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Abstract
The purpose of this work is to introduce and study an iterative method to
approximate solutions of a hierarchical fixed point problem and a variational
inequality problem involving a finite family of nonexpansive mappings on a real
Hilbert space. Further, we prove that the sequence generated by the proposed
iterative method converges to a solution of the hierarchical fixed point problem for a
finite family of nonexpansive mappings which is the unique solution of the variational
inequality problem. The results presented in this paper are the extension and
generalization of some previously known results in this area. An example which
satisfies all the conditions of the iterative method and the convergence result is
given.
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1 Introduction
Throughout this paper, we always assume that V is a real Hilbert space with the inner
product 〈·, ·〉 and the norm ‖ · ‖, respectively. Let a nonlinear mapping S : V → V be a
nonexpansive operator if

‖Su – Sv‖ ≤ ‖u – v‖, ∀u, v ∈ V .

A point u ∈ V is said to be a fixed point of S provided Su = u. In this paper, we use F(S) to
denote the fixed point set which is closed and convex, see [].

Let S : W → V be a nonexpansive mapping, where W is a nonempty closed convex
subset of V . The hierarchical fixed point problem (in short, HFPP) is to find u ∈ F(S) such
that

〈u – Su, v – u〉 ≥ , ∀v ∈ F(S). (.)

Many authors solve (.) by various methods, see [–] and the references therein.
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Yao et al. [] proposed the following iterative algorithm to solve HFPP (.):

⎧
⎨

⎩

vn = bnSun + ( – bn)un,

un+ = PW [ang(un) + ( – an)Svn], ∀n ≥ ,
(.)

where {an} and {bn} are sequences in (, ) and g : W → V is a contraction mapping, and
the sequence {un} generated by (.) converges strongly to z ∈ F(S), which is also a unique
solution of the variational inequality problem (VIP), i.e., to find z ∈ F(S) such that

〈
(I – g)z, v – z

〉 ≥ , ∀v ∈ F(S). (.)

After that, Ceng et al. [] introduced the following algorithm:

un+ = PW
[
anρg(un) + (I – anμF)S(un)

]
, ∀n ≥ , (.)

where F is a Lipschitz continuous and strongly monotone mapping, g is a Lipschitz contin-
uous mapping. Compute an iterative sequence {un} generated by (.) converging strongly
to z ∈ F(S), which is also a unique solution of the following variational inequality problem
(VIP), i.e., to find z ∈ F(S) such that

〈
ρg(z) – μF(z), v – z

〉 ≥ , ∀v ∈ F(S). (.)

By using a Tn-mapping [], Yao [] proposed the following iterative method:

un+ = ancg(un) + bun +
[
( – b)I – anA

]
Tnun, ∀n ≥ , (.)

where c > , A is a strongly positive bounded linear operator and g : W → V is a contrac-
tion mapping.

Further, Ceng et al. [] proposed explicit and implicit iterative schemes for finding a
common solution for the set of fixed points of a nonexpansive mapping. Buong and Duong
[] studied the explicit iterative algorithm for finding the approximate solution of a VIP
defined over the set of common fixed points of a finite number of nonexpansive mappings:

uk+ =
(
 – b

k
)
uk + b

k Sk
Sk

p · · ·Sk
 uk , (.)

where Sk
i = ( – bi

k)uk + bi
kSi for  ≤ i ≤ p, {Si}p

i= are p-nonexpansive mappings on a real
Hilbert space V , Sk

 = I – λkμF , and F is an η-strongly monotone and L-Lipschitz contin-
uous mapping.

Very recently, Zhang and Yang [] studied the more general explicit iterative algorithm

uk+ = akcg(uk) + (I – μakF)Sk
pSk

p– · · ·Sk
 uk , (.)

where g is an α-Lipschitzian, F is an η-strongly monotone and L-Lipschitz continuous
mapping and Sk

i = ( – bi
k)uk + bi

kSi for  ≤ i ≤ p. Under some assumptions, compute an
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iterative sequence {uk} proposed by the iterative algorithm (.) that strongly converges
to the solution of the VIP, i.e., to find z ∈ ⋂p

i= F(Si) such that

〈
(μF – γ g)z, v – z

〉 ≥ , ∀v ∈
p⋂

i=

F(Si). (.)

Inspired and motivated by the recent research, we develop an iterative algorithm for a
hierarchical fixed point problem of a finite family of nonexpansive mappings on the real
Hilbert space. We generate a strong convergence theorem for the sequence considered by
the generalized method. Numerical examples are also given for the theoretical verification
of the algorithm. The algorithm and results presented in this paper improve and extend
some recent corresponding algorithms and results; see [, ] and the references therein.

2 Preliminaries
We recall some concepts and results which are needed in the sequel.

Definition . Let S : W → V be a mapping which is said to be
(i) monotone if

〈Su – Sv, u – v〉 ≥ , ∀u, v ∈ W ;

(ii) strongly monotone if there exists a constant α >  such that

〈Su – Sv, u – v〉 ≥ α‖u – v‖, ∀u, v ∈ W ;

(iii) Lipschitz continuous if there exists a constant k >  such that

‖Su – Sv‖ ≤ k‖u – v‖, ∀u, v ∈ W .

If k = , then S is called nonexpansive.

Definition . A mapping g : W → V is said to be σ -contraction if there exists a constant
σ ∈ (, ) such that

‖gu – gv‖ ≤ σ‖u – v‖, ∀u, v ∈ W .

Lemma . ([]) Let F : W → V be an η-strongly monotone and k-Lipschitz continuous
mapping and g : W → V be a τ -Lipschitz continuous mapping. Then the mapping μF – ρg
is (μη – ρτ )-strongly monotone with condition μη > ρτ ≥ , i.e.,

〈
(μF – ρg)u – (μF – ρg)v, u – v

〉 ≥ (μη – ρτ )‖u – v‖, ∀u, v ∈ W .

Definition . A mapping T : V → V is said to be an averaged mapping if it can be written
as the average of the identity I and a nonexpansive mapping, i.e.,

T ≡ ( – α)I + αS,

where α ∈ (, ) and S : V → V is nonexpansive.
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Lemma . ([, ]) If the mappings {Si}p
i= are averaged and have a common fixed point,

then

p⋂

i=

F(Si) = F(SS · · ·Sp).

In particular, if p = , we have F(S) ∩ F(S) = F(SS) = F(SS).

Lemma . ([]) Let {αn} be a sequence of nonnegative real numbers such that

αn+ ≤ ( – wn)αn + tn,

where {wn} ∈ (, ) and {tn} is a sequence such that
(i)

∑∞
n= wn = ∞;

(ii) lim supn→∞
tn
wn

≤  or
∑∞

n= |tn| < ∞.
Then limn→∞ αn = .

Lemma . ([]) Let S : W → W be a nonexpansive mapping with F(S) = ∅. Then the
mapping I – S is demiclosed at , that is, if {un} is a sequence converging weakly to u and
{(I – S)un} converges strongly to , then (I – S)u = .

Lemma . ([]) Let F : W → V be an η-strongly monotone and k-Lipschitzian mapping.
Let η

k > μ > , Q = I – λμF . Then Q is a ( – λτ )-contraction mapping with min{, 
τ
} > λ >

, that is,

‖Qu – Qv‖ ≤ ( – λτ )‖u – v‖, ∀u, v ∈ W ,

where τ =  –
√

 – μ(η – μk) ∈ (, ].

Lemma . Let V be a real Hilbert space. The following inequality holds:

‖u + v‖ ≤ ‖u‖ + 〈v, u + v〉, ∀u, v ∈ V .

3 Main results
In this section, we establish an iterative method for finding the solution of hierarchical
fixed point problem (.).

Let W be a nonempty closed convex subset of a real Hilbert space V , and let {Si}p
i=

be p nonexpansive mappings on W such that 	 =
⋂p

i= F(Si) = ∅. Let F : W → W be an
η-strongly monotone and k-Lipschitzian mapping and g : W → W be a τ -contraction
mapping.

We consider the following hierarchical fixed point problem (in short, HFPP): find u ∈ 	

such that

〈
ρg(u) – μF(u), v – u

〉 ≤ , ∀v ∈ 	 =
p⋂

i=

F(Si). (.)

Now we define the following algorithm for finding a solution of HFPP (.).
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Algorithm . Given arbitrarily u ∈ W , compute sequences {un} and {vn} by the iterative
schemes

⎧
⎨

⎩

vn = bnun + ( – bn)Sn
pSn

p– · · ·Sn
 un,

un+ = anρg(vn) + cnvn + [( – cn)I – anμF]Sn
pSn

p– · · ·Sn
 vn, ∀n ≥ ,

(.)

where Sn
i = ( – di

n)I + di
nSi and di

n ∈ (, ) for i = , , . . . , p, let the parameters satisfy η

k >
μ >  and ν

τ
> ρ > , where ν = μ(η – μk

 ) and {an}, {bn} and {cn} are sequences in (, )
satisfying the following conditions:

(i) limn→∞ an =  and
∑∞

n= an = ∞ and
∑∞

n= |an– – an| < ∞.
(ii) {bn} ⊂ [σ , ) and limn→∞ bn = b < .
(iii) an + cn <  and limn→∞ cn = .
(iv)

∑∞
n= |cn– – cn| < ∞ and

∑∞
n= |di

n– – di
n| < ∞ for i = , , . . . , p.

Lemma . Let u∗ ∈ 	. Then the sequences {un} and {vn} defined in Algorithm . are
bounded.

Proof Let u∗ ∈ 	. So, we have

∥
∥vn – u∗∥∥ =

∥
∥bnun + ( – bn)Sn

pSn
p– · · ·Sn

 un – u∗∥∥

=
∥
∥( – bn)

(
Sn

pSn
p– · · ·Sn

 un – u∗) + bn
(
un – u∗)∥∥

≤ ( – bn)
∥
∥un – u∗∥∥ + bn

∥
∥un – u∗∥∥

=
∥
∥un – u∗∥∥. (.)

From (.) and (.), we have

∥
∥un+ – u∗∥∥ =

∥
∥anρg(vn) + cnvn +

[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 vn – u∗∥∥

=
∥
∥an

(
ρg(vn) – μF

(
u∗)) + cn

(
vn – u∗)

+
[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 vn

–
[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 u∗∥∥

≤ an
∥
∥ρg(vn) – μF

(
u∗)∥∥ + cn

∥
∥vn – u∗∥∥

+
∥
∥
[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 vn

–
[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 u∗∥∥

= an
∥
∥ρg(vn) – μF

(
u∗)∥∥ + cn

∥
∥vn – u∗∥∥

+ ( – cn)
∥
∥
∥
∥

(

I –
anμF
 – cn

)

Sn
pSn

p– · · ·Sn
 vn –

(

I –
anμF
 – cn

)

Sn
pSn

p– · · ·Sn
 u∗

∥
∥
∥
∥

≤ ( – cn)
(

 –
anν

 – cn

)
∥
∥vn – u∗∥∥ + cn

∥
∥vn – u∗∥∥ + an

∥
∥ρg(vn) – μF

(
u∗)∥∥

≤ ( – anν)
∥
∥un – u∗∥∥ + anρ

∥
∥g(vn) – g

(
u∗)∥∥ + an

∥
∥ρg

(
u∗) – μF

(
u∗)∥∥

≤ ( – anν)
∥
∥un – u∗∥∥ + anρτ

∥
∥vn – u∗∥∥ + an

∥
∥ρg

(
u∗) – μF

(
u∗)∥∥

≤ (
 – an(ν – ρτ )

)∥
∥un – u∗∥∥ + an

∥
∥ρg

(
u∗) – μF

(
u∗)∥∥
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≤ (
 – an(ν – ρτ )

)∥
∥un – u∗∥∥ + an(ν – ρτ )

‖ρg(u∗) – μF(u∗)‖
(ν – ρτ )

≤ max

{
∥
∥un – u∗∥∥,

‖ρg(u∗) – μF(u∗)‖
ν – ρτ

}

, (.)

where the third and fifth inequalities follow from (.) and the second inequality follows
from Lemma ..

By induction on n and (.), we have

∥
∥un – u∗∥∥ ≤ max

{
∥
∥un – u∗∥∥,


ν – τρ

∥
∥(ρg – μF)u∗∥∥

}

for n = , , . . . and uo ∈ K .

Hence, {un} is bounded; and consequently, we get {vn}, {Svn}, {Sun+}, ‖Sn
 un+‖,

‖SSn
 un+‖, . . . ,‖Sn

p– · · ·Sn
 un+‖,‖SpSn

p– · · ·Sn
 un+‖,‖Sn–

p– · · ·Sn–
 vn‖+‖SpSn–

p– · · ·Sn–
 vn‖+

‖Sn–
p– · · ·Sn–

 un‖ + ‖SpSn–
p– · · ·Sn–

 un‖ and {g(vn)} are bounded. �

Lemma . Let {un} be a sequence generated by Algorithm .. Then
(i) limn→∞ ‖un+ – un‖ = .

(ii) limn→∞ ‖un – Sn
pSn

p– · · ·Sn
 un‖ = .

Proof From the sequence {vn} defined in Algorithm ., we have

‖vn – vn–‖ =
∥
∥bnun + ( – bn)Sn

pSn
p– · · ·Sn

 un

– bn–un– – ( – bn–)Sn–
p Sn–

p– · · ·Sn–
 un–

∥
∥

=
∥
∥( – bn)

(
Sn

pSn
p– · · ·Sn

 un – Sn–
p Sn–

p– · · ·Sn–
 un–

)

– (bn – bn–)Sn–
p Sn–

p– · · ·Sn–
 un–

+ bn(un – un–) – (bn– – bn)un–
∥
∥

≤ ‖un – un–‖ + |bn – bn–|
∥
∥Sn–

p Sn–
p– · · ·Sn–

 un– – un–
∥
∥

+ ( – bn)
∥
∥Sn

pSn
p– · · ·Sn

 un – Sn–
p Sn–

p– · · ·Sn–
 un–

∥
∥. (.)

From the definition of Sn
i it follows that

∥
∥Sn

Sn
 vn – Sn–

 Sn–
 vn

∥
∥ ≤ ∥

∥Sn
Sn

 vn – Sn
Sn–

 vn
∥
∥ +

∥
∥Sn

Sn–
 vn – Sn–

 Sn–
 vn

∥
∥

≤ ∥
∥Sn

 vn – Sn–
 vn

∥
∥ +

∥
∥Sn

Sn–
 vn – Sn–

 Sn–
 vn

∥
∥

≤ ∥
∥
(
 – d

n
)
vn + d

nSvn –
(
 – d

n–
)
vn – d

n–Svn
∥
∥

+
∥
∥
(
 – d

n
)
Sn–

 vn + d
nSSn–

 vn

–
(
 – d

n–
)
Sn–

 vn – d
n–SSn–

 vn
∥
∥

≤ ∣
∣d

n – d
n–

∣
∣
(‖vn‖ + ‖Svn‖

)

+
∣
∣d

n – d
n–

∣
∣
(∥
∥Sn–

 vn
∥
∥ +

∥
∥SSn–

 vn
∥
∥
)
, (.)
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and from (.), we have

∥
∥Sn

Sn
Sn

 vn – Sn–
 Sn–

 Sn–
 vn

∥
∥

≤ ∥
∥Sn

Sn
Sn

 vn – Sn
Sn–

 Sn–
 vn

∥
∥ +

∥
∥Sn

Sn–
 Sn–

 vn – Sn–
 Sn–

 Sn–
 vn

∥
∥

≤ ∥
∥Sn

Sn
 vn – Sn–

 Sn–
 vn

∥
∥

+
∥
∥
(
 – d

n
)
Sn–

 Sn–
 vn + d

nSSn–
 Sn–

 vn

–
(
 – d

n–
)
Sn–

 Sn–
 vn – d

n–SSn–
 Sn–

 vn
∥
∥

≤ ∣
∣d

n – d
n–

∣
∣
(‖vn‖ + ‖Svn‖

)
+

∣
∣d

n – d
n–

∣
∣
(∥
∥Sn–

 vn
∥
∥ +

∥
∥SSn–

 vn
∥
∥
)

+
∣
∣d

n – d
n–

∣
∣
(∥
∥Sn–

 Sn–
 vn

∥
∥ +

∥
∥SSn–

 Sn–
 vn

∥
∥
)
. (.)

By induction on p, it follows that

∥
∥Sn

pSn
p– · · ·Sn

 vn – Sn–
p Sn–

p– · · ·Sn–
 vn

∥
∥

≤ ∣
∣d

n – d
n–

∣
∣
(‖vn‖ + ‖Svn‖

)
+

∣
∣d

n – d
n–

∣
∣
(∥
∥Sn–

 vn
∥
∥ +

∥
∥SSn–

 vn
∥
∥
)

+ · · · +
∣
∣dp

n – dp
n–

∣
∣
(∥
∥Sn–

p– · · ·Sn–
 vn

∥
∥ +

∥
∥SpSn–

p– · · ·Sn–
 vn

∥
∥
)
. (.)

Similarly,

∥
∥Sn

pSn
p– · · ·Sn

 un – Sn–
p Sn–

p– · · ·Sn–
 un

∥
∥

≤ ∣
∣d

n – d
n–

∣
∣
(‖un‖ + ‖Sun‖

)
+

∣
∣d

n – d
n–

∣
∣
(∥
∥Sn–

 un
∥
∥ +

∥
∥SSn–

 un
∥
∥
)

+ · · · +
∣
∣dp

n – dp
n–

∣
∣
(∥
∥Sn–

p– · · ·Sn–
 un

∥
∥ +

∥
∥SpSn–

p– · · ·Sn–
 un

∥
∥
)
. (.)

From (.), (.) and (.), it follows that

‖un+ – un‖ =
∥
∥anρg(vn) + cnvn +

[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 vn

– an–ρg(vn–) – cn–vn–

–
[
( – cn–)I – an–μF

]
Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥

=
∥
∥anρ

(
g(vn) – g(vn–)

)
+ anρg(vn–) – an–ρg(vn–)

+ cn(vn – vn–) + cnvn– – cn–vn–

+
([

( – cn)I – anμF
]
Sn

pSn
p– · · ·Sn

 vn

–
[
( – cn)I – anμF

]
Sn–

p Sn–
p– · · ·Sn–

 vn–
)

+
[
( – cn)I – anμF

]
Sn–

p Sn–
p– · · ·Sn–

 vn–

–
[
( – cn–)I – an–μF

]
Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥

=
∥
∥anρ

(
g(vn) – g(vn–)

)
+ (an – an–)ρg(vn–)

+ cn(vn – vn–) + (cn – cn–)vn–

+
([

( – cn)I – anμF
](

Sn
pSn

p– · · ·Sn
 vn – Sn–

p Sn–
p– · · ·Sn–

 vn–
))

+
([

( – cn)I – anμF
]

–
[
( – cn–)I – an–μF

])
Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥
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≤ anρτ‖vn – vn–‖ + |an – an–|
∥
∥ρg(vn–)

∥
∥

+ cn‖vn – vn–‖ + |cn – cn–|‖vn–‖

+ ( – cn)
(

 –
anν

 – cn

)
∥
∥Sn

pSn
p– · · ·Sn

 vn – Sn–
p Sn–

p– · · ·Sn–
 vn

∥
∥

+
(|cn – cn–| + |an – an–|μF

)∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥

≤ (anρτ + cn)‖vn – vn–‖
+ |an – an–|

(∥
∥ρg(vn–)

∥
∥ + μF

∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥
)

+ |cn – cn–|
(‖vn–‖ +

∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥
)

+ ( – cn)
(

 –
anν

 – cn

)
∥
∥Sn

pSn
p– · · ·Sn

 vn – Sn–
p Sn–

p– · · ·Sn–
 vn

∥
∥

≤ (
 – an( – ρτ )

)‖un – un–‖
+ |an – an–|

(∥
∥ρg(vn–)

∥
∥ + μF

∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥
)

+ |bn – bn–|
∥
∥Sn–

p Sn–
p– · · ·Sn–

 un– – un–
∥
∥

+ |cn – cn–|
(‖vn–‖ +

∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥
)

+ ( – cn)
(

 –
anν

 – cn

)
∥
∥Sn

pSn
p– · · ·Sn

 vn – Sn–
p Sn–

p– · · ·Sn–
 vn

∥
∥

+ ( – bn)
∥
∥Sn

pSn
p– · · ·Sn

 un – Sn–
p Sn–

p– · · ·Sn–
 un

∥
∥

≤ (
 – an( – ρτ )

)‖un – un–‖
+ |an – an–|

(∥
∥ρg(vn–)

∥
∥ + μF

∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥
)

+ |bn – bn–|
∥
∥Sn–

p Sn–
p– · · ·Sn–

 un– – un–
∥
∥

+ |cn – cn–|
(‖vn–‖ +

∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥
)

+
∣
∣d

n – d
n–

∣
∣
(‖vn‖ +

∥
∥Svn‖ + ‖un‖ + ‖Sun

∥
∥
)

+
∣
∣d

n – d
n–

∣
∣
(∥
∥Sn–

 vn
∥
∥ +

∥
∥SSn–

 vn
∥
∥ +

∥
∥Sn–

 un
∥
∥ +

∥
∥SSn–

 un
∥
∥
)

+ · · · +
∣
∣dp

n – dp
n–

∣
∣
(∥
∥Sn–

p– · · ·Sn–
 vn

∥
∥ +

∥
∥SpSn–

p– · · ·Sn–
 vn

∥
∥

+
∥
∥Sn–

p– · · ·Sn–
 un

∥
∥ +

∥
∥SpSn–

p– · · ·Sn–
 un

∥
∥
)

≤ (
 – an( – ρτ )

)‖un – un–‖
+ |an – an–|

(∥
∥ρg(vn–)

∥
∥ + μF

∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥

+
∥
∥Sn–

p Sn–
p– · · ·Sn–

 un– – un–
∥
∥
)

+ |cn – cn–|
(‖vn–‖ +

∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥
)

+
∣
∣d

n – d
n–

∣
∣
(‖vn‖ + ‖Svn‖ + ‖un‖ + ‖Sun‖

)

+
∣
∣d

n – d
n–

∣
∣
(∥
∥Sn–

 vn
∥
∥ +

∥
∥SSn–

 vn
∥
∥ +

∥
∥Sn–

 un
∥
∥ +

∥
∥SSn–

 un
∥
∥
)

+ · · · +
∣
∣dp

n – dp
n–

∣
∣
(∥
∥Sn–

p– · · ·Sn–
 vn

∥
∥ +

∥
∥SpSn–

p– · · ·Sn–
 vn

∥
∥

+
∥
∥Sn–

p– · · ·Sn–
 un

∥
∥ +

∥
∥SpSn–

p– · · ·Sn–
 un

∥
∥
)

≤ (
 – an( – ρτ )

)‖un – un–‖
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+ M
(|an – an–| + |cn – cn–| +

∣
∣d

n – d
n–

∣
∣

+
∣
∣d

n – d
n–

∣
∣ + · · · +

∣
∣dp

n – dp
n–

∣
∣
)
,

where

M = max
{

sup
n≥

(∥
∥ρg(vn–)

∥
∥ + μF

∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥

+
∥
∥Sn–

p Sn–
p– · · ·Sn–

 un– – un–
∥
∥
)
,

sup
n≥

(∥
∥Sn–

p Sn–
p– · · ·Sn–

 vn–
∥
∥ + ‖vn–‖

)
,

sup
n≥

(‖vn‖ + ‖Svn‖ + ‖un‖ + ‖Sun‖
)
,

sup
n≥

(∥
∥Sn–

 vn
∥
∥ +

∥
∥SSn–

 vn
∥
∥ +

∥
∥Sn–

 un
∥
∥ +

∥
∥SSn–

 un
∥
∥
)
,

sup
n≥

(∥
∥Sn–

p– · · ·Sn–
 vn

∥
∥ +

∥
∥SpSn–

p– · · ·Sn–
 vn

∥
∥

+
∥
∥Sn–

p– · · ·Sn–
 un

∥
∥ +

∥
∥SpSn–

p– · · ·Sn–
 un

∥
∥
)}

.

From conditions (i) and (iv) of Algorithm . and Lemma ., we have

lim
n→∞‖un+ – un‖ = . (.)

From (.), we have

∥
∥un – Sn

pSn
p– · · ·Sn

 un
∥
∥ ≤ ‖un – un+‖ +

∥
∥un+ – Sn

pSn
p– · · ·Sn

 un
∥
∥

≤ ‖un – un+‖ +
∥
∥anρg(vn) + cnvn

+
[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 vn – Sn
pSn

p– · · ·Sn
 un

∥
∥

≤ ‖un – un+‖ + an
∥
∥ρg(vn) – μFSn

pSn
p– · · ·Sn

 vn
∥
∥

+ cn
∥
∥vn – Sn

pSn
p– · · ·Sn

 vn
∥
∥

+
∥
∥Sn

pSn
p– · · ·Sn

 vn – Sn
pSn

p– · · ·Sn
 un

∥
∥

≤ ‖un – un+‖ + an
∥
∥ρg(vn) – μFSn

pSn
p– · · ·Sn

 vn
∥
∥

+ cn
∥
∥vn – Sn

pSn
p– · · ·Sn

 vn
∥
∥ + ‖vn – un‖

≤ ‖un – un+‖ + an
∥
∥ρg(vn) – μFSn

pSn
p– · · ·Sn

 vn
∥
∥

+ cn
∥
∥vn – Sn

pSn
p– · · ·Sn

 vn
∥
∥

+
∥
∥bnun + ( – bn)Sn

pSn
p– · · ·Sn

 un – un
∥
∥

≤ ‖un – un+‖ + an
∥
∥ρg(vn) – μFSn

pSn
p– · · ·Sn

 vn
∥
∥

+ cn
∥
∥vn – Sn

pSn
p– · · ·Sn

 vn
∥
∥ + ( – bn)

∥
∥Sn

pSn
p– · · ·Sn

 un – un
∥
∥.

(.)
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From (.), we have

bn
∥
∥Sn

pSn
p– · · ·Sn

 un – un
∥
∥ ≤ ‖un – un+‖ + an

∥
∥ρg(vn) – μFSn

pSn
p– · · ·Sn

 vn
∥
∥

+ cn
∥
∥vn – Sn

pSn
p– · · ·Sn

 vn
∥
∥.

Since from (i), (ii), (iii) and (.), we have

lim
n→∞

∥
∥un – Sn

pSn
p– · · ·Sn

 un
∥
∥ = . �

Lemma . Let

un = anρg(un) + cnun +
[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 un. (.)

Then un converges strongly to ũ ∈ 	 as n → .

Proof Since {un} is bounded, we assume that {un} converges weakly to a point ũ ∈ W .
From Lemma ., we have ũ ∈ 	. Now, for ũ ∈ 	, we get

‖un – ũ‖ =
∥
∥anρg(un) + cnun +

[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 un – ũ
∥
∥

≤ 〈
an

(
ρg(un) – μF(ũ)

)
+ cn(un – ũ)

+
[
( – cn)I – anμF

](
Sn

pSn
p– · · ·Sn

 un – Sn
pSn

p– · · ·Sn
 ũ

)
, un – ũ

〉

=
〈
anρ

(
g(un) – g(ũ)

)
, un – ũ

〉

+ an
〈
ρg(ũ) – μF(ũ), un – ũ

〉
+ cn〈un – ũ, un – ũ〉

+
[
( – cn)I – anμF

]〈
Sn

pSn
p– · · ·Sn

 un – Sn
pSn

p– · · ·Sn
 ũ, un – ũ

〉

≤ anρτ‖un – ũ‖ + an
〈
ρg(ũ) – μF(ũ), un – ũ

〉

+ cn‖un – ũ‖ +
[
( – cn)I – anμF

]‖un – ũ‖

≤ (
 – an(μF – ρτ )

)‖un – ũ‖ + an
〈
ρg(ũ) – μF(ũ), un – ũ

〉
.

Hence,

‖un – ũ‖ ≤ 
(μF – ρτ )

〈
ρg(ũ) – μF(ũ), un – ũ

〉
. (.)

Since un ⇀ ũ, from (.) we obtain un → ũ. �

Theorem . The sequence {un} generated by Algorithm . converges strongly to z ∈ 	 =
⋂p

i= F(Si), which is also a unique solution of the HFPP

〈
ρg(z) – μF(z), u – z

〉 ≤ , ∀u ∈ 	.

Proof Let ut ∈ W be a unique fixed point. Now, we claim that

lim
n→∞ sup

〈
ρg(z) – μF(z), z – un

〉 ≤ ,

where z = limt→ ut . It follows from Lemma . that z ∈ 	.
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By using Lemma ., we get

‖un – ut‖ =
∥
∥anρg(un) + cnun +

[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 un – ut
∥
∥

=
∥
∥an

(
ρg(un) – μF(ut)

)
+ cn(un – ut)

+
[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 un

–
[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 ut
∥
∥

≤ ∥
∥cn(un – ut) +

[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 un

–
[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 ut
∥
∥ + an

〈
ρg(un) – μF(ut), un – ut

〉

≤
{

cn‖un – ut‖ + ( – cn)
∥
∥
∥
∥

(

I –
anμF
 – cn

)

Sn
pSn

p– · · ·Sn
 un

–
(

I –
anμF
 – cn

)

Sn
pSn

p– · · ·Sn
 ut

∥
∥
∥
∥

}

+ anρ
〈
g(un) – g(ut), un – ut

〉
+ an

〈
ρg(ut) – μF(ut), un – ut

〉

≤
{

cn‖un – ut‖ + ( – cn)
(

I –
anν

 – cn

)

‖un – ut‖
}

+ anρτ‖un – ut‖‖un – ut‖ + an
〈
ρg(ut) – μF(ut), un – ut

〉

≤ {
cn‖un – ut‖ + ( – cn – anν)‖un – ut‖

} + anρτ‖un – ut‖

+ an
〈
ρg(ut) – μF(ut), un – ut

〉

≤ (
( – anν) + anρτ

)‖un – ut‖ + an
〈
ρg(ut) – μF(ut), un – ut

〉
.

From the above we have

〈
ρg(ut) – μF(ut), ut – un

〉 ≤ An(t)
an

‖un – ut‖,

where An(t) = [ – [( – anν) + anρτ ]].
Further,

lim
n→∞ sup

〈
ρg(ut) – μF(ut), ut – un

〉 ≤ An(t)


M, (.)

where M >  is a constant such that M≥ ‖un – ut‖.
Taking the lim sup as t →  in (.), we get

lim
n→∞ sup

〈
ρg(z) – μF(z), z – un

〉 ≤ .

Now, we have to show that un → z.

‖un+ – z‖ =
∥
∥anρg(vn) + cnvn +

[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 vn – z
∥
∥

=
〈
anρg(vn) + cnvn +

[
( – cn)I – anμF

]
Sn

pSn
p– · · ·Sn

 vn – z, un+ – z
〉

≤
〈

an
(
ρg(vn) – μF(z)

)
+ cn(vn – z) + ( – cn)

[(

I –
anμF
 – cn

)

Sn
pSn

p– · · ·Sn
 vn
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–
(

I –
anμF
 – cn

)

Sn
pSn

p– · · ·Sn
 z

]

, un+ – z
〉

=
〈
anρ

(
g(vn) – g(z)

)
, un+ – z

〉
+ an

〈
ρg(z) – μF(z), un+ – z

〉

+ cn〈vn – z, un+ – z〉 + ( – cn)
〈(

I –
anμF
 – cn

)

Sn
pSn

p– · · ·Sn
 vn

–
(

I –
anμF
 – cn

)

Sn
pSn

p– · · ·Sn
 z, un+ – z

〉

≤ anρτ‖vn – z‖‖un+ – z‖ + an
〈
ρg(z) – μF(z), un+ – z

〉

+ cn‖vn – z‖‖un+ – z‖ + ( – cn – anν)‖vn – z‖‖un+ – z‖
≤ (anρτ +  – anν)‖vn – z‖‖un+ – z‖ + an

〈
ρg(z) – μF(z), un+ – z

〉

≤ (
 – an(ν – ρτ )

)‖vn – z‖‖un+ – z‖ + an
〈
ρg(z) – μF(z), un+ – z

〉

≤ (
 – an(ν – ρτ )

)‖un – z‖‖un+ – z‖ + an
〈
ρg(z) – μF(z), un+ – z

〉

≤ ( – an(ν – ρτ ))


(‖un – z‖ + ‖un+ – z‖)

+ an
〈
ρg(z) – μF(z), un+ – z

〉
.

Further,
[

 –
( – an(ν – ρτ ))



]

‖un+ – z‖ ≤
[

 – an(ν – ρτ )


]

‖un – z‖

+ an
〈
ρg(z) – μF(z), un+ – z

〉
,

[
 + an(ν – ρτ )



]

‖un+ – z‖ ≤
[

 – an(ν – ρτ )


]

‖un – z‖

+ an
〈
ρg(z) – μF(z), un+ – z

〉
,

which implies that

‖un+ – z‖ ≤
[

 – an(ν – ρτ )
 + an(ν – ρτ )

]

‖un – z‖

+
[

an

 + an(ν – ρτ )

]
〈
ρg(z) – μF(z), un+ – z

〉
,

‖un+ – z‖ ≤
[

 –
an(ν – ρτ )

 + an(ν – ρτ )

]

‖un – z‖

+
[

an(ν – ρτ )
 + an(ν – ρτ )

]{


ν – ρτ

〈
ρg(z) – μF(z), un+ – z

〉
}

.

Let wn = [ an(ν–ρτ )
+an(ν–ρτ ) ] and

tn =
[

an(ν – ρτ )
 + an(ν – ρτ )

]{


ν – ρτ

〈
ρg(z) – μF(z), un+ – z

〉
}

.

We have
∑∞

n= an = ∞ and limn→∞ sup{ 
ν–ρτ

〈ρg(z) – μF(z), un+ – z〉} ≤ . It follows that
∑∞

n= wn = ∞ and limn→∞ sup tn
wn

≤ . Thus, all the conditions of Lemma . are fulfilled.
Hence, un → z. �
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4 Examples
The following example ensures that all the conditions of Algorithm . and the conver-
gence result are fulfilled.

Example . Let an = 
n , bn = n–

n and cn = 
n . Then

lim
n→∞ an =




lim
n→∞


n

= ,

and

∞∑

n=

an =



∞∑

n=


n

= ∞.

The sequence {an} satisfies condition (i) of Algorithm ..
Now we compute

an– – an =


(n – )
–


n

=



(


n – 
–


n

)

=


n(n – )
.

So,

∞∑

n=

|an– – an| < ∞.

Similarly, we can show

∞∑

n=

|cn– – cn| < ∞.

The sequences {an}, {bn} and {cn} satisfy conditions (i), (ii) and (iii).
Let di

n = n
n+i for i = , . Then

∞∑

n=

∣
∣di

n– – di
n
∣
∣ < ∞.

Hence the sequence {di
n} also satisfies condition (iv) of Algorithm ..

Let S, S : R →R be defined by

S(u) = sin
u


and

S(u) =
u


, ∀u ∈R,

and let the mapping g : R →R be defined by

g(u) =
u


+ , ∀u ∈R.

It is easy to verify that S and S are 
 -nonexpansive and g is a 

 -contraction mapping.
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Table 1 The values of un and vn with the initial values u1 = –10 and u1 = 10

u1 = –10 u1 = 10
un vn un vn

n = 1 –10.0000 –14.5154 10.0000 14.6347
n = 2 –7.0467 –7.0467 7.8560 7.8997
n = 3 –2.7768 –2.7268 5.2941 5.2981
n = 4 –1.0152 –1.0152 2.0321 2.0431
n = 5 –0.3254 –0.3252 0.8356 0.8436
n = 6 –0.0703 –0.0703 0.3587 0.3487
n = 7 –0.0458 –0.0458 0.1662 0.1689
n = 8 –0.0492 –0.0429 0.0889 0.0989
n = 9 –0.0399 –0.0399 0.0571 0.0671
n = 10 –0.0327 –0.0372 0.0429 0.0429
n = 11 –0.0298 –0.0331 0.0357 0.0375
n = 12 –0.0297 –0.0289 0.0315 0.0351
n = 13 –0.0146 –0.0279 0.0286 0.0211
n = 14 –0.0118 –0.0164 0.0224 0.0200
n = 15 –0.0109 –0.0131 0.0207 0.0198

Figure 1 The convergence of un and vn with the initial value u1 = –10.

Further,

	 =
⋂

i=

F(Si) = {}.

Suppose that the mapping F : R →R is defined by

F(u) = u, ∀u ∈R.

Hence, F is -strongly monotone and -Lipschitzian.
Assume that ρ = 

 and μ = 
 and they satisfy  < μ < η

k and  ≤ ρτ < ν , where ν =
 –

√
 – μ(η – μk).
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Figure 2 The convergence of un and vn with the initial value u1 = 10.

All codes were written in Matlab, the values of {vn} and {un} with different n are given
in Table .

Remark . Table  and Figures  and  show that the sequences {vn} and {un} converge
to . Also, {} ∈ 	.

5 Conclusion
We have analyzed an iterative method for finding an approximate solution of hierarchical
fixed point problem (.) and variational inequality problem (.) involving a finite family
of nonexpansive mappings in a real Hilbert space. This method can be viewed as a mod-
ification and improvement of some existing methods [, ] for solving the variational
inequality problem and the hierarchical fixed point problem. Therefore, Algorithm . is
expected to be widely applicable.
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