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Abstract
In this paper we present several coincidence type results for morphisms (fractions) in
the sense of Gorniewicz and Granas.
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1 Introduction
Morphisms (Vietoris fractions) in the sense of Gorniewicz and Granas were introduced
in  and coincidence spaces were discussed. In this paper, using compact morphisms,
we present a variety of coincidence (and fixed point) results on particular Hausdorff topo-
logical spaces. These spaces include ES(compact), AES(compact), general admissible and
general dominated spaces. Our theory is motivated partly by ideas in [–].

Now we present some ideas needed in Section . Let H be the C̆ech homology functor
with compact carriers and coefficients in the field of rational numbers K from the cate-
gory of Hausdorff topological spaces and continuous maps to the category of graded vector
spaces and linear maps of degree zero. Thus H(X) = {Hq(X)} (here X is a Hausdorff topo-
logical space) is a graded vector space, Hq(X) being the q-dimensional C̆ech homology
group with compact carriers of X. For a continuous map f : X → X, H(f ) is the induced
linear map f� = {f�q} where f�q : Hq(X) → Hq(X). A space X is acyclic if X is nonempty,
Hq(X) =  for every q ≥ , and H(X) ≈ K .

Let X, Y and � be Hausdorff topological spaces. A continuous single valued map p : � →
X is called a Vietoris map (written p : � ⇒ X) if the following two conditions are satisfied:

(i) for each x ∈ X , the set p–(x) is acyclic,
(ii) p is a perfect map, i.e., p is closed and for every x ∈ X the set p–(x) is nonempty and

compact.
Let D(X, Y ) be the set of all pairs X p⇐ �

q→ Y where p is a Vietoris map and q is contin-
uous. We will denote every such diagram by (p, q). Given two diagrams (p, q) and (p′, q′),

where X p′⇐ �′ q′
→ Y , we write (p, q) ∼ (p′, q′) if there are continuous maps f : � → �′ and

g : �′ → � such that q′ ◦ f = q, p′ ◦ f = p, q ◦ g = q′ and p ◦ g = p′. The equivalence class of
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a diagram (p, q) ∈ D(X, Y ) with respect to ∼ is denoted by

φ = {X p⇐ �
q→ Y } : X → Y

or φ = [(p, q)] and is called a morphism from X to Y . We let M(X, Y ) be the set of all such
morphisms. Note that if (p, q), (p, q) ∈ D(X, Y ) (where X p⇐ �

q→ Y and X p⇐ �′ q→ Y )
and (p, q) ∼ (p, q), then it is easy to see (use q ◦ g = q and p ◦ g = p where g : �′ → �)
that for x ∈ X we have q(p–

 (x)) = q(p–(x)). For any φ ∈ M(X, Y ) a set φ(x) = qp–(x) where
φ = [(p, q)] is called an image of x under the morphism φ. Let φ ∈ M(X, Y ) and let (p, q)
be a representative of φ. We define φ(X) ⊆ Y by φ(X) = q(p–(X)). Note φ(X) does not
depend on the representative of φ. Now φ ∈ M(X, Y ) is called compact, provided the set
φ(X) is relatively compact in Y . Note we will identify a map f : X → Y with the morphism
f = {X IdX⇐ X

f→ Y } : X → Y . Let X ⊆ Y . A point x ∈ X is called a fixed point of a morphism
φ ∈ M(X, Y ) if x ∈ φ(x).

Let φ = {X p⇐ �
q→ Y } : X → Y be a morphism. We define the coincidence set

Coin(p, q) =
{

y ∈ � : p(y) = q(y)
}

.

We say φ has a coincidence provided the set C(φ) = p(Coin(p, q)) is nonempty (i.e., there
exists x ∈ p(Coin(p, q)), i.e., there exists y ∈ � with x = p(y) = q(y)). Let (p′, q′) be another

representation of φ, say φ = {X p′⇐ �′ q′
→ Y }. Note p(Coin(p, q)) = p′(Coin(p′, q′)); to see

this, note that if x ∈ p(Coin(p, q)), then x = p(y) = q(y) for some y ∈ �. Now since (p, q) ∼
(p′, q′), with f : � → �′ we have x = q(y) = q′(f (y)) and x = p(y) = p′(f (y)) so f (y) ∈ �′ and
x = q′(f (y)) = p′(f (y)), i.e., x ∈ p′(Coin(p′, q′)). Thus the above definition does not depend on
the choice of a representation (p, q). Also C(φ) �= ∅ iff Coin(p, q) �= ∅ for any representation
(p, q) of φ.

Suppose φ ∈ M(X, X) (here φ = {X p⇐ �
q→ X}) has a coincidence point for (p, q), i.e.,

suppose there exists y ∈ � with p(y) = q(y). Now since p is surjective, there exists w ∈ X
with y ∈ p–(w) (note p(w) = y) and so w ∈ q(p–(w)) = φ(w) (note pp–(w) = w and the set
q(p–(w)) is the image of w under φ), i.e., φ has a fixed point. As a result

p(y) = q(y), y ∈ �
(
and let w = p(y)

) ⇔ w ∈ q
(
p–(w)

)
.

Note that if w ∈ q(p–(w)), then there exists y ∈ p–(w) with w = q(y) so p(y) ∈ pp–(w) = w
(i.e., p(y) = w) and so p(y) = q(y). In particular if the morphism φ ∈ M(X, X) (here (p, q) is a
representation of φ) has a fixed point (say w, i.e., w ∈ q(p–(w))), then there exists y ∈ p–(w)
with q(y) = p(y), so φ has a coincidence point for (p, q). We can apply this argument for
any representation (p, q) of φ (recall that if (p, q) is another representation of φ, then
(p, q) ∼ (p, q) and as above q(p–(w)) = q(p–

 (w)), so w ∈ q(p–
 (w)), so there exists y ∈

p–
 (w) with q(y) = p(y)), thus Coin(p, q) �= ∅ for any representation (p, q) of φ, i.e., φ has

a coincidence.
For a subset K of a topological space X, we denote by CovX(K) the set of all coverings of

K by open sets of X (usually we write Cov(K) = CovX(K)). Given a morphism φ ∈ M(X, X)
and α ∈ Cov(X), a point x ∈ X is said to be an α-fixed point of φ if there exists a member
U ∈ α such that x ∈ U and φ(x) ∩ U �= ∅. Given a morphism φ ∈ M(X, X) (here φ = {X p⇐
�

q→ X}) and α ∈ Cov(X), a point y ∈ � is said to be an α-coincidence point for (p, q) if



O’Regan Fixed Point Theory and Applications  (2017) 2017:19 Page 3 of 8

there exists a member U ∈ α with p(y) ∈ U and q(y) ∈ U . We say φ has an α-coincidence
if φ has an α-coincidence point for each representation (p, q) of φ.

Let X and Y be topological spaces. Given two morphisms φ ∈ M(X, Y ) and ψ ∈ M(X, Y )
and α ∈ Cov(Y ), φ and ψ are said to be α-close if for any x ∈ X, there exists Ux ∈ α with
φ(x)∩Ux �= ∅ and ψ(x)∩Ux �= ∅. Recall that, given two single valued maps f , g : X → Y and
α ∈ Cov(Y ), f and g are said to be α-close if for any x ∈ X there exists Ux ∈ α containing
both f (x) and g(x). Given a morphism φ ∈ M(X, Y ) and a single valued map g : X → Y and
α ∈ Cov(Y ), φ and g are said to be strongly α-close if for any x ∈ X there exists Ux ∈ α with
φ(x) ⊆ Ux and g(x) ∈ Ux.

Let T be the Tychonoff cube (i.e., Cartesian product of copies of the unit interval). Finally
we recall the following result from the literature; see [] (see Theorem . and the proof of
Theorem .) or alternatively see [] (see Corollary . and if we take the Hausdorff locally
convex topological vector space E containing T we just need to note that T is a retract of
E []).

Theorem . Let φ ∈ M(T , T) be compact. Then φ has a coincidence.

2 Coincidence theory
By a space we mean a Hausdorff topological space. Let Q be a class of topological spaces.
A space Y is an extension space for Q (written Y ∈ ES(Q)) if, ∀X ∈ Q and ∀K ⊆ X closed
in X, any continuous function f : K → Y extends to a continuous function f : X → Y .

Theorem . Let X ∈ ES(compact) and φ ∈ M(X, X) is compact. Then φ has a coinci-
dence.

Proof Let φ = {X p⇐ �
q→ X} : X → X. We know [] that every compact space is home-

omorphic to a closed subset of the Tychonoff cube T , so as a result K = φ(X) can be
embedded as a closed subset K� of T ; let s : K → K� be a homeomorphism. Also let
i : K ↪→ X and j : K� ↪→ T be inclusions. Now since X ∈ ES(compact) and is– : K� → X,
is– extends to a continuous function h : T → X. Let ψ = jsφh and note (see [], see (.))
ψ ∈ M(T , T) is compact. Now Theorem . guarantees that jsφh has a coincidence and
therefore (see [] (Lemma .)) hjsφ has a coincidence. Thus there exists a y ∈ � with
hjsq(y) = p(y); note hjsφ = {X p⇐ � � K

q→ X} where � � K = {(z, z) ∈ � × K : q(z) = z},
p(z, z) = pf(z, z), q(z, z) = hjsf(z, z), f(z, z) = z and f(z, z) = z so p(z, z) = p(z)
and q(z, z) = hjs(z) = hjsq(z). Also note hj(z) = is–(z) for z ∈ K� so hjs(w) = i(w) = w for
w ∈ K . Consequently q(y) = p(y), so φ has a coincidence point (for (p, q)). We can apply
the above argument for any representation (p, q) of φ, so C(φ) �= ∅. �

A space Y is an approximate extension space for Q (written Y ∈ AES(Q)) if, ∀α ∈ Cov(Y ),
∀X ∈ Q, ∀K ⊆ X closed in X, and any continuous function f : K → Y , there exists a con-
tinuous function f : X → Y such that f |K is α-close to f.

Theorem . Let X ∈ AES(compact) and φ ∈ M(X, X) is compact. Then for any α ∈
CovX(φ(X)), φ has an α-coincidence.

Proof Let φ = {X p⇐ �
q→ X} : X → X and let α ∈ CovX(K), where K = φ(X). Now K can

be embedded as a closed subset K� of T ; let s : K → K� be a homeomorphism. Also let
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i : K ↪→ X and j : K� ↪→ T be inclusions. Now let α′ = α ∪ {X\K} and note α′ is an open
covering of X. Let the continuous map h : T → X be such that h|K� and s– are α′-close
(guaranteed since X ∈ AES(compact)). Thus (note α′ = α∪{X\K}) hs : K → X and i : K →
X are α-close. Let ψ = jsφh and note ψ ∈ M(T , T) is compact so Theorem . guarantees
that jsφh has a coincidence. Then from [] (Lemma .), hjsφ has a coincidence, i.e., there
exists a y ∈ � with hjsq(y) = p(y). Now since hs : K → X and i : K → X are α-close there
exists U ∈ α with

hs
(
q(y)

) ∈ U and i
(
q(y)

) ∈ U i.e. p(y) = hs
(
q(y)

) ∈ U and q(y) ∈ U .

Thus φ has an α-coincidence (for (p, q)). We can apply the above argument for any repre-
sentation (p, q) of φ. �

Remark . One can put conditions on the space X and the morphism φ so that φ has
an α-coincidence for each α ∈ CovX(φ(X)) would guarantee that φ has a coincidence; for
examples we refer the reader to [] (Lemma .), [] (Lemma .), [] (Theorem . and
Remark .). We say (X,φ) has the α-coincidence property if φ, having an α-coincidence
for each α ∈ CovX(φ(X)), guarantees that φ has a coincidence. Thus we have: Suppose
X ∈ AES(compact), φ ∈ M(X, X) is compact, and (X,φ) has the α-coincidence property.
Then φ has a coincidence.

Next we generalise the above results motivated in part from Schauder projections [].
Let W be a space. We say W is admissible if, for all compact subsets K of W , all α ∈
CovW (K), there exists a single valued continuous map gα : K → W such that:

(i) gα and i : K ↪→ W are α-close,
(ii) gα(K) is contained in a subset Cα ⊆ W and Cα has the coincidence property (i.e.,

any compact θ ∈ M(Cα , Cα) has a coincidence).

Theorem . Let W be admissible and φ ∈ M(W , W ) is compact.
(i) Then, for any α ∈ CovW (φ(W )), φ has an α-coincidence.

(ii) If (W ,φ) has the α-coincidence property, then φ has a coincidence.

Proof (i) Let φ = {W p⇐ �
q→ W } : W → W and let α ∈ CovW (K) where K = φ(W ). Now

there exists a single valued continuous map gα : K → W and Cα as described in the defini-
tion of admissible. Let jα : Cα ↪→ W be the inclusion and note gαφjα ∈ M(Cα , Cα) is com-
pact. Since Cα has the coincidence property, there exists y ∈ p–(Cα) ⊆ � with gαq(y) =
p(y); note gαφjα = {Cα

p⇐ p–(Cα)�K
q→ Cα}, where p–(Cα)�K = {(z, z) ∈ p–(Cα) ×K :

q(z) = z}, p(z, z) = pf(z, z), q(z, z) = gαf(z, z), f(z, z) = z and f(z, z) = z so
p(z, z) = p(z) and q(z, z) = gα(z) = gαq(z). Since gα and i : K ↪→ W are α-close, there
exists U ∈ α with

gα

(
q(y)

) ∈ U and i
(
q(y)

) ∈ U i.e. p(y) = gα

(
q(y)

) ∈ U and q(y) ∈ U .

Thus φ has an α-coincidence (for (p, q)). We can apply the above argument for any repre-
sentation (p, q) of φ.

(ii). Immediate from the definition and part (i). �
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Let W be a space. We say W is general admissible if for all compact subsets K of W and
all α ∈ CovW (K), there exists a ψα ∈ M(K , W ) such that:

(i) ψα and i : K ↪→ W are strongly α-close,
(ii) ψα(K) is contained in a subset Cα ⊆ W and Cα has the coincidence property.
In our first result we will phrase it as a fixed point result but immediately after the proof

we will rephrase it as a coincidence result (see Theorem .).

Theorem . Let W be general admissible and φ ∈ M(W , W ) is compact.
(i) Then for any α ∈ CovW (φ(W )), φ has an α-fixed point.

(ii) If (W ,φ) has the α-fixed point property (i.e., φ, having an α-fixed point for each
α ∈ CovX(φ(X)), guarantees that φ has a fixed point), then φ has a coincidence.

Proof (i) Let φ = {W p⇐ �
q→ W } : W → W and let α ∈ CovW (K) where K = φ(W ). Since

W is general admissible, there exists a ψα ∈ M(K , W ) (here ψα = {K pα⇐ �′ qα→ W }, i.e.,
(pα , qα) is a representation of ψα) and Cα as described in the definition of general admis-
sible. Let jα : Cα ↪→ W be the inclusion and note ψαφjα ∈ M(Cα , Cα) is compact (note φ

is compact and the map x �→ qα(p–
α (x)) is upper semicontinuous with nonempty compact

values []). Since Cα has the coincidence property, ψαφ has a coincidence so (see Sec-
tion ) ψαφ has a fixed point, i.e., there exists a w ∈ Cα with w ∈ ψα(φ(w)). Now ψαφ =
{Cα

p⇐ p–(Cα) � �′ q→ Cα} where p–(Cα) � �′ = {(z, z) ∈ p–(Cα) × �′ : q(z) = pα(z)},
p(z, z) = pf(z, z), q(z, z) = qαf(z, z), f(z, z) = z and f(z, z) = z. Now [] (.), []
(Section ) guarantee that

w ∈ q
(
(p)–(w)

)
= qα

(
p–

α

(
q
(
p–(w)

)))
. ()

Thus there exists a y ∈ q(p–(w)) = φ(w) with w ∈ qα(p–
α (y)) = ψα(y). Now since ψα and

i : K ↪→ W are strongly α-close, there exists U ∈ α with

ψα(y) ⊆ U and i(y) ∈ U ,

and since w ∈ ψα(y), we have w ∈ U and y ∈ U , i.e.,

w ∈ U and φ(w) ∩ U �= ∅ (
since y ∈ φ(w) and y ∈ U

)
.

Thus φ has an α-fixed point (for (p, q)). We can apply the above argument for any repre-
sentation (p, q) of φ.

(ii) From part (i) we know that φ has an α-fixed point for any α ∈ CovW (φ(W )). Now
since (W ,φ) has the α-fixed point property, φ has a fixed point and, as in Section , φ has
a coincidence. �

Theorem . Let W be general admissible and φ ∈ M(W , W ) is compact.
(i) Then for any α ∈ CovW (φ(W )), φ has an α-coincidence.

(ii) If (W ,φ) has the α-coincidence property, then φ has a coincidence.

Proof (i) Follow the proof in Theorem . (i) to obtain (). Then there exists a y ∈ q(p–(w))
with w ∈ qα(p–

α (y)) = ψα(y) and since ψα and i : K ↪→ W are strongly α-close, there exists
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U ∈ α with ψα(y) ∈ U and i(y) ∈ U . Thus w ∈ U and y ∈ U . Also, there exists a ∈ p–(w)
with y = q(a) and note p(a) = w, i.e., y = q(a) and p(a) = w. As a result

p(a) ∈ U and q(a) ∈ U ,

so φ has an α-coincidence (for (p, q)). We can apply the above argument for any represen-
tation (p, q) of φ.

(ii) Immediate from the definition and part (i). �

Let W be a space and C a space with the coincidence property, (i.e., any compact θ ∈
M(C, C) has a coincidence). We say C dominates W if, for every compact subset K of W
and every α ∈ CovW (K), there exist single valued continuous maps sα : W → C, rα : C →
W with rαsα : K → W and i : K ↪→ W α-close.

Theorem . Let W be a space and C a space with the coincidence property. Suppose
φ ∈ M(W , W ) is compact and C dominates W . Then, for any α ∈ CovW (φ(W )), φ has an
α-coincidence.

Proof Let φ = {W p⇐ �
q→ W } : W → W and let α ∈ CovW (K), where K = φ(W ). Since C

dominates W there exist single valued continuous maps sα : W → C, rα : C → W as de-
scribed in the definition. Note sαφrα ∈ M(C, C) is compact. Since C has the coincidence
property, sαφrα has a coincidence and therefore (see [] (Lemma .)) rαsαφ has a coin-
cidence. Thus there exists y ∈ � with rαsαq(y) = p(y); note rαsαφ = {W p⇐ � � K

q→ W }
where � � K = {(z, z) ∈ � × K : q(z) = z}, p(z, z) = pf(z, z), q(z, z) = rαsαf(z, z),
f(z, z) = z and f(z, z) = z, so p(z, z) = p(z) and q(z, z) = rαsα(z) = rαsαq(z). Since
rαsα : K → W and i : K ↪→ W are α-close, there exists U ∈ α with

rαsαq(y) ∈ U and i(q) ∈ U i.e. p(y) = rαsαq(y) ∈ U and q(y) ∈ U .

Thus φ has an α-coincidence (for (p, q)). We can apply the above argument for any repre-
sentation (p, q) of φ. �

Let W be a space and C a space with the coincidence property. We say C generally
dominates W if, for every compact subset K of W and every α ∈ CovW (K), there exist
Sα ∈ M(W , C) and Rα ∈ M(C, W ) with RαSα ∈ M(K , W ) and i : K ↪→ W strongly α-close.

In our first result we will phrase it as a fixed point result but immediately after the proof
we will rephrase it as a coincidence result (see Theorem .).

Theorem . Let W be a space and C a space with the coincidence property. Suppose
φ ∈ M(W , W ) is compact and C generally dominates W . Then for any α ∈ CovW (φ(W )),
φ has an α-fixed point.

Proof Let φ = {W p⇐ �
q→ W } : W → W and let α ∈ CovW (K), where K = φ(W ). Since C

generally dominates W , there exist Sα ∈ M(W , C) and Rα ∈ M(C, W ) as described in the
definition. Note with Sα = {W p⇐ �

q→ C}, Rα = {C p⇐ �
q→ W } then [], (.), guarantee

we have RαSα = {W pα⇐ � � � ≡ �
qα→ W }, where � � � = {(z, z) ∈ � × � : q(z) =

p(z)}, pα(z, z) = pf(z, z), qα(z, z) = qf(z, z), f(z, z) = z and f(z, z) = z. Note
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SαφRα ∈ M(C, C) is compact (note φ is compact and the map x �→ q(p–
 (x)) is upper semi-

continuous with nonempty compact values []). Since C has the coincidence property,
SαφRα has a coincidence and therefore (see [] (Lemma .)) RαSαφ has a coincidence.
From Section  note RαSαφ has a fixed point, i.e., there exists a w ∈ W with w ∈ RαSαφ(w).
Next note RαSαφ = {W p⇐ ���

q→ W }, where ��� = {(z, z) ∈ �×� : q(z) = pα(z)},
p(z, z) = pf(z, z), q(z, z) = qα f(z, z), f(z, z) = z and f(z, z) = z. Now it is easy to
note (see [] (.), [] (Section )) that

w ∈ q
(
(p)–(w)

)
= qα

(
p–

α

(
q
(
p–(w)

)))
. ()

Thus there exists a y ∈ q(p–(w)) = φ(w) with w ∈ qα(p–
α (y)) = RαSα(y). Now since RαSα

and i : K ↪→ W are strongly α-close, there exists U ∈ α with

RαSα(y) ⊆ U and i(y) ∈ U ,

and since w ∈ RαSα(y), we have w ∈ U and y ∈ U , i.e.,

w ∈ U and φ(w) ∩ U �= ∅ (
since y ∈ φ(w) and y ∈ U

)
.

Then φ has an α-fixed point (for (p, q)). We can apply the above argument for any repre-
sentation (p, q) of φ. �

Theorem . Let W be a space and C a space with the coincidence property. Suppose
φ ∈ M(W , W ) is compact and C generally dominates W . Then for any α ∈ CovW (φ(W )),
φ has an α-coincidence.

Proof Follow the proof in Theorem . to obtain (). Then there exists a y ∈ q(p–(w))
with w ∈ qα(p–

α (y)) = RαSα(y) and, since RαSα and i : K ↪→ W are strongly α-close, there
exists U ∈ α with RαSα(y) ∈ U and i(y) ∈ U . Thus w ∈ U and y ∈ U . Also there exists
a ∈ p–(w) with y = q(a) and note p(a) = w, i.e., y = q(a) and p(a) = w. As a result p(a) ∈ U
and q(a) ∈ U , so φ has an α-coincidence (for (p, q)). We can apply the above argument for
any representation (p, q) of φ. �

3 Conclusions
In this paper, using new ideas, we present a number of coincidence and α-coincidence
results for compact morphisms (Vietoris fractions) defined on a variety of admissible and
dominating type spaces.
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