( – s)g(x)

∣
∣

=
∣
∣(s – s)

(
f (x) – g(x)

)∣
∣

=
∣
∣(s – s)

(
f (x) – f (x) + βf (x)

)∣
∣

=
∣
∣(s – s)βf (x)

∣
∣

≤ ∣
∣(s – s)βN

∣
∣

≤ ∣
∣(s – s)N

∣
∣.

So

M
(
H(x, s), H(x, s), t

)
=

t
t + |H(x, s) – H(x, s)| ≥ t

t + N |s – s| .
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Now f and g are two fuzzy homotopic contractive maps. Notice that f has a fixed point in
zero. We can now apply Theorem . to deduce that there exists x with x = g(x).

Now, as a result of Theorem ., we can prove the following theorem due to Fournier [].

Theorem . Let (X, d) be a complete metric space and U be an open subset of X. Sup-
pose that F : U → X and G : U → X if there exists H : U × [, ] → X with the following
properties:

(a) H(·, ) = G and H(·, ) = F ;
(b) x �= H(x, s) for x ∈ ∂U and s ∈ [, ];
(c) there exists K ,  ≤ K < , such that d(H(x, s), H(y, s)) ≤ Kd(x, y) for every x, y ∈ U ,

s ∈ [, ];
(d) there exists N , N ≥ , such that d(H(x, s), H(y, p)) ≤ N |s – p| for every x, y ∈ U and

s, p ∈ [, ]. Suppose that F and G are two contractive maps and G has a fixed point
in U , then F has a fixed point in U .

Proof Let (X, M,∗) be a standard fuzzy metric space induced by the metric d with a ∗ b =
min{a, b}. Notice that F and G are two contractive maps, so they are fuzzy contractive maps
in the induced fuzzy metric space. Now we can see that condition (.) is satisfied. Also
X has a real distance. Since (X, d) is a complete metric space, (X, M,∗) is a complete fuzzy
metric space. It is easy to see that (X, M,∗) satisfies all the conditions Definition .(a),
Definition .(b), Definition .(c) and Definition .(d). We can apply Theorem . to
deduce that F has a fixed point. �

3 Conclusions
Motivated by the results of Frigon, I slightly modified the definition of homotopic con-
tractive maps. I proved that the property of having a fixed point is invariant by homotopy
for fuzzy contractive maps. This investigation could be extended to a fuzzy quasi-metric
space with possible application to the study of analysis of probabilistic metric spaces.
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