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Abstract
We apply the topological degree theory for condensing maps to study approximation
of solutions to a fractional-order semilinear differential equation in a Banach space.
We assume that the linear part of the equation is a closed unbounded generator of a
C0-semigroup. We also suppose that the nonlinearity satisfies a regularity condition
expressed in terms of the Hausdorff measure of noncompactness. We justify the
scheme of semidiscretization of the Cauchy problem for a differential equation of a
given type and evaluate the topological index of the solution set. This makes it
possible to obtain a result on the approximation of solutions to the problem.
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1 Introduction
The problem of approximation of solutions to semilinear differential equations in Banach
spaces has attracted the attention of many researchers (see, e.g., [–], and the references
therein). In these works, it was supposed that the linear part of the equation is a compact
analytic semigroup or condensing C-semigroup.

Recently this approach was extended to the case of a fractional-order semilinear equa-
tion in a Banach space. In particular, Liu, Li, and Piskarev [], using the general approxi-
mation scheme of Vainikko [], considered approximation of the Cauchy problem for the
case where the linear part generates an analytic and compact resolution operator and the
corresponding nonlinearity is sufficiently smooth.

Our main goal in this paper is to apply the topological degree theory for condensing
maps to study the problem of approximation of solutions to a Caputo fractional-order
semilinear differential equation in a Banach space under the assumption that the linear
part of the equation is a closed unbounded generator of a C-semigroup. It is also supposed
that the nonlinearity is a continuous map satisfying a regularity condition expressed in
terms of the Hausdorff measure of noncompactness.

It is worth noting that the interest to the theory of differential equations of fractional or-
der essentially strengthened in the recent years due to interesting applications in physics,
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enginery, biology, economics, and other branches of natural sciences (see, e.g., mono-
graphs [–], and the references therein). Among a large amount of papers dedicated to
fractional-order equations, let us mention works [–], where existence results of var-
ious types were obtained. Notice that results on the existence of solutions to the Cauchy
and the periodic problems for semilinear differential inclusions in a Banach space under
conditions similar to the above mentioned were obtained in the authors’ papers [, ].

In this paper, we justify the scheme of semidiscretization of the Cauchy problem for
a differential equation of a given type and evaluate the topological index of the solution
set. This makes it possible to present the main result of the paper (Theorem ) on the
approximation of solutions to the above problem.

2 Differential equations of fractional order
In this section, we recall some notions and definitions (details can be found, e.g., in [, ,
]). Let E be a real Banach space.

Definition  The Riemann-Liouville fractional derivative of order q ∈ (, ) of a continu-
ous function g : [, a] → E is the function Dqg of the following form:

Dqg(t) =


�( – q)
d
dt

∫ t


(t – s)–qg(s) ds,

provided that the right-hand side of this equality is well defined.

Here � is the Euler gamma function

�(r) =
∫ ∞


sr–e–s ds.

Definition  The Caputo fractional derivative of order q ∈ (, ) of a continuous function
g : [, a] → E is the function CDqg defined in the following way:

CDqg(t) =
(
Dq(g(·) – g()

))
(t),

provided that the right-hand side of this equality is well defined.

Consider the Cauchy problem for a Caputo fractional-order semilinear differential equa-
tion of the form

CDqx(t) = Ax(t) + f
(
t, x(t)

)
, t ∈ [, a], (.)

with the initial condition

x() = x, (.)

where  < q < , and a linear operator A satisfies the following condition:

(A) A : D(A) ⊆ E → E is a linear closed (not necessarily bounded) operator generating a
C-semigroup {U(t)}t≥ of bounded linear operators in E,
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and f : [, a] × E → E is a continuous map obeying the following properties:

(f ) f maps bounded sets into bounded ones;
(f ) there exists μ ∈R+ such that, for every bounded set � ⊂ E, we have:

χ
(
f (t,�)

) ≤ μχ (�)

for t ∈ [, a], where χ is the Hausdorff measure of noncompactness in E:

χ (�) = inf{ε > , for which � has a finite ε-net in E}.

Notice that we may assume, without loss of generality, that the semigroup {U (t)}t≥ is
bounded:

sup
t≥

∥∥U (t)
∥∥ = M < ∞.

Otherwise, we may replace the operator A with the operator Ãx = Ax – ωx and, respec-
tively, the nonlinearity f with f̃ (t, x) = f (t, x) + ωx, where ω >  is a constant greater than
the order of growth of the semigroup.

Definition  (cf. [, , ]) A mild solution of problem (.)-(.) is a function x ∈
C([, a]; E) that can be represented as

x(t) = G(t)x +
∫ t


(t – s)q–T (t – s)f

(
s, x(s)

)
ds, t ∈ [, a],

where

G(t) =
∫ ∞


ξq(θ )U

(
tqθ

)
dθ , T (t) = q

∫ ∞


θξq(θ )U

(
tqθ

)
dθ ,

ξq(θ ) =

q
θ

–– 
q 	q

(
θ–/q),

	q(θ ) =

π

∞∑
n=

(–)n–θ–qn– �(nq + )
n!

sin(nπq), θ ∈R+.

Remark  (See, e.g., []) ξq(θ ) ≥ ,
∫ ∞

 ξq(θ ) dθ = ,
∫ ∞

 θξq(θ ) dθ = 
�(q+) .

Lemma  (See [], Lemma .) The operator functions G and T possess the following
properties:

() For each t ∈ [, a], G(t) and T (t) are linear bounded operators; more precisely, for
each x ∈ E, we have

∥∥G(t)x
∥∥

E ≤ M‖x‖E , (.)
∥∥T (t)x

∥∥
E ≤ qM

�( + q)
‖x‖E . (.)

() The operator functions G and T are strongly continuous, that is, the functions
t ∈ [, a] → G(t)x and t ∈ [, a] → T (t)x are continuous for each x ∈ E.
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2.1 Measures of noncompactness and condensing maps
Let E be a Banach space. Introduce the following notation:

• Pb(E) = {A ⊆ E : A 
= ∅ is bounded};
• Pv(E) = {A ∈ Pb(E) : A is convex};
• K(E) = {A ∈ Pb(E) : A is compact};
• Kv(E) = Pv(E) ∩ K(E).

Definition  (See, e.g., [, ]) Let (A,≥) be a partially ordered set. A function β :
Pb(E) → A is called a measure of noncompactness (MNC) in E if for each � ∈ Pb(E),
we have:

β(co�) = β(�),

where co� denotes the closure of the convex hull of �.

A measure of noncompactness β is called:
() monotone if for each �,� ∈ Pb(E), � ⊆ � implies β(�) ≤ β(�);
() nonsingular if for each a ∈ E and each � ∈ Pb(E), we have β({a} ∪ �) = β(�).

If A is a cone in a Banach space, then the MNC β is called:
() regular if β(�) =  is equivalent to the relative compactness of � ∈ Pb(E);
() real if A is the set of all real numbers R with natural ordering;
() algebraically semiadditive if β(� + �) ≤ β(�) + β(�) for all �,� ∈ Pb(E).
It should be mentioned that the Hausdorff MNC obeys all above properties. Other

examples can be presented by the following measures of noncompactness defined on
Pb(C([, a]; E)), where C([, a]; E) is the space of continuous functions with values in a
Banach space E:

(i) the modulus of fiber noncompactness

ϕ(�) = sup
t∈[,a]

χE
(
�(t)

)
,

where χE is the Hausdorff MNC in E, and �(t) = {y(t) : y ∈ �};
(ii) the modulus of equicontinuity defined as

modC(�) = lim
δ→

sup
y∈�

max
|t–t|≤δ

∥∥y(t) – y(t)
∥∥.

Notice that these MNCs satisfy all above-mentioned properties except regularity. Nev-
ertheless, notice that due to the Arzelà-Ascoli theorem, the relation

ϕ(�) = modC(�) = 

provides the relative compactness of the set �.

Definition  A continuous map F : X ⊆ E → E is called condensing with respect to
an MNC β (or β-condensing) if for every bounded set � ⊆ X that is not relatively compact,
we have

β
(
F (�)

)
� β(�).
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More generally, given a metric space � of parameters, we say that a continuous map
� : � × X → E is a condensing family with respect to an MNC β (or β-condensing family)
if for every bounded set � ⊆ X that is not relatively compact, we have

β
(
�(� × �)

)
� β(�).

Let V ⊂ E be a bounded open set, let K ⊆ E be a closed convex subset such that VK :=
V ∩ K 
= ∅, let β be a monotone nonsingular MNC in E , and let F : VK → K be a β-
condensing map such that x 
= F (x) for all x ∈ ∂VK, where VK and ∂VK denote the closure
and boundary of the set VK in the relative topology of K.

In such a setting, the (relative) topological degree

degK(i – F , VK)

of the corresponding vector field i – F satisfying the standard properties is defined (see,
e.g., [, ]), where i is the identity map on E . In particular, the condition

degK(i – F , VK) 
= 

implies that the fixed point set FixF = {x : x = F (x)} is a nonempty subset of VK.
To describe the next property, let us introduce the following notion.

Definition  Suppose that β-condensing maps F,F : VK →K have no fixed points on
the boundary ∂VK and there exists a β-condensing family � : [, ] × VK →K such that:

(i) x 
= �(λ, x) for all (λ, x) ∈ [, ] × ∂VK;
(ii) �(, ·) = F; �(, ·) = F.

Then the vector fields � = i – F and � = i – F are called homotopic:

� ∼ �.

The homotopy invariance property of the topological degree asserts that if � ∼ �, then
degK(i – F, VK) = degK(i – F, VK).

Let us also mention the following properties of the topological degree.
The normalization property. If F ≡ x ∈K, then

degK(i – F , VK) =

{
 if x ∈ VK,
 if x /∈ VK.

Additive dependence property. Suppose that {VKj}m
j= are disjoint open subsets of VK such

that F has no fixed points on VK \ ⋃m
j= VKj. Then

degK(i – F , VK) =
m∑
j=

degK(i – F , VKj).

The map restriction property. Let F : VK → K be a β-condensing map without fixed
points on the boundary ∂VK, and let L⊂K be a closed convex set such that F (VK) ⊆L.
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Then

degK(i – F , VK) = degL(i – F , VL).

Now, let N be an isolated component of the fixed point set FixF , that is, there exists
ε >  such that

Wε(N) ∩ FixF = N ,

where Wε(N) denotes the ε-neighborhood of a set N in K. From the additive dependence
property of the topological degree it follows that the degree

degK
(
i – F , Wδ(N)

)

does not depend on δ,  < δ < ε. This generic value of the topological degree is called the
index of the set N with respect to F and is denoted as

indF (N).

In particular, if x� is an isolated fixed point of F , then indF (x�) is called its index.
We further need the following stability property of a nonzero index fixed point, which

may be verified by using the property of continuous dependence of the fixed point set (see,
e.g., [], Proposition ..).

Proposition  Let {hn} be a sequence of positive numbers converging to zero, let H = {hn},
and let � : H × V → E be a β-condensing family. Denoting Fn = �(hn, ·), suppose that the
map F = �(, ·) has a unique fixed point x such that indF (x) 
= . Then FixFn 
= ∅ for
all sufficiently large n, and, moreover, xn → x for each sequence {xn} such that xn ∈ FixFn,
n ≥ .

We further also need the following statement.

Proposition  (Corollary .. of []) Let E be a Banach space, and let {fi} ⊂ L([, a]; E)
be a semicompact sequence, i.e., it is integrably bounded and the set {fi(t)} is relatively
compact in E for a.e. t ∈ [, a]. Then, for every δ > , there exist a measurable set mδ

and a compact set Kδ ⊂ E such that meas mδ < δ and dist(fi(t), Kδ) < δ for all i and t ∈
[, a] \ mδ .

3 Scheme of semidiscretization
Along with equation (.), for a given sequence of positive numbers {hn} converging to
zero, consider the equation

Dqxh(t) = Ahxh(t) + fh
(
t, xh(t)

)
, t ∈ [, a], (.)

where h ∈ H = {hn} is the semidiscretization parameter, Ah : D(Ah) ⊂ Eh → Eh are closed
linear operators in Banach spaces Eh generating C-semigroups {Uh(t)}t≥. We assume
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that E = E, A = A, f = f , and continuous maps fh : [, a] × Eh → Eh satisfying conditions
(f )-(f ) for each h ∈ H .

We suppose that there exist linear operators Qh : Eh → E, h ∈ H , Q = I and projection
operators Ph : E → Eh, P = I such that

PhQh = Ih, (.)

where Ih is the identity on Eh, and

QhPhx → x (.)

as h →  for each x ∈ E. We suppose that the operators Ph and Qh are uniformly bounded
in the sense that there exists a constant M such that

‖Ph‖ ≤ M, ‖Qh‖ ≤ M (.)

for all h ∈ H .
An initial condition for equation (.) is given by the equality

xh() = Phx. (.)

Notice that a mild solution xh ∈ C([, a]; Eh) to problem (.), (.) is defined by the
equality

xh(t) = Gh(t)Phx +
∫ t


(t – s)q–Th(t – s)fh

(
s, xh(s)

)
ds, t ∈ [, a],

where the operator functions Gh and Th are defined analogously to Definition :

Gh(t) =
∫ ∞


ξq(θ )Uh

(
tqθ

)
dθ , Th(t) = q

∫ ∞


θξq(θ )Uh

(
tqθ

)
dθ .

We assume that

(H) for each x ∈ E,

QhUh(t)Phx → U(t)x

as h →  uniformly in t ∈ [, a].

Notice that conditions of validity of hypothesis (H) in terms of the strong convergence
of the resolvents

Qh(Ah + λI)–Phx → (A + λI)–x

being an analog of the Trotter-Kato theorem are given, for example, in [], Chapter IX,
Theorem .; see also [], Theorem ..

We also consider the map g : H × [, a] × E → E,

g(h, t, x) = Qhfh(t, Phx),
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for which we suppose the following:

(g) g is continuous and bounded on bounded sets;
(g) there exists k >  such that

χE
(
g(H , t,�)

) ≤ kχ (�)

for each t ∈ [, a] and bounded � ⊂ E.

Consider the operator F : H × C([, a]; E) → C([, a]; E) defined by the equality

F(h, x)(t) = QhGh(t)Phx +
∫ t


(t – s)q–QhTh(t – s)fh

(
s, Phx(s)

)
ds. (.)

Taking into account (.), we conclude that the operator F may be written in the following
form:

F(h, x)(t) = QhGh(t)Phx +
∫ t


(t – s)q–QhTh(t – s)Phg

(
h, s, Phx(s)

)
ds. (.)

Notice that solutions xh of problem (.), (.) and fixed points of F(h, ·) are connected in
the following way: if xh is a solution of (.), (.), then xh = Qhxh is a fixed point of F(h, ·),
and, conversely, if xh is a fixed point of F(h, ·), then Phxh is a solution of problem (.), (.).

The continuity of the operator F follows from property (g) and the next assertion.

Lemma  For each x ∈ E, we have the relations

QhGh(t)Phx → G(t)x (.)

and

QhTh(t)Phx → T (t)x (.)

as h →  uniformly in t ∈ [, a].

Proof Let us prove (.). Since the operator Qh is bounded, by Remark  and condition
(H), for each x ∈ E, we have:

∥∥QhGh(t)Phx – G(t)x
∥∥

E =
∥∥∥∥
∫ ∞


ξq(θ )QhUh

(
tqθ

)
Phx dθ –

∫ ∞


ξq(θ )U

(
tqθ

)
x dθ

∥∥∥∥
E

=
∥∥∥∥
∫ ∞


ξq(θ )

[
QhUh

(
tqθ

)
Phx – U

(
tqθ

)
x
]

dθ

∥∥∥∥
E

≤
∫ ∞


ξq(θ )

∥∥QhUh
(
tqθ

)
Phx – U

(
tqθ

)
x
∥∥

E dθ → .



Kamenskii et al. Fixed Point Theory and Applications  (2017) 2017:28 Page 9 of 20

In a similar way, we can get relation (.):

∥∥QhTh(t)Phx – T (t)x
∥∥

E =
∥∥∥∥
∫ ∞


θξq(θ )QhUh

(
tqθ

)
Phx dθ –

∫ ∞


θξq(θ )U

(
tqθ

)
x dθ

∥∥∥∥
E

=
∥∥∥∥
∫ ∞


θξq(θ )

[
QhUh

(
tqθ

)
Phx – U

(
tqθ

)
x
]

dθ

∥∥∥∥
E

≤
∫ ∞


θξq(θ )

∥∥QhUh
(
tqθ

)
Phx – U

(
tqθ

)
x
∥∥

E dθ → . �

Introduce in C([, a]; E) the measure of noncompactness ν : P(C([, a]; E)) → R

+ with

values in the cone R

+ endowed with the natural order:

ν(�) = max
D∈�(�)

(
ψ(D), modC(D)

)
, (.)

where �(�) denotes the collection of all denumerable subsets of �,

ψ(D) = sup
t∈[,a]

e–ptχE
(
D(t)

)
,

and a constant p >  is chosen in the following way. Fix a constant d >  satisfying the
relation

qMM
 k

�( + q)
dq

q
<




. (.)

Then p is taken so that the following estimate holds:

qMM
 k

�( + q)


pd–q <



. (.)

The second component of the MNC ν is the modulus of equicontinuity defined in Sec-
tion .. It is clear the the MNC ν is regular.

Theorem  The operator F is a ν-condensing family.

Proof Let � ⊂ C([, a]; E) be a nonempty bounded subset such that

ν
(
F(H × �)

) ≥ ν(�). (.)

We will show that the set � is relatively compact.
Let the maximum in the left-hand side of relation (.) be achieved on a denumerable

set D = {ym}. Then there exist sequences {xm}∞m= ⊂ � and {hnm}∞m= ⊂ H (which, for sim-
plicity, will be denoted {hm}) such that

ym(t) = QhmGhm (t)Phm x +
∫ t


(t – s)q–QhmThm (t – s)Phm g

(
hm, s, Phm xm(s)

)
ds

for each m ≥ .
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From Lemma  and the properties of algebraic semiadditivity and regularity of the MNC
ν it follows that we can substitute the sequence {ym} with the sequence {̃ym}, where

ỹm(t) =
∫ t


(t – s)q–QhmThm (t – s)Phm g

(
hm, s, Phxm(s)

)
ds.

From inequality (.) it follows that

ψ
({̃ym}) ≥ ψ

({xm}) (.)

and

modC
({̃ym}) ≥ modC

({xm}). (.)

By using property (g) we get the following estimates:

χE
(
g
(
H , s,

{
xm(s)

})) ≤ kχE
({

xm(s)
})

= epske–psχE
({

xm(s)
})

≤ epsk sup
ξ∈[,a]

e–pξχE
({

xm(ξ )
})

= epskψ
({xm}).

The last inequality yields:

e–ptχE
({̃

ym(t)
}) ≤ e–pt qMM

 k
�( + q)

∫ t


(t – s)q–epsψ

({xm})ds

≤ qMM
 k

�( + q)
ψ

({xm})

×
(

e–pt
∫ t–d


(t – s)q–eps ds + e–pt

∫ t

t–d
(t – s)q–eps ds

)

≤ qMM
 k

�( + q)
ψ

({xm})
(

e–pt 
d–q

ep(t–d) – 
p

+
dq

q

)

≤ qMM
 k

�( + q)
ψ

({xm})
(


d–q

e–pd

p
+

dq

q

)

≤ qMM
 k

�( + q)
ψ

({xm})
(


pd–q +

dq

q

)
.

Now, by using inequalities (.) and (.) we have

sup
t∈[,a]

e–ptχE
({̃

ym(t)
}) ≤ 


ψ

({xm}),

ψ
({̃

ym(t)
}) ≤ 


ψ

({xm}).

Taking into account inequality (.) together with the last one, we get:

ψ
({xm}) ≤ 


ψ

({xm}),
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and hence

ψ
({xm}) = ,

implying

χE
({

xm(t)
}) ≡  on [, a]. (.)

From (.) and conditions (H) and (g) it follows that F maps bounded sets into
bounded ones, and so the set

⋃
t∈[,a] g(H , t, {xm(t)}) is bounded. Applying condition (g)

and (.), we get that the set {g(hm, t, xm(t))} is relatively compact for all t ∈ [, a]. Then
the sequence of functions g(hm, ·, xm(·)) is semicompact, and from Proposition  it follows
that, for each δ > , there exist a compact set Kδ ⊂ E, a set mδ ⊂ [, a] of Lebesgue measure
meas mδ < δ, and a sequence of functions {̃gm} ⊂ L([, a]; E) such that

{̃
gm(t)

} ⊂ Kδ for t ∈ [, a] \ mδ ,
{̃

gm(t)
}

=  for t ∈ mδ ,

and

∥∥g
(
hm, t, xm(t)

)
– g̃m(t)

∥∥ < δ for t ∈ [, a] \ mδ .

The set of functions

vm(t) = QhmGhm (t)Phm x +
∫

[t,]\mδ

(t – s)q–QhmThm (t – s)̃gm(s) ds, m ≥ ,

is relatively compact in C([, a]; E) and forms a γδ-net of the set {ym}, where γδ →  as
δ → , and we have the following estimate:

modC(�) ≤ modC
({ym}) = .

Therefore

ν(�) = (, ),

which concludes the proof. �

4 Index of the solution set
The operator G : C([, a]; E) → C([, a]; E),

Gx(t) = G(t)x +
∫ t


(t – s)q–T (t – s)f

(
s, x(s)

)
ds,

is the solution operator of problem (.), (.) in the sense that the set of its fixed points
Fix G coincides with the set � of all mild solutions of this problem. From Theorem  it
follows that G = F(, ·) is ν-condensing. It opens the possibility to introduce the following
notion. Suppose that the set Fix G is bounded in C([, a]; E). Then its index indG(Fix G) is
well defined.
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Definition  The value indG(Fix G) is called the index ind(�) of a bounded solution set �

of problem (.), (.).

We further assume that the nonlinearity f satisfies the following condition:

(f ′) χE(f ([, a] × �)) ≤ μχE(�)

for each bounded � ⊂ E, where μ ≥ .
Notice that this condition is fulfilled if, for example, f satisfies condition (f ) and for

each bounded set � ⊂ E, the function f (·, x) : [, a] → E is uniformly continuous w.r.t.
x ∈ �.

Theorem  If � is a bounded solution set of (.), (.) then

ind(�) = .

Proof Take an arbitrary open bounded set V ⊂ C([, a]; E) containing the solution set �

and let

L =
{

x ∈ C
(
[, a]; E

)
: x() = x

}
.

From the map restriction property of the topological degree it follows that

ind(�) = degL(i – G, VL).

Take an arbitrary x∗ ∈ � and for n = , , . . . , consider the operators Gn : L→L defined
as

Gnx(t) =
∫ t


(t + /n – s)q–T (t + /n – s)f

(
s, x(s – /n)

)
ds + x∗(t)

–
∫ t


(t + /n – s)q–T (t + /n – s)f

(
s, x∗(s – /n)

)
ds,

where x ∈ C([–, a]; E) denotes the extension of a function x ∈L defined as x on [–, ].
Let us show that, for a sufficiently large n, the operators Gn are ν-condensing (the choice

of the coefficient p is described later).
Let � ⊂L be a nonempty bounded set, and let

ν
(
Gn(�)

) ≥ ν(�). (.)

Let us show that the set � is relatively compact.
Let the maximum in the left-hand part of inequality (.) is achieved on a denumerable

set D = {yk}. Then there exists a sequence {xk} ⊂ � such that

yk(t) =
∫ t


(t + /n – s)q–T (t + /n – s)f

(
s, xk(s – /n)

)
ds + x∗(t)

–
∫ t


(t + /n – s)q–T (t + /n – s)f

(
s, x∗(s – /n)

)
ds.
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It is clear that it is sufficient to consider the sequence {̃yk} defined as

ỹk(t) =
∫ t


(t + /n – s)q–T (t + /n – s)f

(
s, xk(s – /n)

)
ds.

From (.) it follows that

ψ
({̃yk}

) ≥ ψ
({xk}

)
, (.)

modC
({̃yk}∞n=

) ≥ modC
({xk}

)
. (.)

The following estimates hold:

χE
({

f
(
s, xk(s – /n)

)}) ≤ μχE
({

xk(s – /n)
})

≤ ep(s–/n)μ sup
ξ∈[,a]

e–p(ξ–/n)χE
({

xk(ξ – /n)
})

≤ ep(s–/n)μψ
({xk}

)
. (.)

Now, take d such that, for all n ≥ ,

Mμ

�( + q)
(
(d + /n)q – (/n)q) <




(.)

and then choose p >  such that

qMμ

�( + q)
· 

pd–q <



. (.)

Now, using estimate (.), we get that, for each t ∈ [, a],

e–ptχE
({̃

yk(t)
}) ≤ e–pt qMμ

�( + q)

∫ t


(t + /n – s)q–ep(s–/n)ψ

({xk}
)

ds

≤ qMμ

�( + q)
ψ

({xk}
)
e–p/n

×
(

e–pt
∫ t–d


(t + /n – s)q–eps ds + e–pt

∫ t

t–d
(t + /n – s)q–eps ds

)

≤ qMμ

�( + q)
ψ

({xk}
)(

e–pt 
(d + /n)–q

ep(t–d) – 
p

+
(d + /n)q – (/n)q

q

)

≤ qMμ

�( + q)
ψ

({xk}
)( 

d–q
e–pd

p
+

(d + /n)q – (/n)q

q

)

≤ qMμ

�( + q)
ψ

({xk}
)( 

pd–q +
(d + /n)q – (/n)q

q

)
.

Now, using inequalities (.) and (.), from the last estimate we have:

sup
t∈[–,a]

e–ptχE
({̃

yk(t)
}) ≤ 


ψ

({xk}
)
,

ψ
({̃

yk(t)
}) ≤ 


ψ

({xk}
)
.
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Combining the last inequality with (.), we get:

ψ
({xk}

) ≤ 

ψ

({xk}
)
,

implying

ψ
({xk}

)
= . (.)

Since the operator Gn maps bounded sets into bounded ones, the sequence of functions
{fk} defined by fk(t) = f (t, xk(t – /n)) is bounded. From relation (.) and condition (f ) it
follows that the set {fk(t)} is relatively compact for each t ∈ [, a], and hence the sequence
{fk} is weakly compact in L([, a]; E) (see, e.g., Proposition .. in []). From condition
(.) it follows that, for each δ > , there exist a compact set Kδ ⊂ E and a set mδ ⊂ [–, a]
with the Lebesgue measure meas(mδ) < δ such that {fk(t)} ⊂ Kδ for t ∈ [, a]\mδ . Therefore
the sequence of functions

vk(t) =
∫

[,t]\mδ

(t + /n – s)q–T (t + /n – s)fk(s) ds

is relatively compact in C([, a]; E) and forms a γδ-net of the set {yk}, where γδ →  as
δ → , and hence the sequence {̃yk} is relatively compact. By (.) we get

modC(�) ≤ modC
({yk}

)
= .

Therefore ν(�) = (, ).
Let us prove that, for all sufficiently large n, we have the equality

degL(i – Gn, VL) = degL(i – G, VL). (.)

We will show that equality (.) follows from the homotopy of the above fields, which is
realized for sufficiently large n by the linear transfer � : [, ] × VL → C([, a]; E) defined
as

�(λ, x) = λGnx + ( – λ)Gx.

From the properties of the MNC ν it easily follows that the family � is ν-condensing. Let
us demonstrate that

x 
= �(λ, x)

for all (λ, x) ∈ [.] × ∂VL. Supposing the contrary, we will have the sequences {xm}, {nm},
and {λm} such that xm ∈ ∂VL, nm → ∞, λm ∈ [, ], λm → λ, and

xm = λmGnm xm + ( – λm)Gxm. (.)
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Let us show that the sequence {xm} is relatively compact. From relations (.) it follows
that

xm(t) = λm

∫ t


(t + /nm – s)q–T (t + /nm – s)f

(
s, xm(s – /nm)

)
ds + λmx∗(t)

– λm

∫ t


(t + /nm – s)q–T (t + /nm – s)f

(
s, x∗(s – /nm)

)
ds

+ ( – λm)Gxm(t), t ∈ [, a].

Choose a constant p >  such that, for d >  satisfying the inequality

Mμdq

�( + q)
<




, (.)

we have

qMμ

�( + q)


pd–q <



. (.)

Notice that

xm

(
t –


nm

)
= λm

∫ t–/nm


(t – s)q–T (t – s)f

(
s, xm(s – /nm)

)
ds + λmx∗

(
t –


nm

)

– λm

∫ t–/nm


(t – s)q–T (t – s)f

(
s, x∗(s – /nm)

)
ds

+ ( – λm)
(
G

(
t –


nm

)
x

+
∫ t–/nm



(
t –


nm

– s
)q–

T
(

t –


nm
– s

)
f
(
s, xm(s)

)
ds

)
,

t ∈
[


nm

, a
]

.

Let us make the substitution of variables s + /nm = ξ in the last integral and denote ξ by
s again. Then we get

xm

(
t –


nm

)
= λm

∫ t–/nm


(t – s)q–T (t – s)f

(
s, xm(s – /nm)

)
ds + λmx∗

(
t –


nm

)

– λm

∫ t–/nm


(t – s)q–T (t – s)f

(
s, x∗(s – /nm)

)
ds

+ ( – λm)
(
G

(
t –


nm

)
x

+
∫ t

/nm

(t – s)q–T (t – s)f
(
s – /nm, xm(s – /nm)

)
ds

)
,

t ∈
[


nm

, a
]

.
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Set

f (s, x) =

{
f (s, x) for s ≥ ,
f (, x) for s < .

Notice that the sequences of functions

{
λm

∫ t

t–/nm

(t – s)q–T (t – s)f
(
s, xm(s – /nm)

)
ds

}
,

{
λm

∫ t–/nm


(t – s)q–T (t – s)f

(
s, x∗

m(s – /nm)
)

ds
}

,

{
λmx∗(t – /nm)

}
,

{
( – λm)G(t – /nm)x

}
,

and
{∫ /nm


(t – s)q–T (t – s)f

(
s – /nm, x(s – /nm)

)
ds

}

converge uniformly for t belonging to each interval [γ , a] with γ ∈ (, a). Let us estimate
for t >  the following value:

e–ptχE
({

xm(t – /nm)
})

= e–ptχE

({∫ t



(
(t – s)q–T (t – s)

× [
λf

(
s, xm(s – /nm)

)
+ ( – λ)f

(
s – /nm, xm(s – /nm)

)])
ds

})
.

Since by (f ′)

χE
({

λf
(
s, xm(s – /nm)

)
+ ( – λ)f

(
s – /nm, xm(s – /nm)

)}) ≤ KχE
({

xm(s – /nm)
})

,

we get

e–ptχE
({

xm(t – /nm)
}) ≤ qMμ

�( + q)
sup

s∈[,a]
e–psχE

({
xm(s – /nm)

})

×
(

e–pt
∫ t–d


(t – s)q–eps ds + e–pt

∫ t

t–d
(t – s)q–eps ds

)

≤ qMμ

�( + q)
sup

s∈[,a]
e–psχE

({
xm(s – /nm)

})

×
(

e–pt 
(d)–q

ep(t–d) – 
p

+
dq

q

)

≤ qMμ

�( + q)
sup

s∈[,a]
e–psχE

({
xm(s – /nm)

})( 
d–q

e–pd

p
+

dq

q

)

≤ qMμ

�( + q)
sup

s∈[,a]
e–psχE

({
xm(s – /nm)

})( 
pd–q +

dq

q

)
.
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Now, using (.) and (.), we have

sup
t∈[,a]

e–ptχE
({

xm(t – /nm)
}) ≤ 


sup

s∈[,a]
e–psχE

({
xm(s – /nm)

})
,

implying

sup
t∈[,a]

e–ptχE
({

xm(t – /nm)
})

= ,

and hence

χE
({

xm(t – /nm)
})

= , t ∈ [, a].

The proof of the equicontinuity of the sequence {xm} is similar to the previous proof of
the equicontinuity of the sequence {ỹk}.

So the sequence {xm} is relatively compact, and we can assume, without loss of generality,
that xm → x. Then x ∈ ∂VL, that is, x 
= x∗. Passing to the limit in (.) as m → ∞, we
get the contradiction

Gx = x.

Now, let us show that the map S : [, ] × VL →L given by the formula

S(λ, x) = λGnx + x∗ – λGnx∗

is the homotopy connecting maps G(x) ≡ x∗ and Gn. In fact, for each λ ∈ [, ], the equa-
tion

S(λ, x) = x (.)

has a unique solution x = x∗. For λ = , this is evident, and for λ 
= , if equation (.) has
a solution y, then y() = x, and hence y(t – /n) = x∗(t – /n), t ∈ [, /n], so y(t) = x∗(t), t ∈
[, /n]. Then y(t – /n) = x∗(t – /n), t ∈ [/n, /n]. Continuing further, we get the equality
y(t) = x∗(t), t ∈ [, a]. Then, using the map restriction and normalization properties of the
topological degree, we have:

degL(i – Gn, VL) = degL(i – G, VL) = ,

yielding

degL(i – G, VL) = ,

which concludes the proof of the theorem. �

Remark  On the set L, let us consider the operators G̃n : L → C([, a]; E) given by the
formula

G̃nx(t) = G(t)x +
∫ t


(t + /n – s)q–T (t + /n – s)f

(
s, x(s – /n)

)
ds.
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Fixed points xn of the operators G̃n may be found by the method of steps successively on
the intervals [ k

n , k+
n ], k = , , . . . , [an]. Finding these fixed points is analogous to the Tonelli

procedure (see, e.g., [] or [, ], Chapter II, Theorem .) of solving problem (.)-
(.). If it is known that the sequence {xn} is bounded on the interval [, a], then, repeating
the reasonings for {xm} given by formula (.) with λm = , we get the compactness of
the sequence {xn}. If {xnk } is a convergent subsequence, then passing to the limit in the
equalities

xnk = Gnk xnk ,

we obtain that the limit of the subsequence {xnk } may be only a fixed point of the operator
G, that is, a solution of problem (.)-(.).

Let us mention also that, instead of condition (f ′), in this case, it is sufficient to assume
condition (f ).

5 The main result
Now we are in position to present the main result of this paper.

Theorem  Under conditions (A), (f ), (f ′), (.), (.), (.), (g), (g), suppose that prob-
lem (.)-(.) has a unique solution x� on the interval [, a]. Then, for a sufficiently small
h > , problems (.), (.) have solutions xh on the interval [, a], and

Qhxh → x�

as h → .

Proof It is sufficient to apply Proposition  to the operator F given by formula (.). �

In conclusion, let us present two examples of the construction of Ah and fh.

Example  Let hn = /n, and let Ahn = An be the Yosida approximations (see, e.g., []),
Ehn = E, Phn = Qhn = I , and fhn = f . Then condition (H) is fulfilled for the semigroups
generated by the operators An. So, the transfer from a unbounded operator A in equation
(.) to a bounded operator Ah in equation (.) can be justified.

Example  Let f satisfy (f ). If we set

fh(t, xh) = Phf (t, Qhxh),

then, for the operator g , condition (g) is fulfilled with the constant k = μ.
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