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Abstract
We extend Nadler’s fixed point theorem to ν-generalized metric spaces. Through the
proof of the above extension, we understand more deeply the mathematical
structure of a ν-generalized metric space. In particular, we study the completeness of
the space. We also improve Caristi’s and Subrahmanyam’s fixed point theorems in the
space.
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1 Introduction and preliminaries
In , Nadler proved the following; the splendid fixed point theorem for set-valued con-
tractions, which is one of generalizations of the Banach contraction principle [, ]. See
also, e.g., [–].

Theorem  (Theorem  in Nadler []) Let (X, d) be a complete metric space and let T be a
mapping from X into CB(X), where CB(X) is the set of all nonempty bounded closed subsets
of X. Assume that there exists r ∈ [, ) such that

δ(Tx, Ty) ≤ rd(x, y) ()

for all x, y ∈ X, where δ is a function from CB(X) into [,∞) defined by

δ(A, B) = sup
a∈A

inf
b∈B

d(a, b). ()

Then there exists z ∈ X such that z ∈ Tz.

Remark It is obvious that () is equivalent to the following:

H(Tx, Ty) ≤ rd(x, y),

where H is the Hausdorff metric, that is,

H(Tx, Ty) = max
{
δ(Tx, Ty), δ(Ty, Tx)

}
.
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In , Branciari introduced the following, very interesting concept.

Definition  (Branciari []) Let X be a set, let d be a function from X × X into [,∞)
and let ν ∈N. Then (X, d) is said to be a ν-generalized metric space if the following hold:

(N) d(x, y) =  iff x = y for any x, y ∈ X .
(N) d(x, y) = d(y, x) for any x, y ∈ X .
(N) d(x, y) ≤ D(x, u, u, . . . , uν , y) for any x, u, u, . . . , uν , y ∈ X such that

x, u, u, . . . , uν , y are all different, where

D(x, u, u, . . . , uν , y) = d(x, u) + d(u, u) + · · · + d(uν , y).

We have studied the topological structure of this space. Indeed, recent studies tell that -
and -generalized metric spaces have the compatible topology and that all ν-generalized
metric spaces have the strongly compatible topology. Also we have proved several fixed
point theorems in this space. See, e.g., [–]. However, we have not generalized Theo-
rem . Motivated by this fact, in this paper, we generalize Theorem . Another purpose
of this paper is to understand more deeply the mathematical structure of this space. In
particular, we study the completeness of this space. We also improve Caristi’s and Subrah-
manyam’s fixed point theorems in this space.

Throughout this paper we denote by N the set of all positive integers and by R the set of
all real numbers. For an arbitrary set A, we also denote by #A the cardinal number of A.

2 Completeness
In this section, we begin with definitions. Some of them are new.

Definition  Let (X, d) be a ν-generalized metric space and let {xn} be a sequence in X.
Let κ ∈N.

(i) {xn} is said to be Cauchy [] if limn supm>n d(xn, xm) =  holds.
(ii) {xn} is said to be κ-Cauchy [] if

lim
n→∞ sup

{
d(xn, xn++jκ ) : j = , , , . . .

}
= 

holds.
(iii) {xn} is said to be (

∑
, �=)-Cauchy if xn (n ∈N) are all different and

∞∑

j=

d(xj, xj+) < ∞

holds.
(iv) {xn} is said to converge to x [] if limn d(xn, x) =  holds.
(v) {xn} is said to converge only to x [] if

lim
n→∞ d(xn, x) =  and lim sup

n→∞
d(xn, y) > 

hold for any y ∈ X \ {x}.
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(vi) {xn} is said to converge exclusively to x [] if

lim
n→∞ d(xn, x) =  and lim inf

n→∞ d(xn, y) > 

hold for any y ∈ X \ {x}.
(vii) {xn} is said to converge to x in the strong sense [] if {xn} is Cauchy and {xn}

converges to x.

Remark We know the following.
• {xn} is Cauchy iff {xn} is -Cauchy.
• If {xn} is Cauchy, then {xn} is -Cauchy; see Proposition (i) in [].
• (vii) �⇒ (vi) �⇒ (v) �⇒ (iv) holds; see Proposition .(ii) in [].

Definition  Let (X, d) be a ν-generalized metric space. Let κ ∈ N.
• X is said to be complete [] if every Cauchy sequence converges.
• X is κ-complete [] if every κ-Cauchy sequence converges.
• X is (

∑
, �=)-complete if every (

∑
, �=)-Cauchy sequence converges.

Remark We know the following.
• X is complete iff X is -complete.
• If X is -complete, then X is complete; see Proposition (ii) in [].

We next study (
∑

, �=)-completeness.

Lemma  (Proposition  in []) Let (X, d) be a ν-generalized metric space where ν is odd.
Let {xn} be a ν-Cauchy sequence such that xn are all different. Then {xn} is Cauchy.

Lemma  (Proposition  in []) Let (X, d) be a ν-generalized metric space where ν is even.
Let {xn} be a ν-Cauchy sequence such that xn are all different. Then {xn} is -Cauchy.

Lemma  (Lemma  in []) Let (X, d) be a ν-generalized metric space. Then every (
∑

, �=)-
Cauchy sequence is ν-Cauchy.

Lemma  Let (X, d) be a ν-generalized metric space and let κ ∈N. Let {xn} be a κ-Cauchy
sequence converging to some z ∈ X. Assume that xn are all different. Then {xn} is Cauchy.

Remark We need the difference of xn. See Example (v) below.

Proof Fix ε > . Then from the assumption, there exists some μ ∈ N satisfying

sup
{

d(xn, xn++jκ ) : j = , , , . . .
}

< ε and

 < d(xn, z) < ε

for any n ∈ N with n ≥ μ. Fix m, n ∈N with μ ≤ n < m. Then we have

d(xn, xm) ≤ D(xn, z, xm+ν–, . . . , xm+, xm) < (ν + )ε.

Thus, we obtain the desired result. �
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Lemma  Let (X, d) be a ν-generalized metric space and let {xn} be a (
∑

, �=)-Cauchy se-
quence in X. Then the following hold:

(i) If ν is odd, then {xn} is Cauchy.
(ii) {xn} is -Cauchy.

(iii) If {xn} converges, then {xn} is Cauchy, that is, {xn} converges in the strong sense.

Proof (i) follows from Lemmas  and . Similarly, (ii) follows from (i), Lemmas  and .
(iii) follows from (ii) and Lemma . �

Lemma  Let (X, d) be a ν-generalized metric space satisfying either of the following:
• ν is odd and X is complete.
• X is -complete.

Then X is (
∑

, �=)-complete.

Proof Let {xn} be a (
∑

, �=)-Cauchy sequence. Then from the assumption and Lemma (i)
and (ii), {xn} converges. �

Lemma  Let (X, d) be a ν-generalized metric space and let {xn} be a Cauchy sequence in
X converging to some z ∈ X. Let {yn} be a sequence in X satisfying limn d(xn, yn) = . Then
{yn} also converges to z.

Proof We consider the following two cases:
(i) #{xn : n ∈N} < ∞,

(ii) #{xn : n ∈N} = ∞.
In the first case, there exists μ ∈N satisfying xn = z for any n ≥ μ. Therefore limn d(z, yn) =
limn d(xn, yn) =  holds. In the second case, we fix ε > . Then from the assumption, there
exists some μ ∈N satisfying

sup
{

d(xn, xm) : m > n
}

< ε,

d(xn, z) < ε and d(xn, yn) < ε,

for any n ≥ μ. Fix n ∈N with n ≥ μ. We further consider the following two cases:
(ii-) xn = z or yn = z or xn = yn,
(ii-) xn �= z, yn �= z, xn �= yn.

In the case of (ii-), d(yn, z) < ε obviously holds. In the case of (ii-), we choose n, . . . , nν– ∈
N such that nj ≥ μ holds and xn, yn, z, xn , . . . , xnν– are all different. Then we have

d(yn, z) ≤ D(yn, xn, xn , . . . , xnν– , z) < (ν + )ε.

Thus, we obtain the desired result. �

Lemma  Let (X, d) be a ν-generalized metric space and let {xn} be a Cauchy sequence
in X satisfying lim infn d(xn, z) =  for some z ∈ X. Then {xn} converges to z.

Proof There exists a subsequence {f (n)} of the sequence {n} in N such that {xf (n)} con-
verges to z. We note that {xf (n)} is Cauchy and that limn d(xf (n), xn) =  holds. So by
Lemma , we obtain the desired result. �
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Lemma  Let (X, d) be a (
∑

, �=)-complete, ν-generalized metric space. Then X is com-
plete.

Proof Let {xn} be a Cauchy sequence in X. We consider the following two cases:
• #{xn : n ∈N} < ∞,
• #{xn : n ∈N} = ∞.

In the first case, we can prove that {xn} converges as in the proof of Lemma . In the
second case, we can choose a subsequence {f (n)} of {n} such that xf (n) are all different and

sup
{

d(xf (n), xm) : m > f (n)
}

< –n

holds for any n ∈N. We have

∞∑

j=

d(xf (j), xf (j+)) <
∞∑

j=

–j =  < ∞.

Since X is (
∑

, �=)-complete, {xf (n)} converges to some z ∈ X. By Lemma , {xn} itself con-
verges to z. We have shown that X is complete. �

Definition  (see Example . in []) Let (X, d) be a ν-generalized metric space. X is
said to be Hausdorff if limn d(xn, x) = limn d(xn, y) =  implies x = y.

Lemma  Let (X, d) be a -complete, ν-generalized metric space. Then X is Hausdorff.

Proof Arguing by contradiction, we assume that X is not Hausdorff, that is, there exists a
sequence {xn} in X converging to some u and v, where u �= v holds. Define a sequence {yn}
in X by

yn =

⎧
⎪⎪⎨

⎪⎪⎩

xn if n ∈ {k –  : k ∈N},
u if n ∈ {k –  : k ∈N},
v if n ∈ {k : k ∈N}.

We note that {yn} is as follows:

x, u, x, v, x, u, x, v, x, . . . .

It is obvious that {yn} is -Cauchy. Since X is -complete, {yn} converges to some z. How-
ever, we have

lim sup
n→∞

d(yn, z) =  < max
{

d(u, z), d(v, z)
} ≤ lim sup

n→∞
d(yn, z),

which implies a contradiction. Therefore X is Hausdorff. �

Lemma  Let (X, d) be a (
∑

, �=)-complete, Hausdorff, ν-generalized metric space. Then
X is -complete.
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Proof Let {xn} be a -Cauchy sequence. Define two subsets A and A of X by

A = {xn– : n ∈ N} and A = {xn : n ∈ N}.

We consider the following two cases:
• #A < ∞ or #A < ∞,
• #A = ∞ and #A = ∞.

In the first case, without loss of generality, we may assume #A < ∞. Define a subset B of
A by

B =
{

x ∈ X : #{n ∈N : xn = x} = ∞}
.

We note  < #B < #A < ∞. Since {xn} is -Cauchy,

lim
n→∞ d(xn–, x) = lim

n→∞ d(xn–, y) = 

holds for any x, y ∈ B. Since X is Hausdorff, we obtain x = y. Therefore we have shown
#B = . We let x ∈ X satisfy B = {x}. Then we obtain

lim
n→∞ d(xn, x) = d(x, x) = .

Therefore {xn} converges to x. In the second case, we can choose a subsequence {f (n)} of
{n} such that xf (n) are all different, f (n – ) is odd, f (n) is even and

sup
{

d(xj, xj+k–) : j > f (n), k ∈N
}

< –n

holds for any n ∈N. We have

∞∑

j=

d(xf (j), xf (j+)) <
∞∑

j=

–j =  < ∞.

Since X is (
∑

, �=)-complete, {xf (n)} converges to some z ∈ X. Since {xf (n)} is still -Cauchy,
{xf (n)} is Cauchy by Lemma . Noting that f (n + ) – n is odd for any n ∈ N, we have
limn d(xf (n+), xn) = . By Lemma , we obtain limn d(xn, z) = . We have shown that X
is -complete. �

Proposition  Let (X, d) be a ν-generalized metric space where ν is odd. Then the follow-
ing are equivalent:

• X is complete.
• X is (

∑
, �=)-complete.

Proof The conclusion follows from Lemmas  and . �

Proposition  Let (X, d) be a ν-generalized metric space. Then the following are equiva-
lent:

• X is -complete.
• X is (

∑
, �=)-complete and Hausdorff.
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Proof The conclusion follows from Lemmas ,  and . �

Proposition  Let (X, d) be a Hausdorff, ν-generalized metric space where ν is odd. Then
the following are equivalent:

• X is complete.
• X is (

∑
, �=)-complete.

• X is -complete.

Proof The conclusion follows from Propositions  and . �

3 Fixed point theorems
In this section, we first generalize Theorem .

Theorem  Let (X, d) be a (
∑

, �=)-complete, ν-generalized metric space. Let T be a set-
valued mapping on X satisfying the following:

• For any x ∈ X , Tx is a nonempty subset of X .
• If a sequence {yn} in Tx converges to y, then y ∈ Tx holds.
• There exists r ∈ [, ) satisfying δ(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X , where δ is defined

by ().
Then there exists z ∈ X satisfying z ∈ Tz.

Proof Replace the value of r by r := ( + r)/ ∈ (, ). We note r >  and the following:
• For any x, y ∈ X and u ∈ Tx with x �= y, there exists v ∈ Ty satisfying d(u, v) < rd(x, y).

Define a function f from X into [,∞) by

f (x) = inf
{

d(x, b) : b ∈ Tx
}

.

Arguing by contradiction, we assume f (x) >  for any x ∈ X. Fix u ∈ X and choose u ∈ Tu

satisfying d(u, u) < (/r)f (u). Since f (u) < rd(u, u), we can choose u ∈ Tu satisfying

d(u, u) < min
{

rd(u, u), (/r)f (u)
}

.

Then we have

rd(u, u) < f (u) ≤ d(u, u) < rd(u, u) < f (u).

Continuing this argument, we can define a sequence {un} in X satisfying

f (un+) ≤ d(un+, un+) < rd(un, un+) < f (un),

for any n ∈N. Since {f (un)} is strictly decreasing, un (n ∈N) are all different. We also have

∞∑

j=

d(uj, uj+) ≤
∞∑

j=

rj–d(u, u) =
d(u, u)

 – r
< ∞.

Since X is (
∑

, �=)-complete, {un} converges to some y ∈ X. We note that {un} is Cauchy by
Lemma (iii). From the assumption, we can choose a sequence {vn} in Ty satisfying

d(un+, vn) ≤ rd(un, y)
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for any n ∈ N. Then limn d(un+, vn) =  holds. By Lemma , we have limn d(vn, y) = .
Hence f (y) =  holds, which implies a contradiction. Therefore we have shown that there
exists z ∈ X satisfying f (z) = . From the assumption, z ∈ Tz holds. �

As a direct consequence of Theorem , we obtain the following.

Corollary  (Branciari []) Let (X, d) be a complete, ν-generalized metric space and let
T be a contraction on X, that is, there exists r ∈ [, ) such that

d(Tx, Ty) ≤ rd(x, y)

for any x, y ∈ X. Then T has a fixed point.

Remark See also [, , ].

We improve Caristi’s fixed point theorem; see [, ].

Definition  Let (X, d) be a ν-generalized metric space.
• A function f from X into (–∞, +∞] is proper if {x ∈ X : f (x) ∈R} is nonempty.
• A function f from X into (–∞, +∞] is said to be sequentially lower semicontinuous if

f (x) ≤ lim infn f (xn) holds whenever {xn} converges to x.
• A mapping T on X is said to be sequentially continuous if {Txn} converges to Tx

whenever {xn} converges to x.

Theorem  (Theorem  in [], Theorem  in []) Let (X, d) be a (
∑

, �=)-complete, ν-
generalized metric space and let T be a mapping on X. Let f be a proper, sequentially lower
semicontinuous function from X into (–∞, +∞] bounded from below. Assume that

f (Tx) + d(x, Tx) ≤ f (x)

for all x ∈ X. Then T has a fixed point.

Proof We use Lemma (iii) in this paper instead of Lemma  in []. Then we can prove
the conclusion as in the proof of Theorem  in []. �

Remark We can weaken the assumption on the continuity of f as follows:
• f (x) ≤ lim infn f (xn) holds whenever {xn} converges to x in the strong sense.

We next improve Subrahmanyam’s fixed point theorem; see [–].

Theorem  (Theorem  in []) Let (X, d) be a (
∑

, �=)-complete, ν-generalized metric
space and let T be a sequentially continuous mapping on X . Assume that there exists r ∈
[, ) satisfying

d
(
Tx, Tx

) ≤ rd(x, Tx)

for all x ∈ X. Then for any x ∈ X, {Tnx} converges to a fixed point of T in the strong sense.
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Proof We use Lemma (iii) in this paper instead of Lemma  in []. Then we can prove
the conclusion as in the proof of Theorem  in []. �

Remark We can weaken the assumption on the continuity of T as follows:
• {Txn} converges to Tx whenever {xn} converges to x in the strong sense.

4 Counterexamples
In this section, we give counterexamples on some results in Sections  and . The following
example is a counterexample on Proposition  and Theorem .

Example  (see Example  in []) Put X = N and define a function d from X × X into
[,∞) by

d(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

 if x = y,

 if |x – y| ∈ N,

|–x – –y| otherwise.

Define a set-valued mapping T by

Tx = {x + , x + , . . .}.

Then the following hold:
(i) (X, d) is a -generalized metric space.

(ii) X is complete.
(iii)

∑∞
j= d(j, j + ) =  < ∞ holds, however, {j} is not Cauchy.

(iv) X is not (
∑

, �=)-complete. Hence X is not -complete.
(v) T satisfies the assumption of Theorem . However, T does not have a fixed point.

Proof We have proved (i)-(iii) in []. (iv) follows from (iii) and Lemma . Let us prove
(v). Fix x, y ∈ X with x < y. Since Ty ⊂ Tx, we have

δ(Ty, Tx) =  ≤ –d(y, x).

In the case where y – x is odd, we have

δ(Tx, Ty) = d(x + , y + ) = –x – –y = –d(x, y).

In the other case, where y – x is even, we have

δ(Tx, Ty) = d(x + , y + ) = –x – ––y < – = –d(x, y).

It is clear that T satisfies the other assumption of Theorem . It is obvious that T does
not have a fixed point. We have shown (v). �

Lemma  (Proposition . in []) Let (X, d) be a ν-generalized metric space and let
λ ∈N such that λ is divisible by ν . Then (X, d) is a λ-generalized metric space.
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The following is a slight generalization of Lemma . in [].

Lemma  Let ν ∈ N. Let X be a nonempty set and let A and B be two subsets of X with
A∩B = ∅. Assume that A consists of at most (ν –)/ elements in the case where ν is odd. Let
(Y ,ρ) be a metric space and let S be a mapping from A∪B into Y such that S(A)∩S(B) = ∅

holds and there exists some positive real number M satisfying

ρ(Sx, Sy) ≤ M

for all x ∈ A and y ∈ B. Define a function d from X × X into [,∞) by

d(x, x) = ,

d(x, y) = d(y, x) = ρ(Sx, Sy) if x ∈ A and y ∈ B,

d(x, y) = M otherwise.

Then (X, d) is a ν-generalized metric space.

Remark The proof below employs the methods in the proofs of Lemma  in [] and
Lemmas . and . in [].

Proof It is obvious that (N) and (N) hold. In order to show (N), we consider the fol-
lowing three cases:

(a) ν = .
(b) ν is odd.
(c) ν is even.

In the case of (a), we let x, y, u, v ∈ X be all different. Put

t = d(x, u) + d(u, v) + d(v, y).

In the case where t ≥ M, (N) holds because d(x, y) ≤ M. In the other case, where t < M,
without loss of generality, we may assume x ∈ A. Then we have v ∈ A and u, y ∈ B from the
definition of d. Hence we obtain

d(x, y) = ρ(Sx, Sy) ≤ ρ(Sx, Su) + ρ(Su, Sv) + ρ(Sv, Sy)

= d(x, u) + d(u, v) + d(v, y).

In the case of (b), we let x, . . . , xν+ ∈ X be all different. Then we have

d(x, xν+) ≤ M ≤ D(x, . . . , xν+).

In the case of (c), from (a) and Lemma , we obtain the desired result. �

The following example is a counterexample on Lemma  and Proposition . Also this
example tells that Theorem  is a true generalization of Theorem .
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Example  (see Example . in []) Put A = {, , }, B = {–n : n ∈ N} and X = A ∪ B.
Define a function d from X × X into [,∞) by

d(x, y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

 if x = y,

 if x �= y and either {x, y} ⊂ A or {x, y} ⊂ B,

y if x ∈ A, y ∈ B,

d(y, x) otherwise.

Define sequences {xn} and {yn} in X by

xn =

⎧
⎪⎪⎨

⎪⎪⎩

 if n = k +  for some k ∈N∪ {},
 if n = k +  for some k ∈N∪ {},
–k if n = k for some k ∈N,

and

yn =

⎧
⎨

⎩
 if n = k –  for some k ∈N,

–k if n = k for some k ∈ N.

Define a set-valued mapping T on X by

Tx =

⎧
⎨

⎩
A if x ∈ A,

{x/, } if x ∈ B.

Then the following hold:
(i) (X, d) is a ν-generalized metric space for ν ∈N \ {, , }.

(ii) {–n} converges to ,  and . Therefore X is not Hausdorff.
(iii) X is (

∑
, �=)-complete.

(iv) {xn} is -Cauchy, however, it does not converge. Therefore X is not -complete.
(v) {yn} is -Cauchy and it converges to . However, {yn} is not Cauchy.

(vi) All the assumptions of Theorem  are satisfied.
(vii) There does not exist a metric q on X satisfying () with d := q.

Proof (i) follows from Lemma . (ii) obviously holds. There does not exist a (
∑

, �=)-
Cauchy sequence in X. So (iii) holds. We note that {xn} is as follows:

, –, , –, , –, , –, , . . . .

It is obvious that {xn} is -Cauchy. However, {xn} does not converge. We have shown (iv).
(v) obviously holds. We can easily prove

δ(Tx, Ty) ≤ (/)d(x, y)

for all x, y ∈ X. So, (vi) holds. Let us prove (vii). Arguing by contradiction, we assume that
there exist a metric q on X and r ∈ [, ) satisfying δ(Tx, Ty) ≤ rq(x, y) for all x, y ∈ X, where
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δ is defined by () with d := q. Let x ∈ A and y ∈ B be arbitrary. We have

min
{

q(y/, ), q(y/, ), q(y/, )
}

= δ(Ty, Tx) ≤ rq(y, x)

and hence

min
{

q(y/, ), q(y/, ), q(y/, )
} ≤ r min

{
q(y, ), q(y, ), q(y, )

}
.

Therefore

lim
n→∞ min

{
q
(
–n, 

)
, q

(
–n, 

)
, q

(
–n, 

)}
=  ()

holds. We also have

max
{
min

{
q(, ), q

(
, –n–)}, min

{
q(, ), q

(
, –n–)}}

= δ
(
Tx, T–n) ≤ rq

(
x, –n)

and hence

max
{
min

{
q(, ), q

(
, –n–)}, min

{
q(, ), q

(
, –n–)}}

≤ r min
{

q
(
–n, 

)
, q

(
–n, 

)
, q

(
–n, 

)}
.

Combining this and (),

lim
n→∞ q

(
, –n–) = lim

n→∞ q
(
, –n–) = 

holds. So we obtain  = , which implies a contradiction. �

5 Conclusions
In this paper, we study the completeness of ν-generalized metric space (see Proposi-
tions -). We extend Nadler’s fixed point theorem to ν-generalized metric spaces (see
Theorem ). We also improve Caristi’s and Subrahmanyam’s fixed point theorems (see
Theorems  and ).
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