
Zoto et al. Fixed Point Theory and Applications  (2017) 2017:26 
DOI 10.1186/s13663-017-0620-1

R E S E A R C H Open Access

Some generalizations for
(α – ψ ,φ)-contractions in b-metric-like spaces
and an application
Kastriot Zoto1*, B. E. Rhoades2 and Stojan Radenović3,4
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Abstract
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1 Introduction
In the past years extensions of a metric fixed point theory to generalized structures have
received much attention. Also in these structures the concepts of fixed point theorems
and contractions have appeared with a remarkable influence on applications in the the-
ory of differential and integral equations, and giving appropriate mathematical models for
solving a variety of applied problems in the mathematical sciences and engineering. Some
generalizations are b-metric spaces introduced by Bakhtin [] (and later extensively used
by Czerwik []), partial metric spaces by Matthews [], b-partial metric spaces by Shukla
[], metric-like spaces by Harandi [], and b-metric-like spaces by Alghmandi et al. [].
Later, Hussain [] discussed the topological structure of b-metric-like spaces.

Also these generalizations have been associated with new and generalized classes of
contractive mappings. In this direction, Samet et al. [] introduced the concept of α-
admissible, α-contractive, and α –ψ-contractive mappings, further extended to the (α,β)-
contractive mappings. Many papers dealing with these notions have been considered to
prove fixed point results (for example, see [–]).

In this paper, working in this direction, we introduce the concept of an αqsp -admissible
mapping and provide some fixed point results involving αqsp – λ contractions and gener-
alized (αqsp – ψ ,φ) contractive mappings in the larger framework of b-spaces, precisely, in
the setting of b-metric-like spaces. The presented theorems improve, extend, generalize,
and unify a number of existing results in the literature.
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2 Preliminaries
Definition . ([]) Let X be a nonempty set. A mapping d : X × X → [,∞) is called a
b-metric if the following conditions hold for all x, y, z ∈ X and for some s ≥ :

d(x, y) =  if and only if x = y;

d(x, y) = d(y, x);

d(x, y) ≤ s
[
d(x, z) + d(z, y)

]
.

The pair (X, d) is called a b-metric space with parameter s.

Definition . ([]) Let X be a nonempty set. A mapping p : X × X → [,∞) is called a
partial metric if the following conditions hold for all x, y, z ∈ X and s ≥ : x = y ⇔ p(x, x) =
p(x, y) = p(y, y);

p(x, x) ≤ p(x, y);

p(x, y) = p(y, x);

p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

The pair (X, p) is called a partial metric space.

Definition . ([]) Let X be a nonempty set. A mapping pb : X × X → [,∞) is called a
partial b-metric if, for any real number s ≥  and for all x, y, z ∈ X:

x = y ⇔ pb(x, x) = pb(x, y) = pb(y, y);

pb(x, x) ≤ pb(x, y);

pb(x, y) = pb(y, x);

pb(x, y) ≤ s
[
pb(x, z) + pb(z, y)

]
– pb(z, z).

The pair (X, pb) is called a partial b-metric space.

Definition . ([]) Let X be a nonempty set. A mapping σ : X × X → [,∞) is called
metric-like if the following conditions hold for all x, y, z ∈ X:

σ (x, y) =  implies x = y;

σ (x, y) = σ (y, x);

σ (x, y) ≤ σ (x, z) + σ (z, y).

The pair (X,σ ) is called a metric-like space.
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Definition . ([]) Let X be a nonempty set. A mapping σb : X × X → [,∞) is called
b-metric-like if the following conditions hold for all x, y, z ∈ X and for some s ≥ :

σb(x, y) =  implies x = y;

σb(x, y) = σb(y, x);

σb(x, y) ≤ s
[
σb(x, z) + σb(z, y)

]
.

The pair (X,σb) is called a b-metric-like space.

In a b-metric-like space (X,σb), if x, y ∈ X and σb(x, y) = , then x = y, but the converse
need not be true, and σb(x, x) may be positive for x ∈ X.

Remark . The class of b-metric-like spaces is larger than either metric-like spaces or b-
metric-spaces, since a b-metric-like space is a metric-like space when s =  and since every
b-metric space is a b-metric-like space with the same parameter s. However, the converse
implications do not hold.

Example . ([]) Let X = R+ ∪ {}. Define the function σb : X → [,∞) by σb(x, y) =
(x + y) for all x, y ∈ X. Then (X,σb) is a b-metric-like space with parameter s = .

Example . ([]) Let X = R+ ∪ {}. Define the function σb : X → [,∞) by σb(x, y) =
(max{x, y}) for all x, y ∈ X. Then (X,σb) is a b-metric-like space with parameter s = .
Clearly, (X,σb) is not a b-metric or metric-like space.

Definition . ([]) Let (X,σb) be a b-metric-like space with parameter s, let {xn} be any
sequence in X, and let x ∈ X. Then

(a) The sequence {xn} is said to converge to x if limn→∞ σb(xn, x) = σb(x, x);
(b) The sequence {xn} is said to be a Cauchy sequence in (X,σb) if limn,m→∞ σb(xn, xm)

exists and is finite;
(c) (X,σb) is said to be a complete b-metric-like space if, for every Cauchy sequence {xn}

in X , there exists x ∈ X such that limn,m→∞ σb(xn, xm) = limn→∞ σb(xn, x) = σb(x, x).

The limit of a sequence in a b-metric-like space need not be unique.

Proposition . ([]) Let (X,σb) be a b-metric-like space with parameter s, and let {xn}
be any sequence in X with x ∈ X such that limn→∞ σb(xn, x) = .Then

(a) x is unique,
(b) σb(x, y)/s ≤ limn→∞ σb(xn, y) ≤ sσb(x, y) for all y ∈ X .

In , Samet et al. [] introduced the class of α-admissible mappings.

Definition . Let X be a nonempty set, f : X → X, and α : X × X → R+. We say that f
is an α-admissible mapping if α(x, y) ≥  implies that α(fx, fy) ≥  for all x, y ∈ X.

Since, in general, a b-metric-like space is not continuous, we quote the following lemmas
about the convergence of sequences.
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Lemma . ([]) Let (X,σb) be a b-metric-like space with parameter s ≥ , and suppose
that {xn} and {yn} are σb-convergent to x and y, respectively. Then we have


s σb(x, y) –


s
σb(x, x) – σb(y, y) ≤ lim inf

n→∞ σb(xn, yn)

≤ lim sup
n→∞

σb(xn, yn) ≤ sσb(x, x) + sσb(y, y) + sσb(x, y).

In particular, if σb(x, y) = , then we have limn→∞ σb(xn, yn) = .
Moreover, for each z ∈ X, we have


s
σb(x, z) – σb(x, x) ≤ lim inf

n→∞ σb(xn, z)

≤ lim sup
n→∞

σb(xn, z) ≤ sσb(x, z) + sσb(x, x).

In particular, if σb(x, x) = , then


s
σb(x, z) ≤ lim inf

n→∞ σb(xn, z)

≤ lim sup
n→∞

σb(xn, z) ≤ sσb(x, z).

The following result is useful.

Lemma . Let (X,σb) be a b-metric-like space with parameter s ≥ . Then
(a) If σb(x, y) = , then σb(x, x) = σb(y, y) = ;
(b) If (xn) is a sequence such that limn→∞ σb(xn, xn+) = , then we have

lim
n→∞σb(xn, xn) = lim

n→∞σb(xn+, xn+) = ;

(c) If x 	= y, then σb(x, y) > .

Proof The proof is obvious. �

Lemma . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , and let
{xn} be a sequence such that

lim
n→∞σb(xn, xn+) = . (.)

If {xn} is not Cauchy, then there exist ε >  and two subsequences {xmk } and {xnk } of
{xn} with nk > mk > k (positive integers) such that σb(xmk , xnk ) ≥ ε, σb(xmk , xnk –) < ε,
ε/s ≤ lim supk→∞ σb(xmk–, xnk –) ≤ εs, ε/s ≤ lim supk→∞ σb(xnk –, xmk ) ≤ εs, and ε/s ≤
lim supk→∞ σb(xmk –, xnk ) ≤ εs.

Proof If {xn} is not a σb-Cauchy sequence, then there exists ε >  for which we can find
two subsequences {xmk } and {xnk } of {xn} such that nk is the smallest index for which

nk > mk > k, σb(xmk , xnk ) ≥ ε. (.)
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This means that

σb(xmk , xnk –) < ε. (.)

From (.) and property (c) of Definition . we have

ε ≤ σb(xmk , xnk ) ≤ sσb(xmk , xmk –) + sσb(xmk –, xnk )

≤ sσb(xmk , xmk–) + sσb(xmk –, xnk –) + sσb(xnk –, xnk ). (.)

Taking the upper limit as k → ∞ in (.) and using (.), (.), and (.), we get

ε

s ≤ lim sup
k→∞

σb(xmk –, xnk –). (.)

By the triangle inequality we have

σb(xmk –, xnk –) ≤ sσb(xmk–, xmk ) + sσb(xmk , xnk –),

so, taking the upper limit as k → ∞ and using (.), we get

lim sup
k→∞

σb(xmk –, xnk –) ≤ εs. (.)

By (.) and (.) we have

ε

s ≤ lim sup
k→∞

σb(xmk –, xnk –) ≤ εs. (.)

Also, we have

ε ≤ σb(xmk , xnk ) ≤ sσb(xmk , xmk –) + sσb(xmk –, xnk ),

and, taking the upper limit as k → ∞, we get

ε

s
≤ lim sup

k→∞
σb(xmk–, xnk ). (.)

Again

ε ≤ σb(xmk , xnk ) ≤ sσb(xmk , xnk –) + sσb(xnk –, xnk ).

Taking the upper limit as k → ∞ and using (.), we get

ε

s
≤ lim sup

k→∞
σb(xnk –, xmk ). (.)

Since σb(xnk –, xmk ) ≤ sσb(xnk –, xmk –) + sσb(xmk –, xmk ), from (.) and (.) we have

lim sup
k→∞

σb(xnk –, xmk ) ≤ s lim sup
k→∞

σb(xnk –, xmk –) ≤ εs. (.)
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Consequently,

ε

s
≤ lim sup

k→∞
σb(xnk –, xmk ) ≤ εs. (.)

Also,

σb(xmk –, xnk ) ≤ sσb(xmk –, xnk –) + sσb(xnk –, xnk ).

Then from (.), (.), and (.) we have

lim sup
k→∞

σb(xmk –, xnk ) ≤ s lim sup
k→∞

σb(xmk –, xnk –) ≤ εs.

Consequently,

ε

s
≤ lim sup

k→∞
σb(xmk–, xnk ) ≤ εs. (.)

This completes proof. �

3 Main results
We begin this section with the following definition.

Definition . Let (X,σb) be a b-metric-like space with parameter s ≥ , let α : X × X →
[,∞) be a function, and let q ≥  and p ≥  be arbitrary constants. A mapping f : X → X
is αqsp -admissible if α(x, y) ≥ qsp implies α(fx, fy) ≥ qsp for all x, y ∈ X.

Remark .
(i) Taking q =  in this definition, we obtain an αsp -admissible mapping defined in a

b-metric-like space or in a b-metric space.
(ii) Note that, for s = , the definition reduces to an αq-admissible mapping defined in a

metric space or in a metric-like space.
(iii) For s =  and q = , the definition reduces to the definition of an α-admissible

mapping in a metric space [].
(iv) The class of αqsp -admissible mappings is strictly larger, and, more generally, because

the constant p ≥ , it is not restricted to some certain values.

We further consider the following properties.
Let (X,σb) be a complete b-metric-like space with parameter s ≥ , and let α : X × X →

[,∞) be a function. Then:

(Hqsp ) If {xn} is a sequence in X such that xn → x ∈ X as n → ∞ and α(xn, xn+) ≥ qsp, then
there exists a subsequence {xnk } of {xn} such that α(xnk , x) ≥ qsp for all k ∈ N .

(Uqsp ) For all x, y ∈ Fix(f ), we have α(x, y) ≥ qsp, where Fix(f ) denotes the set of fixed points
of f .
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Example . Let X = (, +∞). Define f : X → X and α : X × X → [, +∞) by fx = ln x for
all x ∈ X, and let

α(x, y) =

⎧
⎨

⎩
s, x 	= y,

, x = y
for any s ≥ .

Then, f is αqsp -admissible.

Example . Let X = (, +∞). Define f : X → X and α : X × X → [,∞) by fx = x for all
x ∈ X and

α(x, y) =

⎧
⎨

⎩
, x 	= y,

, x = y
for all x, y ∈ X.

Then f is αqsp -admissible.

Based on the definition of quasi-contraction from Ćirić, we introduce the following def-
inition in the setting of a b-metric-like space.

Definition . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , and let
f : X → X be a given mapping. We say that f is a generalized αqsp – λ-quasi-contraction if
f is an αqsp -admissible mapping such that

α(x, y)σb(fx, fy) ≤ λmax

{
σb(x, y),σb(x, fx),σb(y, fy),σb(x, fy),

σb(y, fx),σb(x, x),σb(y, y)

}

(.)

for all x, y ∈ X and λ ∈ [, /).

Remark . If we take α(x, y) = s (p =  and q = ), then the definition reduces to the
definition of an s – λ quasi-contraction, and if we take s = , then the definition reduces to
the λ-quasi-contraction in the setting of metric spaces.

Theorem . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , let f :
X → X be a self-mapping, and let α : X × X → R+ be a given function. Suppose that the
following conditions are satisfied:

(i) f is an αqsp -admissible mapping;
(ii) f is an αqsp – λ contractive mapping;

(iii) there exists x ∈ X such that α(x, fx) ≥ qsp;
(iv) either f is continuous, or property Hqsp is satisfied.
Then f has a fixed point. Moreover, f has a unique fixed point if property Uqsp is satisfied.

Proof By hypothesis (iii) there exists x ∈ X such that α(x, fx) ≥ qsp. We define the se-
quence {xn} in X by xn = fxn– for all n ∈ N . If xn = xn+ for some n ∈ N , then u = xn is a
fixed point for f . Consequently, we suppose that xn 	= xn+ (σb(xn, xn+) > ) for all n ∈ N .

Since f is an αqsp -admissible mapping, we have

α(x, x) = α(x, fx) ≥ qsp, α(fx, fx) = α(x, x) ≥ qs, and

α(fx, fx) = α(x, x) ≥ qsp.
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Hence, by induction we get

α(xn, xn+) ≥ qsp for all n ∈ N .

By condition (.) we have:

qspσb(xn, xn+)

= qspσb(fxn–, fxn) ≤ α(xn–, xn)σb(fxn–, fxn)

≤ λmax

{
σb(xn–, xn),σb(xn–, fxn–),σb(xn, fxn),σb(xn–, fxn),

σb(xn, fxn–),σb(xn–, xn–),σb(xn, xn)

}

= λmax

{
σb(xn–, xn),σb(xn–, xn),σb(xn, xn+),σb(xn–, xn+),

σb(xn, xn),σb(xn–, xn–),σb(xn, xn)

}

≤ λmax

{
σb(xn–, xn),σb(xn–, xn),σb(xn, xn+), s[σb(xn–, xn) + σb(xn, xn+)],

sσb(xn, xn–), sσb(xn–, xn), sσb(xn, xn–)

}

= λmax

{
σb(xn–, xn),σb(xn–, xn),σb(xn, xn+), s[σb(xn–, xn) + σb(xn, xn+)],

sσb(xn, xn–)

}

. (.)

If σb(xn–, xn) < σb(xn, xn+) for some n ∈ N , then from inequality (.) we have σb(xn,
xn+) ≤ λ/qsp–σb(xn, xn+), a contradiction since λ/qsp– < .

Hence, for all n ∈ N , σb(xn, xn+) ≤ σb(xn–, xn), and also by inequality (.) we get

σb(xn, xn+) ≤ λ

qsp– σb(xn–, xn). (.)

Similarly, by the contractive condition of theorem we have:

σb(xn–, xn) ≤ λ

qsp– σb(xn–, xn–). (.)

Generally, from (.) and (.) we have, for all n,

σb(xn, xn+) ≤ cσb(xn–, xn) ≤ · · · ≤ cnσb(x, x), (.)

where  ≤ c = λ/qsp– < . Taking limit as n → ∞ in (.), we have

σb(xn, xn+) → . (.)

Now we prove that {xn} is a Cauchy sequence. To do this, let m, n >  be such that m > n.
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Using Definition .(c), we have

σb(xn, xm) ≤ s
[
σb(xn, xn+) + σb(xn+, xm)

]

≤ sσb(xn, xn+) + sσb(xn+, xn+) + sσb(xn+, xn+) + · · ·
≤ scnσb(x, x) + scn+σb(x, x) + scn+σb(x, x) + · · ·
= scnσb(x, x)

[
 + sc + (sc) + (sc) + · · · ]

≤ scn

 – sc
σb(x, x).

Taking the limit as n, m → ∞, we have σb(xn, xm) → , since  ≤ cs = λs/qsp– =
λ/qsp– < . Therefore {xn} is a Cauchy sequence in the complete b-metric-like space
(X,σb). Thus there is some u ∈ X such that {xn} converges to u.

If f is a continuous mapping, then we get:

f (u) = f
(

lim
n→∞ xn

)
= lim

n→∞ f (xn) = lim
n→∞(xn+) = u.

Thus u is a fixed point of f .
On the other hand, if f is not a continuous function and property Hqsp holds, then there

exists a subsequence {xnk } of {xn} such that α(xnk , u) ≥ qsp for all k ∈ N .
Since α(xnk , u) ≥ qsp, applying condition (.) with x = xnk and y = u, we obtain

qspσb(xnk +, fu) = qspσb(fxnk , fu) ≤ α(xnk , u)σb(fxnk , fu)

≤ λmax

{
σb(xnk , u),σb(xnk , fxnk ),σb(u, fu),σb(xnk , fu),

σb(u, fxnk ),σb(xnk , xnk ),σb(u, u)

}

= λmax

{
σb(xnk , u),σb(xnk , xnk +),σb(u, fu),

σb(xnk , fu),σb(u, xnk +),σb(xnk , xnk ),σb(u, u)

}

. (.)

Taking the upper limit as k → ∞ in (.) and using (.), and Lemmas . and ., we
have

qsp–σb(u, fu) = qsp 
s
σb(u, fu) ≤ λsσb(u, fu). (.)

From (.) we get σb(u, fu) = , which implies that fu = u. Hence u is a fixed point of f .
Further, suppose that u and v are two fixed points of f , where fu = u and fv = v for some

u 	= v. Since property Uqsp is satisfied, we have α(u, v) ≥ qsp. Hence, from (.) we have

qspσb(u, v) = qspσb(fu, fv) ≤ α(u, v)σb(fu, fv)

≤ λmax

{
σb(u, v),σb(u, fu),σb(v, fv),σb(u, fv),

σb(v, fu),σb(u, u),σb(v, v)

}

= λmax

{
σb(u, v),σb(u, u),σb(v, v),σb(u, v),

σb(v, u),σb(u, u),σb(v, v)

}

≤ λsσb(u, v). (.)
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So σb(u, v) = , and since  ≤ c = λ/qsp– < , we get σb(u, v) = . Hence the fixed point is
unique. �

The following theorem is a version of the Hardy-Rogers result.

Theorem . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , and let
f : X → X be a given self-mapping. Suppose that there exists a function α : X × X → [,∞)
such that

α(x, y)σb(fx, fy) ≤ ασb(x, y) + ασb(x, fx) + ασb(y, fy) + ασb(x, fy) + ασb(y, fx),

for all x, y ∈ X and the constants ai ≥ , i = , . . . , , where a +a +a +a +a < /. Assume
also that:

(i) f is an αqsp -admissible mapping;
(ii) there exists x ∈ X such that α(x, fx) ≥ qsp;

(iii) either f is continuous, or property Hqsp is satisfied.
Then f has a fixed point. Moreover, f has a unique fixed point if property Uqsp is satisfied.

Proof This theorem can be considered as a corollary of Theorem ., since, for all x, y ∈ X,
we have

ασb(x, y) + ασb(x, fx) + ασb(y, fy) + ασb(x, fy) + ασb(y, fx)

≤ (α + α + α + α + α) max
{
σb(x, y),σb(x, fx),σb(y, fy),σb(x, fy),σb(y, fx)

}

= k max
{
σb(x, y),σb(x, fx),σb(y, fy),σb(x, fy),σb(y, fx)

}
,

where  < k = a + a + a + a + a < /. �

Corollary . Let (X,σb) be complete b-metric-like space with parameter s ≥ . If f : X →
X is a self-mapping and there exist constants ai ≥ , i = , . . . , , with a + a + a + a + a <
/ such that

qspσb(fx, fy) ≤ ασb(x, y) + ασb(x, fx) + ασb(y, fy) + ασb(x, fy) + ασb(y, fx),

for all x, y ∈ X and a constant p ≥ , then f has a unique fixed point in X.

Proof In Theorem ., take the function α(x, y) = qsp. �

Remark . Theorem . generalizes Theorem  in []. For α(x, y) = s and for all
x, y ∈ X, Theorems . and . reduce to Theorems . and . of []. In Theorem .
and Corollary ., by choosing the constants ai in certain manner, we obtain, as particular
cases, certain classes of αqsp -types of Kannan, Chatterjea, Reich, and Zamfirescu contrac-
tions.

The notion of α – ψ contractive mappings is defined in a complete metric space in
[]. Thereafter, many authors provided various fixed point theorems for such a class of
mappings. In the following definition, we extend and generalize the notions of α – ψ and
(ψ –φ)-contractive mappings in the context of larger spaces, such as b-metric-like spaces.
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The aim of this section is to extend and generalize the main classical result and other ex-
isting results in the literature on b-metric and metric-like spaces.

Let (X,σb) be a b-metric-like space with parameter s ≥ . For a self-mapping f : X → X,
we define N(x, y) by

N(x, y) = max

{
σb(x, y),σb(x, fx),σb(y, fy),

σb(x, fy) + σb(y, fx)
s

}
(.)

for all x, y ∈ X.
The families 	 , 
 with altering distance functions are defined as follows:

ψ : [,∞) → [,∞) an increasing and continuous function;

φ : [,∞) → [,∞) is continuous, and φ(t) < ψ(t) for all t > .

Let S be the set of all mappings β : [,∞) → [, ) satisfying the condition

β(tn) →  as n → ∞ implies that tn →  as n → ∞.

Definition . Let (X,σb) be a b-metric-like space with parameter s ≥ , and let f : X →
X be a self-mapping. Also, let α : X × X → [,∞) and q ≥ , p ≥ . We say that f is an
(αqsp – ψ ,φ) generalized contractive mapping if there exist ψ ∈ 	 , φ ∈ 
 such that

ψ
(
α(x, y)σb(fx, fy)

) ≤ φ
(
N(x, y)

)
(.)

for all x, y ∈ X with α(x, y) ≥ qsp, where N(x, y) is defined by (.).

Remark .
(i) Taking q =  in the definition, we obtain αs – (ψ ,φ) admissible mappings defined in

a b-metric-like space or in a b-metric space.
(ii) Note that, for α(x, y) = q, the definition reduces to an αq-admissible mapping

defined in a metric space or in a metric-like space.
(iii) For s =  and q = , the definition reduces to the definition of an α-admissible

mapping in a metric space.
(iv) The definition reduces to a (ψ ,φ)-contractive mapping if we take α(x, y) = .
(v) The definition reduces to an αqsp – φ contractive mapping if we take ψ(t) = t.

(vi) The definition reduces to an αqsp – λ contractive mapping if we take ψ(t) = t and
φ(t) = λt for λ ∈ (, ).

We now present the following theorem.

Theorem . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , and let
f : X → X be an (αqsp – ψ ,φ) generalized contractive mapping. Suppose that the following
conditions are satisfied:

(i) f is an αqsp -admissible mapping;
(ii) there exists x ∈ X such that α(x, fx) ≥ qsp;

(iii) either f is continuous, or property Hqsp is satisfied.
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Then f has a fixed point x ∈ X. Moreover, f has a unique fixed point if property Uqsp is
satisfied.

Proof By assumption (ii) there exists a point x ∈ X such that α(x, fx) ≥ qsp. We con-
struct a sequence {xn} in X by xn = f nx = f (xn–) for all n ∈ N . If we suppose that
σb(xn, xn+) =  for some n, then xn+ = xn, and the proof is completed, since u = xn = xn+ =
f (xn) = fu. Consequently, throughout the proof, we assume that

σb(xn, xn+) >  for all n ∈ N . (.)

Since f is an αqsp -admissible mapping, we observe that

α(x, x) = α(x, fx) ≥ qsp, α(fx, fx) = α(x, x) ≥ qs and

α(fx, fx) = α(x, x) ≥ qsp.

In general, by induction we derive that

α(xn, xn+) ≥ qsp for all n ∈ N . (.)

By (.) and condition (.) we have:

ψ
(
σb(xn, xn+)

) ≤ ψ
(
qspσb(xn, xn+)

)
= ψ

(
qspσb(fxn–, fxn)

)

≤ ψ
(
α(xn–, xn)σb(fxn–, fxn)

)

≤ φ
(
N(xn–, xn)

)
< ψ

(
N(xn–, xn)

)
, (.)

where

N(xn–, xn) = max

{
σb(xn–, xn),σb(xn–, fxn–),σb(xn, fxn),

σb(xn–,fxn)+σb(xn ,fxn–)
s

}

= max

{
σb(xn–, xn),σb(xn–, xn),σb(xn, xn+),

σb(xn–,xn+)+σb(xn ,xn)
s

}

≤ max

{
σb(xn–, xn),σb(xn–, xn),σb(xn, xn+),

s[σb(xn–,xn)+σb(xn ,xn+)]+sσb(xn–,xn)
s

}

. (.)

If we assume that, for some n ∈ N ,

σb(xn–, xn) < σb(xn, xn+),

then from inequality (.) we get

N(xn–, xn) ≤ σb(xn, xn+). (.)
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Again, by (.) and condition (.) we have:

ψ
(
σb(xn, xn+)

) ≤ ψ
(
qspσb(xn, xn+)

)
= ψ

(
qspσb(fxn–, fxn)

)

≤ ψ
(
α(xn–, xn)σb(fxn–, fxn)

)

≤ φ
(
N(xn–, xn)

)
< ψ

(
N(xn–, xn)

)
. (.)

By the property ψ inequality (.) implies that

σb(xn, xn+) ≤ N(xn–, xn). (.)

From (.) and (.) we have

N(xn–, xn) = σb(xn, xn+). (.)

From (.), using (.), we obtain

ψ
(
σb(xn, xn+)

) ≤ ψ
(
qspσb(xn, xn+)

)
= ψ

(
qspσb(fxn–, fxn)

)

≤ ψ
(
α(xn–, xn)σb(fxn–, fxn)

)

≤ φ
(
N(xn–, xn)

)
= φ

(
σb(xn, xn+)

)

< ψ
(
σb(xn, xn+)

)
, (.)

which gives a contradiction, since we have assumed that σb(xn, xn+) >  and φ(t) < ψ(t)
for all t > . Hence, for all n ∈ N , σb(xn, xn+) ≤ σb(xn–, xn), and the sequence {σb(xn, xn+)}
is decreasing and bounded below. Hence there exists l ≥  such that σb(xn, xn+) → l. Also,

lim
n→∞σb(xn, xn+) = lim

n→∞ N(xn–, xn) = l.

We shall prove that l = .
Consider

ψ
(
σb(xn, xn+)

) ≤ ψ
(
qspσb(xn, xn+)

)
= ψ

(
qspσb(fxn–, fxn)

)

≤ ψ
(
α(xn–, xn)σb(fxn–, fxn)

)

≤ φ
(
N(xn–, xn)

)
= φ

(
σb(xn, xn+)

)
. (.)

If we assume that l > , taking the limit in (.), we have

ψ(l) ≤ φ(l),

which is a contradiction since ψ(t) > φ(t) for t > . Hence l = , and

lim
n→∞σb(xn, xn+) = lim

n→∞ N(xn–, xn) = . (.)

Next, we shall show that {xn} is a Cauchy sequence in X. Suppose, on the contrary, that {xn}
is not a Cauchy sequence. Then by Lemma . there exist ε >  and two subsequences
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{xmk } and {xnk } of {xn}, with nk > mk > k, such that

σb(xmk , xnk ) ≥ ε, σb(xmk , xnk –) < ε,
ε

s ≤ lim sup
k→∞

σb(xmk –, xnk –) ≤ εs,

ε

s
≤ lim sup

k→∞
σb(xnk –, xmk ) ≤ εs, and

ε

s
≤ lim sup

k→∞
σb(xmk –, xnk ) ≤ εs.

(.)

From the definition of N(x, y) we have

N(xmk–, xnk –) = max

{
σb(xmk –, xnk –),σb(xmk–, fxmk –),σb(xnk –, fxnk –),

σb(xmk –,fxnk –)+σb(xnk –,fxmk –)
s

}

= max

{
σb(xmk –, xnk –),σb(xmk–, xmk ),σb(xnk –, xnk ),

σb(xmk –,xnk )+σb(xnk –,xmk )
s

}

. (.)

Taking the upper limit as k → ∞ in (.) and using (.), (.), we get

lim sup
k→∞

N(xmk–, xnk –)

= lim sup
k→∞

max

{
σb(xmk –, xnk –),σb(xmk –, xmk ),σb(xnk –, xnk ),

σb(xmk –,xnk )+σb(xnk –,xmk )
s

}

≤ max

{
εs, , ,

εs


}
≤ εs. (.)

Using the αqsp -weak contractive condition, we have

ψ
(
qspσb(xmk , xnk )

) ≤ ψ
(
qspσb(fxmk –, fxnk –)

)

≤ ψ
(
α(xmk –, xnk –)σb(fxmk –, fxnk –)

)

≤ φ
(
N(xmk–, xnk –)

)
. (.)

Taking the upper limit in (.), using (.) and (.), we obtain

ψ(εs) ≤ ψ
(
qεsp–) = ψ

(
qsp ε

s

)
≤ ψ

(
lim sup

k→∞
σb(xmk , xnk )

)

≤ φ
(

lim sup
k→∞

(
N(xmk–, xnk –)

)) ≤ φ(εs)

< ψ(εs),

which is a contradiction, since ε > . Therefore {xn} is a Cauchy sequence in the complete
b-metric-like space (X,σb). Thus, there is some u ∈ X such that {xn} converges to u. If f is
a continuous mapping, we get:

f (u) = f
(

lim
n→∞ xn

)
= lim

n→∞ f (xn) = lim
n→∞(xn+) = u,

and u is a fixed point of f .
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If the self-map f is not continuous, then from (.) and condition Hqsp , there exists
a subsequence {xnk } of {xn} such that α(xnk , u) ≥ qsp for all k ∈ N . Since α(xnk , u) ≥ qsp,
applying contractive condition (.), with x = xnk and y = u, we obtain

ψ
(
qspσb(xnk +, fu)

)
= ψ

(
qspσb(fxnk , fu)

)

≤ ψ
(
α(xnk , u)σb(fxnk , fu)

)

≤ φ
(
N(xnk , u)

)
, (.)

where

N(xnk , u) = max

{
σb(xnk , u),σb(xnk , fxnk ),σb(u, fu),

σb(xnk ,fu)+σb(u,fxnk )
s

}

= max

{
σb(xnk , u),σb(xnk , xnk +),σb(u, fu),

σb(xnk ,fu)+σb(u,xnk +)
s

}

. (.)

Taking the upper limit in (.) and using Lemma . and result (.), we obtain

lim sup
n→∞

N(xnk , u) ≤ max

{
, ,σb(u, fu),

sσb(u, fu)
s

}
= σb(u, fu). (.)

Taking the upper limit as k → ∞ in (.) and using (.) and Lemma ., we obtain

ψ
(
qsp–σb(u, fu)

)
= ψ

(
qsp 

s
σb(u, fu)

)
≤ ψ

(
qsp lim sup

k→∞
σb(xnk , fu)

)

≤ φ
(

lim sup
k→∞

N(xnk , u)
)

< ψ
(

lim sup
k→∞

N(xnk , u)
)

≤ ψ
(
σb(u, fu)

)
. (.)

From (.) we get σb(u, fu) = , which implies that fu = u. Hence u is a fixed point of f .
Suppose that u and v are two fixed points of f , where fu = u and fv = v are such that u 	= v.

Then, by hypothesis Uqsp , α(u, v) ≥ qsp, and applying (.), we have

ψ
(
qspσb(u, u)

)
= ψ

(
qspσb(fu, fu)

) ≤ ψ
(
α(u, u)σb(fu, fu)

)

≤ φ
(
N(u, u)

) ≤ φ
(
σb(u, u)

)
, (.)

where

N(u, u) = max

{
σb(u, u),σb(u, u),σb(u, u),

σb(u, u) + σb(u, u)
s

}
= σb(u, u).

From inequality (.) it follows that σb(u, u) =  (also σb(v, v) = ).
Again we have

ψ
(
qspσb(u, v)

)
= ψ

(
qspσb(fu, fv)

) ≤ ψ
(
α(u, v)σb(fu, fv)

)

≤ φ
(
N(u, v)

) ≤ φ
(
σb(u, v)

)
, (.)

where N(u, v) = σb(u, v).
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Inequality (.) implies that σb(u, v) = . Therefore u = v, and the fixed point is
unique. �

Remark . Our theorem extends Theorems ., ., and . of Aydi et al. [].

By taking φ(t) = ψ(t)–ϕ(t), where ϕ ∈ 	 , in Theorem . we obtain the following result.

Corollary . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , let f :
X → X be a self-mapping, and let α : X ×X → [,∞). Suppose that the following conditions
are satisfied:

(i) f is an αqsp -admissible mapping;
(ii) there exist functions ψ ,ϕ ∈ 	 such that

ψ
(
α(x, y)σb(fx, fy)

) ≤ ψ
(
N(x, y)

)
– ϕ

(
N(x, y)

)
;

(iii) there exists x ∈ X such that α(x, fx) ≥ qsp;
(iv) either f is continuous, or property Hqsp is satisfied.
Then f has a fixed point x ∈ X. Moreover, f has a unique fixed point if property Uqsp is

satisfied.

Remark . This corollary extends Theorems  and  of Roshan et al. [].

By taking ψ(t) = t and φ(t) = β(t)t where β ∈ S is as in Theorem ., we obtain the
following result.

Corollary . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , let f :
X → X be a self-mapping, and let α : X ×X → [,∞). Suppose that the following conditions
are satisfied:

(i) f is an αqsp -admissible mapping;
(ii) there exist functions ψ ,ϕ ∈ 	 such that

ψ
(
α(x, y)σb(fx, fy)

) ≤ β
(
N(x, y)

)(
N(x, y)

)
;

(iii) there exists x ∈ X such that α(x, fx) ≥ qsp;
(iv) either f is continuous, or property Hqsp is satisfied.
Then f has a fixed point x ∈ X. Moreover, f has a unique fixed point if property Uqsp is

satisfied.

If we take ψ(t) = t in Theorem ., then we get the following result.

Corollary . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , let f :
X → X be a self-mapping, and let α : X ×X → [,∞). Suppose that the following conditions
are satisfied:

(i) f is an αqsp -admissible mapping;
(ii) there exist functions ϕ ∈ 	 such that

α(x, y)σb(fx, fy) ≤ ϕ
(
N(x, y)

)
;
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(iii) there exists x ∈ X such that α(x, fx) ≥ qsp;
(iv) either f is continuous, or property Hqsp is satisfied.
Then f has a fixed point x ∈ X. If property Uqsp is satisfied, then f has a unique fixed

point.

Remark . Corollary . generalizes and extends Theorem . of Samet et al. [].

Corollary . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , let f :
X → X be a self-mapping, and let α : X ×X → [,∞). Suppose that the following conditions
are satisfied:

(i) f is an αqsp -admissible mapping;
(ii) there exists a function ϕ ∈ 	 such that

α(x, y)σb(fx, fy) ≤ N(x, y) – ϕ
(
N(x, y)

)
;

(iii) there exists x ∈ X such that α(x, fx) ≥ qsp;
(iv) either f is continuous, or property Hqsp is satisfied.
Then f has a fixed point x ∈ X. Moreover, f has a unique fixed point if property Uqsp is

satisfied.

Proof It follows from Corollary . by taking ψ(t) = t. �

Remark . Corollary . generalizes Theorem . of Harandi [].

Corollary . Let (X,σb) be a complete b-metric like space with parameter s ≥ , and let
f , g be two selfmaps of X with ψ ∈ 	 , ϕ ∈ 
 satisfying the condition

ψ
(
αqspσb(fx, fy)

) ≤ λψ
(
M(x, y)

)

for all x, y ∈ X, where M(x, y) is defined in (.), and q > . Then f and g have a unique
common fixed point in X.

Proof In Theorem ., take ϕ(t) = λψ(t) where  < λ < . �

Corollary . Let (X,σb) be a complete b-metric-like space with parameter s ≥ , and let
f : X → X be a self-mapping such that, for all x, y ∈ X and any arbitrary coefficient p ≥ ,

qspσb(fx, fy) ≤ k max

{
σb(x, y),σb(x, fx),σb(y, fy),

σb(x, fy) + σb(y, fx)
s

}
,

where k ∈ (, ). Then f has a unique fixed point.

Proof It follows from Corollary . by taking α(x, y) = qsp, ψ(t) = t, and ϕ(t) = ( – k)t for
all t ∈ [,∞) and k ∈ (, ). �

Remark . It is clear that we can derive several corresponding results by replacing the
b-metric-like space with some other spaces such as a b-metric space, a metric space, a
metric-like space, and a partial metric space. Conditions (.) and (.) are more general
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than the analogues in the previous literature, and theorems related to those conditions
have a more general character because of the parameter s and arbitrary coefficients q, p.

3.1 Application
In this section, we will use Corollary . to show that there is a solution to the following
integral equation:

x(t) =
∫ T


G

(
t, r, x(r)

)
dr. (.)

Let X = C([, T]) be the set of real continuous functions defined on [, T] for T > .
We endow X with

σb(x, y) = max
t∈[,]

(∣∣x(t)
∣
∣ +

∣
∣y(t)

∣
∣)m for all x, y ∈ X.

It is evident that (X,σb) is a complete b-metric-like space with parameter s = m– with
m > .

Consider the mapping f : X → X defined by fx(t) =
∫ T

 G(t, r, x(r)) dr.

Theorem . Consider equation (.) and suppose that
(a) G : [, T] × [, T] × R → R+ = [,∞) (that is, G(t, r, x(r)) ≥ ) is continuous;
(b) there exists a continuous γ : [, T] × [, T] → R;
(c) supt∈[,T]

∫ T
 γ (t, r) dr ≤ ;

(d) there exists a constant L ∈ (, ) such that, for all (t, r) ∈ [, T] and x, y ∈ R,

∣∣G
(
t, r, x(r)

)
+ G

(
t, r, y(r)

)∣∣ ≤
(

L
s

) 
m

γ (t, r)
(∣∣x(r)

∣∣ +
∣∣y(r)

∣∣).

Then the integral equation (.) has a unique solution in x ∈ X.

Proof For x, y ∈ X, from conditions (c) and (d), for all t, we have

qsσb
(
fx(t), fy(t)

)
= qs

(∣∣fx(t)
∣∣ +

∣∣fy(t)
∣∣)m

= qs
(∣

∣∣
∣

∫ T


G

(
t, r, x(r)

)
dr

∣
∣∣
∣ +

∣
∣∣
∣

∫ T


G

(
t, r, y(r)

)
dr

∣
∣∣
∣

)m

≤ qs
(∫ T



∣
∣G

(
t, r, x(r)

)∣∣dr +
∫ T



∣
∣G

(
t, r, y(r)

)∣∣dr
)m

≤ qs
(∫ T



(
L
s

) 
m

γ (t, r)
(((∣∣x(r) + y(r)

∣∣)m) 
m
)

dr
)m

≤ qs
(∫ T



(
L
s

) 
m

γ (t, r)σ

m

b
(
x(r), y(r)

)
dr

)m

≤ qs · L
s σb

(
x(r), y(r)

)
(∫ T


γ (t, r) dr

)m

=
qL
s σb

(
x(r), y(r)

)(∫ T


γ (t, r) dr

)m

≤ qL
s σb

(
x(r), y(r)

)
,
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which implies that

sσb
(
fx(t), fy(t)

) ≤ L
s σb

(
x(r), y(r)

)

≤ k max

{
σb(x, y),σb(x, Tx),σb(y, Ty)

σb(x, Ty) + σb(y, Tx)
s

}
,

where k = L/s ∈ (, ).
Therefore, all of the conditions of Corollary . are satisfied, and, as a result, the map-

ping f has a unique fixed point in X, which is a solution of the integral equation (.). �

4 Conclusions
In this paper, the class of αqsp -admissible mappings is introduced in a larger structure such
as a b-metric-like space. Some fixed point results dealing with (α – ψ ,φ) contractions
are obtained, and they cover and unify a huge number of published results in the related
literature.
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