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Abstract

In this paper, we introduce a new class of oge-admissible mappings and provide
some fixed point theorems involving this class of mappings satisfying some new
conditions of contractivity in the setting of b-metric-like spaces. Our results extend,
unify, and generalize classical and recent fixed point results for contractive mappings.
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1 Introduction

In the past years extensions of a metric fixed point theory to generalized structures have
received much attention. Also in these structures the concepts of fixed point theorems
and contractions have appeared with a remarkable influence on applications in the the-
ory of differential and integral equations, and giving appropriate mathematical models for
solving a variety of applied problems in the mathematical sciences and engineering. Some
generalizations are b-metric spaces introduced by Bakhtin [1] (and later extensively used
by Czerwik [2]), partial metric spaces by Matthews [3], b-partial metric spaces by Shukla
[4], metric-like spaces by Harandi [5], and b-metric-like spaces by Alghmandi et al. [6].
Later, Hussain [7] discussed the topological structure of b-metric-like spaces.

Also these generalizations have been associated with new and generalized classes of
contractive mappings. In this direction, Samet et al. [8] introduced the concept of a-
admissible, ¢-contractive, and « — ¥ -contractive mappings, further extended to the (o, 8)-
contractive mappings. Many papers dealing with these notions have been considered to
prove fixed point results (for example, see [8—23]).

In this paper, working in this direction, we introduce the concept of an « »-admissible
mapping and provide some fixed point results involving oz — A contractions and gener-
alized (g — V¥, @) contractive mappings in the larger framework of b-spaces, precisely, in
the setting of b-metric-like spaces. The presented theorems improve, extend, generalize,
and unify a number of existing results in the literature.
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2 Preliminaries
Definition 2.1 ([2]) Let X be a nonempty set. A mapping d : X x X — [0,00) is called a

b-metric if the following conditions hold for all x,y,z € X and for some s > 1:

dx,y)=0 ifandonlyif x=y;
d(x’y) = d(yr x);
d(x,y) < s[d(x,2) + d(z,9)].

The pair (X, d) is called a b-metric space with parameter s.

Definition 2.2 ([3]) Let X be a nonempty set. A mapping p: X x X — [0,00) is called a
partial metric if the following conditions hold for all x,y,z € X and s > 1: x = y < p(x,x) =

px,9) =p©,y);

px,x) < px,);
P(x»y) =p(y,x);
px,y) < plx,2) + p(z,y) - p(z,2).

The pair (X, p) is called a partial metric space.

Definition 2.3 ([4]) Let X be a nonempty set. A mapping p, : X x X — [0,00) is called a

partial b-metric if, for any real number s > 1 and for all x,y,z € X:

x=y &  pplxx)=ppxy) =ps(y);
Po(%:%) < py(,9);

Po(%,y) = pp(y, %);

px,9) < s[po(x,2) + pu(2,9)] - py(2,2).

The pair (X, p) is called a partial b-metric space.

Definition 2.4 ([5]) Let X be a nonempty set. A mapping o : X x X — [0,00) is called

metric-like if the following conditions hold for all x,y,z € X:

o(x,y) =0 implies x=y;
U(x’y) =O—(y1x);

oxy) <oxz) +0(zy).

The pair (X, o) is called a metric-like space.
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Definition 2.5 ([6]) Let X be a nonempty set. A mapping o3, : X x X — [0,00) is called
b-metric-like if the following conditions hold for all x,y,z € X and for some s > 1:

op(x,9) =0 implies x=y;
op(%,y) = 0b(9, %);

ob(x,) < s[op(%,2) + 0u(2,9)].
The pair (X, 0}) is called a b-metric-like space.

In a b-metric-like space (X, 03), if x,¥ € X and o, (x,y) = 0, then x = y, but the converse

need not be true, and oj(x, x) may be positive for x € X.

Remark 2.6 The class of b-metric-like spaces is larger than either metric-like spaces or b-
metric-spaces, since a b-metric-like space is a metric-like space when s = 1 and since every
b-metric space is a b-metric-like space with the same parameter s. However, the converse

implications do not hold.

Example 2.7 ([6]) Let X = R* U {0}. Define the function o}, : X> — [0, 00) by 0}(x,7) =
(x +)? for all x,y € X. Then (X, 03) is a b-metric-like space with parameter s = 2.

Example 2.8 ([24]) Let X = R* U {0}. Define the function o3, : X* — [0, 00) by o5(x,y) =
(max{x,y})? for all x,y € X. Then (X, 05) is a b-metric-like space with parameter s = 2.
Clearly, (X, 03) is not a b-metric or metric-like space.

Definition 2.9 ([6]) Let (X, 0;) be a b-metric-like space with parameter s, let {x,} be any
sequence in X, and let x € X. Then
(a) The sequence {x,} is said to converge to x if lim,,_, oc 05 (%, %) = 0p(x, %);
(b) The sequence {x,} is said to be a Cauchy sequence in (X, o) if limy, ;- 00 O (X, X11)
exists and is finite;
(c) (X,op) is said to be a complete b-metric-like space if, for every Cauchy sequence {x,}

in X, there exists x € X such that lim,, ;;,— o 05 (%5, X5,) = limy,—s 00 05 (%, %) = 0 (%, ).
The limit of a sequence in a b-metric-like space need not be unique.

Proposition 2.10 ([6]) Let (X,o0y) be a b-metric-like space with parameter s, and let {x,}
be any sequence in X with x € X such that lim,,_, o, 0p(x,,,x) = 0.Then
(a) xis unique,

(b) opx,¥)/s <1imy,_, o0 05(X4, ¥) < s0p(x,y) forall y € X.
In 2012, Samet et al. [8] introduced the class of «-admissible mappings.

Definition 2.11 Let X be a nonempty set, f: X — X, and « : X x X — R*. We say that f
is an o-admissible mapping if «(x, y) > 1 implies that a(fx, fy) > 1 for all x,y € X.

Since, in general, a b-metric-like space is not continuous, we quote the following lemmas
about the convergence of sequences.
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Lemma 2.12 ([7]) Let (X, 03) be a b-metric-like space with parameter s > 1, and suppose
that {x,} and {y,} are o,-convergent to x and y, respectively. Then we have

1 1
—05(%,y) = —0p(%, %) — 0p(y,y) < liminf o (%, )
S N n—00

< limsup 0 (%, yn) < 505(%, %) + $205(,9) + 0 (x, ).

n— 00

In particular, if o,(x,y) = 0, then we have lim,,_, o 05 (%, y,) = 0.
Moreover, for each z € X, we have

—0p(x,2) — 0p(x,x) < liminf oy (x,, 2)
s

n—00

< limsup op(x,, 2) < s0p(x,2) + sop(x, X).
n— 00

In particular, if op(x,x) = 0, then

1
-0p(x,z) <liminfoy(x,, z)
S n—00

<limsup oy (%, 2) < sop(x,2).

n—00

The following result is useful.

Lemma 2.13 Let (X, 0,) be a b-metric-like space with parameter s > 1. Then
(@) Ifop(x,y) =0, then op(x, x) = 0p(y,y) = 0;
(b) If (x,) is a sequence such that 1im,_, o 0p(%n, X441) = 0, then we have

lim Ub(xnr xn) = lim Gb(xn+1;xn+l) =0;
n—00 n—00

(c) Ifx #y, then op(x,) > 0.
Proof The proof is obvious. d

Lemma 2.14 Let (X, 0,) be a complete b-metric-like space with parameter s > 1, and let
{x,} be a sequence such that

lim o3 (%, %,41) = 0. (2.1)
n—0o0
If {x,} is not Cauchy, then there exist ¢ > 0 and two subsequences {x,, } and {x,} of
{xn} with ni > my > k (positive integers) such that op(Xmy, %) = &5 OpKmys Xnp-1) < &,
els® < limsupy_, o, 0% (X1, % -1) < €5, /s < limsup;_, o, 0p(Xp -1, %) < es?, and els <

: 2
limsupy_, o, 04 (Xmy—1, %, ) < £5°.

Proof 1f {x,} is not a 0,-Cauchy sequence, then there exists ¢ > 0 for which we can find
two subsequences {x,,, } and {x,, } of {x,} such that n is the smallest index for which

me>mg >k, 0Ky, %) > €. (2.2)
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This means that
O—b(xmk!xnk—l) <é&. (23)
From (2.2) and property (c) of Definition 2.4 we have

&= Ub(xmk;xnk) = So—b(xmk)xmkfl) + Sah(xmkflyxnk)

= Sab(xmk:xmk—l) + Szob(xmk—lr xnk—l) + Szo—b(xnk—l; xnk)- (24)
Taking the upper limit as k — oo in (2.4) and using (2.1), (2.2), and (2.3), we get

& .
— =<limsup b (X1, %np-1)- (2.5)
§ k— o0

By the triangle inequality we have
Ob (X —15 %y —1) < 80Xy —15 Xy ) + SO (K s Xy —1),
so, taking the upper limit as k — 0o and using (2.1), we get

lim sup 03 (X 1, Xy 1) < €. (2.6)

k— o0

By (2.5) and (2.6) we have

£
- = lim sup o3 (X, 1, %y 1) < €. (2.7)
s

k— 00

Also, we have
&= Gb(xmkxxnk) =< Sab(xmk’xmkfl) + SO’b(xmk,l, xnk)r
and, taking the upper limit as k — 0o, we get

&
— < limsup o5 (Xmy -1, %, ). (2.8)
N k— o0

Again
& < 0p(Xmpr Xy ) < 80 (Kngs Xy —1) + S0p (X —1, Xy )-
Taking the upper limit as k — oo and using (2.1), we get

¢ < limsup o3 (X1, Xy (2.9)
s

k— o0

Since 03 (X, —1,%m; ) < 05Xy -1 Xmy-1) + SO (X —1, %m, ), from (2.1) and (2.7) we have

lim sup 03 (X1, %, ) < s1imsup o (X —15 Xy -1) < es. (2.10)
k— o0 k—o00
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Consequently,

& .
— < limsup o) (X1, %) < &5°. (2.11)
s

k—o00

Also,
O—b(xmk—l’xnk) =< Soh(xmk—lyxnk—l) + Sab(xnk_l,xnk).
Then from (2.7), (2.8), and (2.1) we have

lim sup 03 (X 1, X, ) < S1im SUP 04 (X —15 X —1) < es>.
k— o0 k—o00

Consequently,
¢ < limsup 03 (X -1, %) < es®. (2.12)
N k— 00

This completes proof. 0

3 Main results
We begin this section with the following definition.

Definition 3.1 Let (X,0},) be a b-metric-like space with parameter s >1,leta: X x X —
[0, 00) be a function, and let ¢ > 1 and p > 2 be arbitrary constants. A mapping f : X — X
is oy -admissible if a(x, y) > gs” implies a(fx, fy) > gs” for all x,y € X.

Remark 3.2
(i) Taking g =1 in this definition, we obtain an aw-admissible mapping defined in a

b-metric-like space or in a b-metric space.

(ii) Note that, for s =1, the definition reduces to an «,-admissible mapping defined in a
metric space or in a metric-like space.

(iii) For s=1and g =1, the definition reduces to the definition of an a-admissible
mapping in a metric space [8].

(iv) The class of oy -admissible mappings is strictly larger, and, more generally, because

the constant p > 2, it is not restricted to some certain values.

We further consider the following properties.
Let (X, 03) be a complete b-metric-like space with parameter s > 1, and let o : X x X —

[0, 00) be a function. Then:

(Hg) If {x,} is a sequence in X such that x, — x € X as n — oo and a(x,,, x.41) > gs”, then

there exists a subsequence {x,, } of {x,} such that o (x,,,x) > gs” forall k € N.

(Uge) Forallx,y e Fix(f), we have a(x, y) > gs”, where Fix(f) denotes the set of fixed points

of f.
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Example 3.3 Let X = (0, +00). Define f : X — X and o : X x X — [0, +00) by fx = Inx for
all x € X, and let

252, x#y,
alx,y) = 7y for any s > 1.

0, x=y
Then, f is oy -admissible.

Example 3.4 Let X = (0, +00). Define f : X — X and o : X x X — [0, 00) by fx = 3« for all
x € X and

2, %%y,
alx,y) = 77 forall x,y € X.

0, x=y
Then f is a4 -admissible.

Based on the definition of quasi-contraction from Ciri¢, we introduce the following def-
inition in the setting of a b-metric-like space.

Definition 3.5 Let (X, 0},) be a complete b-metric-like space with parameter s > 1, and let
f:X — X be a given mapping. We say that f is a generalized ;¢ — A-quasi-contraction if
f is an oy -admissible mapping such that

op(x,9), b (%, %), 05 (3, ), o (%, f7),

(3.1)
o (9, fx), 0 (%, %), 055, )

o(x,y)op(fx,fy) < Amax

forallx,y € X and X € [0,1/2).

Remark 3.6 If we take a(x,y) = s? (p = 2 and q = 1), then the definition reduces to the
definition of an s — A quasi-contraction, and if we take s = 1, then the definition reduces to
the A-quasi-contraction in the setting of metric spaces.

Theorem 3.7 Let (X,0,) be a complete b-metric-like space with parameter s > 1, let f :
X — X be a self-mapping, and let o : X x X — R* be a given function. Suppose that the
following conditions are satisfied:
(i) f is an agp-admissible mapping;

(ii) f is an age — A contractive mapping;

(ili) there exists xo € X such that a(xo,fxo) > gs*;

(iv) either f is continuous, or property Hyg is satisfied.

Thenf has a fixed point. Moreover, f has a unique fixed point if property U,y is satisfied.

Proof By hypothesis (iii) there exists xg € X such that a(x,fxo) > gs”. We define the se-

quence {x,} in X by x,, = fx,,; forall n € N. If x,, = x,,,; for some n € N, thenu =x, is a

fixed point for f. Consequently, we suppose that x,, # x,,1 (0p(%,, %,41) > 0) for all m € N.
Since f is an oy -admissible mapping, we have

a(xo,x1) = (%o, fx0) = gs’, a(fxo, fx1) = a(x1,%,) > gs, and

a(fx1, fx2) = a(xa, x3) > gs”.
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Hence, by induction we get
(X, xp41) > gs8 forallme N.
By condition (3.1) we have:

quGb (xn: xn+1)

= qspah(fxn—hfxn) =< a(xn—l; xn)ah(fxn—lrfxn)

< Amax
Ub(xmfxn—l)y Op (xn—l: xn—l)x Op (xm xn)

Op (xn—lx xn)r Ub(xn—lyfxn—l)y O'b(xmfxn)’ Gb(xn—l;fxn)r }

{ Op (xn—l, xn); Op (xn—ly xn)r Gb(xn; xn+1)x Op (xn—lr xn+1), }
= A max

Op (xm xn); Gb(xn—lr xn—l); Gb(xnr xn)

0p(Xn-1, %), O (Kn—15 %) O (X, X1241), S[06 (K—15 %) + O (Xs K1),
< Amax

250y, (xm xn—l)r 2s0p (xn—l, xn)r 2s0p (xm xn—l)

(X1, %1), Ob (X—15 %)5 O (X0 X1141)5 S[06 (X—1, %) + O (X, %p041)],
= A max . (3.2)
2So‘h(x;fuxn—l)

If op(xy-1,%4) < op(xy,x441) for some n € N, then from inequality (3.2) we have oy (x,,
Xne1) < 20/qsP Loy (%, %,441), @ contradiction since 2A/gs? ! < 1.

Hence, for all n € N, 0(x,, %41) < 0p(x,-1,%,), and also by inequality (3.2) we get

2A
Ub(xn;xn+1) = —_10b(xn—lrxn)- (33)
qsP

Similarly, by the contractive condition of theorem we have:

01 n100) < qu_l 01251 (3.4)
Generally, from (3.3) and (3.4) we have, for all n,

05 (%> Xn41) < €Op (X1, %) < - -+ < " 0p (%0, %1), (3.5)
where 0 < ¢ = 21/gs”! < 1. Taking limit as # — oo in (3.5), we have

0p(Xns Xps1) — 0. (3.6)

Now we prove that {x,} is a Cauchy sequence. To do this, let 7, # > 0 be such that m > n.
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Using Definition 2.4(c), we have

0p (X Xm) < S[Gb(xn; Xni1) + 0p(Xna1, xm)]

= soh(x,,, xn+1) + Szab(xn+1,xn+2) + S3Gb(xn+2r xn+3) +--

2cn+1 3Cn+2

< sc"op(x0,%1) + 5 op(x0,%1) + 8 op(%o,%1) + - -

= sc”ab(xo,xl)[l +sc+ (se)? + (s¢)® + - - ]

sc”
< Op (x01 xl)'
1-sc

Taking the limit as #,m — oo, we have o,(x,,%,,) — 0, since 0 < ¢s = 2As/gs?™! =
21/qsP~% < 1. Therefore {x,} is a Cauchy sequence in the complete b-metric-like space
(X, 0p). Thus there is some u € X such that {x,} converges to u.

If f is a continuous mapping, then we get:
S =f( Jim x,) = lim £(6,) = lim () =
n— 00 n— 00 n—0o0

Thus u is a fixed point of f.

On the other hand, if f is not a continuous function and property Hy holds, then there
exists a subsequence {x,, } of {x,} such that a(x,,,u) > gs” forall k € N.

Since o (x,,,, #) > gs?, applying condition (3.1) withx = %y, and y = u, we obtain

qspob(xnk+1,fu) = qs”ab(fx,,k,fu) =< a(xnk’ u)ab(fxnk;fu)

< Amax
Op (”’fxnk): Op (xnk » Xy ), op(u, u)

Ub(xnkr M)r Op (xnk ’fxnk)) Op (I/l,flxt), Op (xnk ’fu)r }

i max{ 0 g 1), 0 (o g 1), 00 1, ft) } ' a0

Gb(xnk :fu), op(u, xnk+1)) Op (xnk ’ xnk), op(u, u)

Taking the upper limit as kK — oo in (3.7) and using (3.6), and Lemmas 2.12 and 2.13, we
have

qs” Yo (u, fu) = qspéob(u,fu) < 2Asop(u, fu). (3.8)

From (3.8) we get 0}, (u, fur) = 0, which implies that fi = u. Hence u is a fixed point of f.
Further, suppose that # and v are two fixed points of f, where fu = u and fv = v for some

u #v. Since property U,y is satisfied, we have a(u, v) > gs”. Hence, from (3.1) we have

qstop(u,v) = gsP op(fu, fv) < a(u, v)op(fu,fv)

ot v),ob(u,ﬁt),ab(v,fv),ob(u,fv),}

< Amax
{ op (v fu), 03 (1, 1), 03 (v, v)

{Ub(u, v), op(u, u), o, (v,v), o3 (14, V),}
= Amax
op(v, u), op(u, ), o3, (v, v)

< 2Asop(u,v). (3.9)
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So o5(u,v) = 0, and since 0 < ¢ = 2A/gs?™! < 1, we get 03 (u, v) = 0. Hence the fixed point is
unique. g

The following theorem is a version of the Hardy-Rogers result.

Theorem 3.8 Let (X, 0},) be a complete b-metric-like space with parameter s > 1, and let
f: X — X be a given self-mapping. Suppose that there exists a function o : X x X — [0, 00)
such that

a(x, y)op(fx, fy) < a1op(x,y) + a20p(x, fx) + a0, (¥, 1Y) + 2aop(x,fy) + asop(y, fx),

forallx,y € X and the constantsa; > 0,i=1,...,5, wherea; +ay +as +as +as < 1/2. Assume
also that:
(i) f is an agp-admissible mapping;
(ii) there exists xg € X such that a(xo, fxo) > qs’;
(i) either f is continuous, or property Hygp is satisfied.
Thenf has a fixed point. Moreover, f has a unique fixed point if property U,y is satisfied.

Proof This theorem can be considered as a corollary of Theorem 3.7, since, for all x,y € X,
we have

a10p(%,y) + 0205 (%, fx) + @30y, f) + a0 (%, fy) + as0p(y, fx)

<(ap+ay+a3+oy+ as)max{crb(x,y),ab(x,fx),Gb(y,fy),Gb(x,fy),ob()/,fx)}
=k max{ab (%, %), op(%, %), 55 (¥, 19), 0%, [¥), 059, f%) },

where 0 <k=a; +a +as +aq +as <1/2. O

Corollary 3.9 Let (X, 0,) be complete b-metric-like space with parameter s > 1. If f : X —
X is a self-mapping and there exist constants a; > 0,i=1,...,5, witha; + ay + as + as + as <
1/2 such that

s’ op(fx, ) < 10 (x,y) + 0205 (%, f%) + 3051, fY) + a0y, fy) + 2505y, f%),
forall x,y € X and a constant p > 2, then f has a unique fixed point in X.
Proof In Theorem 3.8, take the function «(x, y) = gs”. O

Remark 3.10 Theorem 3.7 generalizes Theorem 18 in [7]. For a(x,y) = s*> and for all
%,y € X, Theorems 3.7 and 3.8 reduce to Theorems 3.2 and 3.13 of [19]. In Theorem 3.7
and Corollary 3.9, by choosing the constants a; in certain manner, we obtain, as particular
cases, certain classes of a4 -types of Kannan, Chatterjea, Reich, and Zamfirescu contrac-

tions.

The notion of « — i contractive mappings is defined in a complete metric space in
[8]. Thereafter, many authors provided various fixed point theorems for such a class of
mappings. In the following definition, we extend and generalize the notions of & — ¥ and
(Y — ¢)-contractive mappings in the context of larger spaces, such as b-metric-like spaces.
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The aim of this section is to extend and generalize the main classical result and other ex-
isting results in the literature on b-metric and metric-like spaces.

Let (X, 03) be a b-metric-like space with parameter s > 1. For a self-mapping f : X — X,
we define N(x,y) by

N(x,y) = max{ab(x,y),ab(x,fx), o (.07, M }

= (3.10)

forall x,y € X.
The families W, ® with altering distance functions are defined as follows:

¥ :[0,00) = [0,00) an increasing and continuous function;

¢ :[0,00) = [0,00) is continuous, and ¢ () < ¥ (¢) for all £ > 0.
Let S be the set of all mappings B : [0,00) — [0, 1) satisfying the condition
B(t,) > 1 asn— oo implies that t, — 0 as n — oo.

Definition 3.11 Let (X, 0}) be a b-metric-like space with parameter s > 1, and let f : X —
X be a self-mapping. Also, let & : X x X — [0,00) and g > 1, p > 2. We say that f is an
(aq — Y, @) generalized contractive mapping if there exist ¢ € ¥, ¢ € ® such that

¥ (ax, )05 (f5,19)) < d(N(%,)) (3.11)
for all x,y € X with a(x,y) > gs”, where N(x,y) is defined by (3.10).

Remark 3.12
(i) Taking g =1 in the definition, we obtain «; — (¥, ¢) admissible mappings defined in

a b-metric-like space or in a b-metric space.

(ii) Note that, for a(x,y) = g, the definition reduces to an «,-admissible mapping
defined in a metric space or in a metric-like space.

(iii) For s=1and g =1, the definition reduces to the definition of an a-admissible
mapping in a metric space.

(iv) The definition reduces to a (v, ¢)-contractive mapping if we take a(x,y) = 1.

(v) The definition reduces to an ag» — ¢ contractive mapping if we take ¥ (¢) = ¢.

(vi) The definition reduces to an oz — A contractive mapping if we take y(£) = t and
¢(t) = At for A € (0,1).

We now present the following theorem.

Theorem 3.13 Let (X, 0},) be a complete b-metric-like space with parameter s > 1, and let
f:X — X bean (agw -V, ¢) generalized contractive mapping. Suppose that the following
conditions are satisfied:

(i) f is an agp-admissible mapping;

(ii) there exists xg € X such that a(xo, fxo) > qs’;

(iil) either f is continuous, or property Hyp is satisfied.
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Then f has a fixed point x € X. Moreover, f has a unique fixed point if property Uyp is
satisfied.

Proof By assumption (ii) there exists a point xg € X such that «(xo,fxo) > gs”. We con-
struct a sequence {x,} in X by x, = f"xg = f(x,-1) for all n € N. If we suppose that
0%, %,41) = 0 for some n, then x,,,; = x,,, and the proof is completed, since u = x,, = x,,,1 =
f(x,) =fu. Consequently, throughout the proof, we assume that

op(Xy,%441) >0 forallmeN. (3.12)

Since f is an oz -admissible mapping, we observe that

(o, %1) = &t (o, fXo) > qs’, a(fxo, fx1) = a(x,%2) > gs  and

a(fry, fxo) = a(x2,%3) > gs’.

In general, by induction we derive that

(X, xp41) > gs8 forallme N. (3.13)

By (3.13) and condition (3.11) we have:

‘(;[/(Ub(xn’xl’l+l)) =< w(qspo'b(xmxnﬂ)) = w(qspab(fxn—l,fxn))
< 1,[/(0[(96;1_1, xn)ab(fxn—l’fxn))
= ({b(N(xn—l:xn)) < W (N(xn—lx xn))) (314)

where

N(xn—lixn) — max {Ub(xn—ly xn): O—b(xn—lifxn—l)r Ub(xnyfxn)y}

0p(%p—1,f¥n)+0p (Xn frn-1)
4s

0p(Fn-1,%+1)+0p (Xn,%n)

{Ub(xn—b xn); Op (xn—l; xn)y Op (xm xn+1); }
= max
4s

(3.15)

s[op (Xp—1,%n) +0p (Xn,%n11)]+250p (Xp_1,%n)

{ Op (xn—b xn)y Op (xn—ly xn); Ub(xnr xn+1)¢ }
< max
4s

If we assume that, for some n € N,

b (X1, %) < 0p(Xp Xns1)s

then from inequality (3.15) we get

N1, %1) < 0p(Xps Xrs1)- (3.16)
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Again, by (3.13) and condition (3.11) we have:

W(ab(xm xn+1)) = W(qspab(xnrxnﬂ)) = I/f(quO'b(fxn_l,fxn))
< W(a(xn—l’ xn)ab(fxn—l»fxn))
< O(N@n1,%n)) < ¥ (N (-1, %)). (317)

By the property ¥ inequality (3.17) implies that

(X, Xns1) < N (%41, %n). (3.18)
From (3.16) and (3.18) we have

N (%1, %1) = 05Xy X11)- (3.19)
From (3.17), using (3.19), we obtain

V(05 %01)) < V(45”05 (ns %n01)) = ¥ (4570 (fn-1,f%n))

v
=v(

O[(xn 1Xn Ub(fxn lrfxn))

I A

N (%1, %5 ) = ¢(0b(xn»xn+l))

¢(
( (%, xn+1)) (3.20)

which gives a contradiction, since we have assumed that o} (x,, x,.1) > 0 and ¢(t) < ¥ ()
for all £ > 0. Hence, for all n € N, oy (%, X,41) < 0p(%,-1,%,), and the sequence {op (%, %,,41)}
is decreasing and bounded below. Hence there exists / > 0 such that o}, (%, x,,:1) — /. Also,

lim Ub(xmxnﬂ) = lim N(xn—lxxn) =1
n—>00 n—00

We shall prove that / = 0.
Consider

I»[f(o'b(xn’xwrl)) = W(quGb(xn,xn+1)) = w(qspo'b(fxn—l’fxn))
< U (@ (X1 %) 05 (1, fn))
< ¢(N(xn—1:xn)) = ¢(Ub(xmxn+l))- (321)

If we assume that / > 0, taking the limit in (3.21), we have
() <o),
which is a contradiction since ¥ (¢) > ¢(t) for ¢ > 0. Hence [ = 0, and
lim 0p (X Xni1) = lim N (Xn-1,%,) = (3.22)

Next, we shall show that {x,} is a Cauchy sequence in X. Suppose, on the contrary, that {x, }
is not a Cauchy sequence. Then by Lemma 2.14 there exist ¢ > 0 and two subsequences
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{#m, } and {x,, } of {x,}, with m > my > k, such that
Gb(xmk;xnk) =6, Gb(xmk;xnk—l) <é,
& .
— <lim SUp 0 (X -1, Xy -1) < €8,
S k—o00
£ s (3.23)
— < limsup o (%, -1,%m,) < &s”, and
N k— o0
& . N
— < limsup o (X1, %, ) < &5~
s k— 00
From the definition of N(x,y) we have
Ub(xm —1LXn —1): Ub(xm —lifxm —1); Ub(xn —lexn —1):
N (g1 % 1) = max { ‘ f"h(xmk—lfxnk]il)*'ah(xnlj(—lfxmk—l) ‘ ‘
4s
Ub(xmk—l,xnk—l)»Ub(xmk—l,xmk)’ Ub(xnk—1> xnk);
= max { 0 Kng—1%n )+ 0 g —1%my.) . (3.24)
4s
Taking the upper limit as k — oo in (3.24) and using (3.22), (3.23), we get
Lim sup N (%, 1, %, 1)
k— o0
. O'b(xmk—l, xnk—l)x O'b(xmk—l, xmk)’ Ub(xnk—l» xnk)»
= lim sup max O g —1%m )+ oy —1 %)
k— 00 s
s
< max{ss, 0,0, 3} < ¢gs. (3.25)
Using the o, -weak contractive condition, we have
1/’ (qspffb (xmk: xnk)) S W (qspo'b (fxmk—lyfxnk—l))
= 1p(Ol(xmk—l:»’an—l)O‘b(fxmk—lrfxnk—l))
= ¢(N(xmk—lrxnk—l))- (3.26)

Taking the upper limit in (3.26), using (3.23) and (3.25), we obtain

Y(es) < I/f(qesp_l) = 1//<qs1’§) < I/f(lim supab(xmk,x,,k))

k— 00

< ¢<lim sup(N(xmkfl,xnkfﬂ)) < ¢(es)

k— o0

<y (es),

which is a contradiction, since ¢ > 0. Therefore {x,} is a Cauchy sequence in the complete

b-metric-like space (X, o). Thus, there is some u € X such that {x,} converges to u. If f is
a continuous mapping, we get:

S =f( lim x,) = lim £(6,) = lim () =2

and u is a fixed point of f.
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If the self-map f is not continuous, then from (3.13) and condition Hp, there exists
a subsequence {x,, } of {x,} such that o(x,,,u) > gs* for all k € N. Since a(x,,,u) > gs,
applying contractive condition (3.11), with x = x,, and y = u, we obtain
V(g0 (11, 10)) = V¥ (5" 03 (o, » fur) )
= I/I(a(xnk’ u)ab(fxnk¢fu))

< ¢(N(xn, ), (3.27)
where
Ub(x ’ M),Gb(x ;fx )rab(u’fu)r
N (%, u) = max : " ab(xnkfu;lf-ab(u;?j]’;cnk)
4s
Gb(x ,u),ab(x )X 1),O'h(bt,fbt),
= max : " Gb(xnkfuy)liab(r;l,(;nk+1) . (3.28)
4s
Taking the upper limit in (3.28) and using Lemma 2.13 and result (3.22), we obtain
limsup N (x,,,, u) < maX{O, 0, 0p(u, fu), Wl;(élﬂ } = op(u, fu). (3.29)
n—00 S

Taking the upper limit as k — oo in (3.27) and using (3.29) and Lemma 2.13, we obtain

k— 00

v (qs"_lob(u,fu)) =y (qs” %ab(u,fu)> <y (qs” lim sup crb(xnk,fu)>

< ¢(lim sup N (%, , u)) < w(lim supN(xnk,M)>

k—o00 k— o0

< ¥ (0w (u, fu). (3.30)

From (3.30) we get o5, (u, fu) = 0, which implies that fu = u. Hence u is a fixed point of f .
Suppose that # and v are two fixed points of f, where fu = 1 and fv = v are such that u # v.
Then, by hypothesis Uy, a(u,v) > gs”, and applying (3.11), we have
v (g5 on(u, 1)) = ¥ (qs” o (fuu, fur)) < W (ex(ut, )0 (fus, fur))
< o(N(w,u)) < ¢(op(u, 1)), (3.31)

where

op(u, u) + op(u, u)

> } = op(u, u).

N(u,u) = max{ab(u, u), op(u, u), op(u, u),

From inequality (3.31) it follows that o}, (u, &) = 0 (also o, (v, v) = 0).
Again we have

v (g5’ op(1,v)) = ¥ (qs”op(fu, fv)) < ¥ (e (s, v) o (fit, fV) )
< ¢(N(w,v)) < ¢(0p(1,v)), (3.32)

where N(u,v) = op(u, v).



Zoto et al. Fixed Point Theory and Applications (2017) 2017:26 Page 16 of 20

Inequality (3.32) implies that o,(u,v) = 0. Therefore u = v, and the fixed point is

unique. g
Remark 3.14 Our theorem extends Theorems 2.1, 2.2, and 2.7 of Aydi et al. [9].
By taking ¢(¢) = ¥ (£) — ¢(¢), where ¢ € W, in Theorem 3.13 we obtain the following result.

Corollary 3.15 Let (X, 0p) be a complete b-metric-like space with parameter s > 1, let f
X — X be a self-mapping, and let o : X x X — [0, 00). Suppose that the following conditions
are satisfied:

() f is an agp-admissible mapping;

(ii) there exist functions ¥, € V such that

¥ (e, 905 (fx,/9)) < ¥ (N(%,9)) - 9(N(x,9));

(ili) there exists xo € X such that a(xo,fxo) > gs*;

(iv) either f is continuous, or property Hyg is satisfied.

Then f has a fixed point x € X. Moreover, f has a unique fixed point if property Uy is
satisfied.

Remark 3.16 This corollary extends Theorems 3 and 4 of Roshan et al. [25].

By taking ¥ (t) = t and ¢(£) = B(£)t where B € S is as in Theorem 3.13, we obtain the

following result.

Corollary 3.17 Let (X, 0,) be a complete b-metric-like space with parameter s > 1, let f
X — X be a self-mapping, and let o : X x X — [0, 00). Suppose that the following conditions
are satisfied:

(i) f is an agp-admissible mapping;

(ii) there exist functions ¥, € V such that

¥ (ax,9)05 (1, /5)) < B(N(%,9)) (N (x,9));

(ili) there exists xg € X such that o(xg,fxo) > qs?;

(iv) either f is continuous, or property Hyg is satisfied.

Then f has a fixed point x € X. Moreover, f has a unique fixed point if property Uyp is
satisfied.

If we take v (£) = t in Theorem 3.13, then we get the following result.

Corollary 3.18 Let (X,0,) be a complete b-metric-like space with parameter s > 1, let f
X — X be a self-mapping, and let o : X x X — [0, 00). Suppose that the following conditions
are satisfied:

(i) f is an agp-admissible mapping;

(ii) there exist functions ¢ € V such that

a(x,y)ob(fx.fy) < o(N(,9));
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(ili) there exists xg € X such that o(xg,fxo) > qs?;

(iv) either f is continuous, or property Hyg is satisfied.

Then f has a fixed point x € X. If property Uy is satisfied, then f has a unique fixed
point.

Remark 3.19 Corollary 3.18 generalizes and extends Theorem 2.7 of Samet et al. [8].

Corollary 3.20 Let (X, 03) be a complete b-metric-like space with parameter s > 1, let f
X — X be a self-mapping, and let o : X x X — [0, 00). Suppose that the following conditions
are satisfied:

(i) f is an agp-admissible mapping;

(ii) there exists a function ¢ € ¥ such that

a(x,9)05(fx.fy) < N(x,) — o(N(x,));

(ili) there exists xg € X such that a(xg,fxo) > gs*;

(iv) either f is continuous, or property Hyg is satisfied.

Then f has a fixed point x € X. Moreover, f has a unique fixed point if property Uy is
satisfied.

Proof 1t follows from Corollary 3.15 by taking v (£) = £. d
Remark 3.21 Corollary 3.20 generalizes Theorem 2.7 of Harandi [5].

Corollary 3.22 Let (X, 0p) be a complete b-metric like space with parameter s > 1, and let
f,g be two selfmaps of X with W € V, ¢ € ® satisfying the condition

U (g on(f, ) < Ay (M(x, 7))

for all x,y € X, where M(x,y) is defined in (3.15), and q > 1. Then f and g have a unique
common fixed point in X.

Proof In Theorem 3.13, take ¢(t) = Ay (t) where 0 < A < 1. O

Corollary 3.23 Let (X, 0,) be a complete b-metric-like space with parameter s > 1, and let
f: X — X be a self-mapping such that, for all x,y € X and any arbitrary coefficient p > 1,

qstop(fx, fy) < kmax{ob(x,y),ab(x,fx),ab(y,fy), M },

4s

where k € (0,1). Then f has a unique fixed point.

Proof 1t follows from Corollary 3.15 by taking «(x, y) = gs*, ¥ (¢) = ¢, and ¢(¢) = (1 - k)t for
all £ € [0,00) and k € (0,1). O

Remark 3.24 It is clear that we can derive several corresponding results by replacing the
b-metric-like space with some other spaces such as a b-metric space, a metric space, a

metric-like space, and a partial metric space. Conditions (3.1) and (3.12) are more general



Zoto et al. Fixed Point Theory and Applications (2017) 2017:26 Page 18 of 20

than the analogues in the previous literature, and theorems related to those conditions
have a more general character because of the parameter s and arbitrary coefficients g, p.

3.1 Application
In this section, we will use Corollary 3.23 to show that there is a solution to the following
integral equation:

T
x(t):/ G(t,r,x(r)) dr. (3.33)
0

Let X = C([0, T']) be the set of real continuous functions defined on [0, T'] for T > 0.
We endow X with

op(x,y) = max(’x(t)| + |y(t)f)m forallx,y € X.

te(0,1]

It is evident that (X, o) is a complete b-metric-like space with parameter s = 27! with
m>1.
Consider the mapping f : X — X defined by fx(¢) = fOT G(t,r,x(r)) dr.

Theorem 3.25 Counsider equation (3.33) and suppose that
(@) G:[0,T] x [0,T] x R— R* =[0,00) (that is, G(¢t,r,x(r)) > 0) is continuous;
(b) there exists a continuous y :[0,T] x [0,T] — R;

(©) sup,cpo,m fo vt rdr<1;
(d) there exists a constant L € (0,1) such that, for all (¢,r) € [0, T1? and x,y € R,

1
L\
!G(t, r,x(r)) + G(t,r,y(r))| < (S—3> y (L, r)(|x(r)| + |y(r)|).
Then the integral equation (3.33) has a unique solution in x € X.

Proof For x,y € X, from conditions (c) and (d), for all ¢, we have
gso, (f(t), /(1) = gs(|fx@)| + [Pr@)])”
T
/ G(t,r,x(r)) dr
0

+

T
/ G(t r,y(r)) dr
0

T
<gs

|Gtr, r)|dr+f |Gtr, |dr>

0

(
<os( [ (5) vt sy ar)
<qS</0 (Sg) y (@, V)aﬁ(x(r) y(r)) d )m

T m
<gs- Séab(x(r),y(r)) (/0 v, r) dr)

T m
_ Z_fa,, (x(),5(r)) ( /0 V(t7) dr)

§\'—

< z—fcrh(x(r),y(r)),



Zoto et al. Fixed Point Theory and Applications (2017) 2017:26 Page 19 of 20

which implies that

sop (f%(0), fy(2)) < SéGh (x(r),y())

op(®, Ty) + 0p(y, Tx) }

< kmax { op(x,9), op(x, Tx), o3, (y, Ty) >

where k = L/s*> € (0,1).
Therefore, all of the conditions of Corollary 3.23 are satisfied, and, as a result, the map-
ping f has a unique fixed point in X, which is a solution of the integral equation (3.33). [J

4 Conclusions

In this paper, the class of o, -admissible mappings is introduced in a larger structure such
as a b-metric-like space. Some fixed point results dealing with (o« — ¥, ¢) contractions
are obtained, and they cover and unify a huge number of published results in the related
literature.
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