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Abstract
In 1980, Hegedüs and Szilágyi proved some fixed point theorem in complete metric
spaces. Introducing a new contractive condition, we generalize Hegedüs-Szilágyi’s
fixed point theorem. We discuss the relationship between the new contractive
condition and other contractive conditions. We also show that we cannot extend
Hegedüs-Szilágyi’s fixed point theorem to Meir-Keeler type.
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1 Introduction and preliminaries
Throughout this paper we denote by N the set of all positive integers and by R the set of
all real numbers.

Let T be a mapping on a metric space (X, d). Throughout this paper, we define DT (x)
and DT (x, y) by

DT (x) = sup
{

d(u, v) : u, v ∈ {
x, Tx, T2x, . . .

}}
,

DT (x, y) = sup
{

d(u, v) : u, v ∈ {
x, Tx, T2x, . . . , y, Ty, T2y, . . .

}}

for any x, y ∈ X. That is, DT (x) is the diameter of the orbit {x, Tx, T2x, . . .} of x.
Hegedüs and Szilágyi in [1] proved the following fixed point theorem. The author thinks

that the proof in [1] is splendid.

Theorem 1 (Theorem 5 in [1]) Let (X, d) be a complete metric space, and let T be a map-
ping on X. Assume DT (x) < ∞ for all x ∈ X. Assume also that there exists a function ϕ from
[0,∞) into itself satisfying the following:

(i) ϕ(t) < t holds for all t ∈ (0,∞);
(ii) ϕ is upper semicontinuous from the right;
(iii) d(Tx, Ty) ≤ ϕ ◦ DT (x, y) holds for all x, y ∈ X .

Then T has a unique fixed point z. Moreover, {Tnx} converges to z for any x ∈ X.

Remark 1 See also [2–4]. Note that in the proof of Theorem 1 in [3], we need an additional
assumption such as the nondecreasingness of ϕ.
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We state Boyd-Wong’s [5], Meir-Keeler’s [6] and Matkowski’s [7] fixed point theorems.

Theorem 2 (Theorem 1 in [5]) Let (X, d) be a complete metric space, and let T be a map-
ping on X. Assume that there exists a function ϕ from [0,∞) into itself satisfying (i) and (ii)
of Theorem 1 and the following:

(iii) d(Tx, Ty) ≤ ϕ ◦ d(x, y) holds for all x, y ∈ X .
Then T has a unique fixed point z. Moreover, {Tnx} converges to z for any x ∈ X.

Theorem 3 ([6]) Let (X, d) be a complete metric space, and let T be a mapping on X.
Assume that, for any ε > 0, there exists δ > 0 such that

d(x, y) < ε + δ implies d(Tx, Ty) < ε

for all x, y ∈ X. Then T has a unique fixed point z. Moreover, {Tnx} converges to z for any
x ∈ X.

Theorem 4 (Theorem 1.2 in [7]) Let (X, d) be a complete metric space, and let T be a
mapping on X. Assume that there exists a function ϕ from [0,∞) into itself satisfying the
following:

(i) ϕ is nondecreasing;
(ii) limn ϕn(t) = 0 holds for all t ∈ (0,∞);
(iii) d(Tx, Ty) ≤ ϕ ◦ d(x, y) holds for all x, y ∈ X .

Then T has a unique fixed point z. Moreover, {Tnx} converges to z for any x ∈ X.

From the above, we can tell that Theorem 1 is of Boyd-Wong [5] type (see Definition 8).
So it is a very natural question of whether we can extend Theorem 1 to Meir-Keeler [6]
type. It is also a natural question of whether we can prove a Matkowski [7] type fixed point
theorem.

In this paper, we answer the above two questions; one is negative and the other is affirma-
tive. Indeed, we generalize Theorem 1. The assumption of the new theorem (Theorem 5)
is weaker than a Matkowski type condition (see Corollary 7). We also give a counterex-
ample for a Meir-Keeler type condition (Example 16). We further discuss the relationship
between the assumption of Theorem 5 and other contractive conditions.

2 Main results
In this section, we generalize Theorem 1.

Theorem 5 Let (X, d) be a complete metric space, and let T be a mapping on X. Assume
DT (x) < ∞ for all x ∈ X. Assume also that there exists a function ϕ from [0,∞) into itself
satisfying the following:

(i) ϕ(t) < t holds for all t ∈ (0,∞);
(ii) For any ε > 0, there exists δ > 0 such that, for any t ∈ (0,∞),

ε < t < ε + δ implies ϕ(t) ≤ ε.

(iii) For any x, y ∈ X ,

d(Tx, Ty) ≤ ϕ ◦ DT (x, y)
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holds.
Then T has a unique fixed point z. Moreover, {Tnx} converges to z for any x ∈ X.

Remark 2
• DT (x, y) < ∞ obviously holds for any x, y ∈ X .
• Since DT (x, y) = 0 implies d(Tx, Ty) = 0, without loss of generality, we may assume

ϕ(0) = 0.
• We do not assume that ϕ is nondecreasing. So, in general, DT (Tx, Ty) ≤ ϕ ◦ DT (x, y)

does not hold.

Before proving Theorem 5, we need one lemma.

Lemma 6 Let x, y ∈ X. Assume that either of the following holds:
(a) x = y;
(b) limn DT (Tnx) = limn DT (Tny) = 0.

Then limn DT (Tnx, Tny) = 0 holds.

Proof Since

{
Tnx, Tn+1x, . . . , Tny, Tn+1y, . . .

} ⊃ {
Tn+1x, Tn+2x, . . . , Tn+1y, Tn+2y, . . .

}

for n ∈ N, {DT (Tnx, Tny)} is nonincreasing. So {DT (Tnx, Tny)} converges to some ε ∈
[0,∞). Arguing by contradiction, we assume ε > 0. We consider the following two cases:

• ε < DT (Tnx, Tny) holds for any n ∈N;
• ε = DT (Tnx, Tny) holds for some n ∈N.

In the first case, we choose δ ∈ (0,∞) such that

ε < t < ε + δ implies ϕ(t) ≤ ε.

We choose ν ∈N satisfying

DT
(
Tνx, Tνy

)
< ε + δ.

In the case of (b), without loss of generality, we may assume

DT
(
Tνx

) ≤ ε/2 and DT
(
Tνy

) ≤ ε/2. (1)

Fix m ≥ ν and n ≥ ν . Then since

ε < DT
(
Tmax{m,n}x, Tmax{m,n}y

)

≤ DT
(
Tmx, Tny

)

≤ DT
(
Tmin{m,n}x, Tmin{m,n}y

) ≤ DT
(
Tνx, Tνy

)
< ε + δ,

we have

d
(
Tm+1x, Tn+1y

) ≤ ϕ ◦ DT
(
Tmx, Tny

) ≤ ε.
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Since m, n are arbitrary, considering (1), we obtain

ε < DT
(
Tν+1x, Tν+1y

) ≤ ε,

which implies a contradiction. In the second case, we choose ν ∈N satisfying

DT
(
Tνx, Tνy

)
= ε.

In the case of (b), without loss of generality, we may assume

DT
(
Tνx

) ≤ ϕ(ε) and DT
(
Tνy

) ≤ ϕ(ε). (2)

Fix m ≥ ν and n ≥ ν . Then since

ε ≤ DT
(
Tmax{m,n}x, Tmax{m,n}y

)

≤ DT
(
Tmx, Tny

)

≤ DT
(
Tmin{m,n}x, Tmin{m,n}y

) ≤ DT
(
Tνx, Tνy

)
= ε,

we have

d
(
Tm+1x, Tn+1y

) ≤ ϕ ◦ DT
(
Tmx, Tny

)
= ϕ(ε).

Since m, n are arbitrary, considering (2), we obtain

ε ≤ DT
(
Tν+1x, Tν+1y

) ≤ ϕ(ε) < ε,

which implies a contradiction. Therefore we have shown limn DT (Tnx, Tny) = 0. �

Proof of Theorem 1 Fix x ∈ X. By Lemma 6(a), {DT (Tnx)} converges to 0. Thus {Tnx} is a
Cauchy sequence in X. Since X is complete, {Tnx} converges to some z ∈ X. By Lemma 6(a)
again, {DT (Tnz)} also converges to 0. So, by Lemma 6(b), we obtain

lim
n→∞ DT

(
Tnx, Tnz

)
= 0. (3)

So {Tnz} also converges to z. Hence

DT (z) = DT (Tz) (4)

holds. Arguing by contradiction, we assume ε := DT (z) > 0. Since limn DT (Tnz) = 0 holds,
there exists ν ∈N satisfying

ε = DT (z) = · · · = DT
(
Tν–1z

)
= DT

(
Tνz

)
> DT

(
Tν+1z

)
,

where T0z = z. This implies

ε = DT
(
Tνz

)
= sup

{
d
(
Tνz, Tnz

)
: n > ν

}
.
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For n > ν , we have

d
(
Tνz, Tnz

) ≤ ϕ ◦ DT
(
Tν–1z, Tn–1z

)
= ϕ ◦ DT

(
Tν–1z

)
= ϕ(ε).

Since n is arbitrary, we obtain

ε = sup
{

d
(
Tνz, Tnz

)
: n > ν

} ≤ ϕ(ε) < ε,

which implies a contradiction. Therefore we have shown DT (z) = 0. Hence z is a fixed point
of T . Since (3) holds for any x ∈ X, we obtain the uniqueness of the fixed point. �

By Theorem 5, we obtain a Matkowski type fixed point theorem.

Corollary 7 Let (X, d) be a complete metric space, and let T be a mapping on X. Assume
DT (x) < ∞ for all x ∈ X. Assume also that there exists a function ϕ from [0,∞) into itself
satisfying the following:

(i) ϕ is nondecreasing;
(ii) limn ϕn(t) = 0 holds for all t ∈ (0,∞);
(iii) d(Tx, Ty) ≤ ϕ ◦ DT (x, y) holds for all x, y ∈ X .

Then T has a unique fixed point z. Moreover, {Tnx} converges to z for any x ∈ X.

3 Comparison
In this section, using subsets of (0,∞)2, we discuss the relationship between the new con-
tractive condition in Theorem 5 and other contractive conditions. See [1, 8–11] and the
references therein.

Definition 8 Let Q be a subset of (0,∞)2.
(1) Q is said to be contractive (Cont for short) [12, 13] if there exists r ∈ (0, 1) such that

u ≤ rt holds for any (t, u) ∈ Q.
(2) Q is said to be Browder (Bro for short) [14] if there exists a function ϕ from (0,∞)

into itself satisfying the following:
(2-i) ϕ is nondecreasing and right-continuous;

(2-ii) ϕ(t) < t holds for any t ∈ (0,∞);
(2-iii) u ≤ ϕ(t) holds for any (t, u) ∈ Q.

(3) Q is said to be Boyd-Wong (BW for short) [5] if there exists a function ϕ from (0,∞)
into itself satisfying the following:

(3-i) ϕ is upper semicontinuous from the right;
(3-ii) ϕ(t) < t holds for any t ∈ (0,∞);

(3-iii) u ≤ ϕ(t) holds for any (t, u) ∈ Q.
(4) Q is said to be Meir-Keeler (MK for short) [6] if, for any ε > 0, there exists δ > 0 such

that u < ε holds for any (t, u) ∈ Q with t < ε + δ.
(5) Q is said to be Matkowski (Mat for short) [7] if there exists a function ϕ from (0,∞)

into itself satisfying the following:
(5-i) ϕ is nondecreasing;

(5-ii) limn ϕn(t) = 0 for any t ∈ (0,∞);
(5-iii) u ≤ ϕ(t) holds for any (t, u) ∈ Q.



Suzuki Fixed Point Theory and Applications  (2018) 2018:1 Page 6 of 10

(6) Q is said to be of New-type (NT for short) if there exists a function ϕ from (0,∞)
into itself satisfying the following:

(6-i) ϕ(t) < t for any t ∈ (0,∞);
(6-ii) For any ε > 0, there exists δ > 0 such that ε < t < ε + δ implies ϕ(t) ≤ ε;

(6-iii) u ≤ ϕ(t) holds for any (t, u) ∈ Q.
(7) Q is said to be CJM [15–18] if the following hold:

(7-i) For any ε > 0, there exists δ > 0 satisfying u ≤ ε holds for any (t, u) ∈ Q with
t < ε + δ;

(7-ii) u < t holds for any (t, u) ∈ Q.

It is obvious that the following implications hold:

Cont → Bro → BW → MK → CJM

↘ ↘ ↗
Mat → NT

It is well known that the converse implication of (Cont → Bro) does not hold. The fol-
lowing three examples tell us that for each implication except (Cont → Bro), there exists a
counterexample for its converse implication. In particular, MK and NT are independent.

Example 9 Let u ∈ (0,∞) and define Q by

Q =
{

(t, u) : u < t
}

.

Then Q is Mat. However, Q is not MK.

Remark 3 We note that the converse implication of (BW → NT) does not hold.

Example 10 Let t, u ∈ (0,∞) with t < u. Define Q by

Q =
{(

(1 – λ)t + λu,λu
)

: λ ∈ (0, 1)
}

.

Then Q is BW. However, Q is not Mat.

Remark 4 We note that the converse implication of (Mat → NT) does not hold.

Example 11 Let t ∈ (0,∞) and define Q by

Q =
{

(t, u) : 0 < u < t
}

.

Then Q is MK. However, Q is not NT.

Remark 5 We note that the converse implication of (NT → CJM) does not hold.

In the remainder of this section, we let (X, d) be a complete metric space, and let T be
a mapping on X satisfying DT (x) < ∞ for all x ∈ X. Define subsets PT and QT of (0,∞)2
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by

PT =
{(

d(x, y), d(Tx, Ty)
)

: x, y ∈ X
} ∩ (0,∞)2,

QT =
{(

DT (x, y), d(Tx, Ty)
)

: x, y ∈ X
} ∩ (0,∞)2.

We will give three mappings such that QT for each mapping matches one of Exam-
ples 9-11, respectively.

Lemma 12 Let X be a nonempty set. Let f be a function from X into [0,∞) such that
{x ∈ X : f (x) = 0} consists of at most one element. Define a function d from X × X into
[0,∞) by

d(x, y) =

⎧
⎨

⎩
0 if x = y,

max{f (x), f (y)} if x �= y.
(5)

Let T be a mapping on X satisfying the following:
• f (x) > 0 implies Tx �= x and f (Tx) ≤ f (x);
• f (x) = 0 implies Tx = x.

Then the following hold:
(i) (X, d) is a metric space;

(ii) if either {x ∈ X : f (x) = 0} �= ∅ or inf f (X) > 0 holds, then X is complete;
(iii) PT = QT .

Proof We have essentially proved (i) and (ii); see Lemma 7 in [19]. Let us prove (iii). Fix
x, y ∈ X with x �= y and f (x) ≤ f (y). Then we have f (y) > 0 and hence Ty �= y. We have

· · · ≤ f
(
Tny

) ≤ · · · ≤ f
(
T2y

) ≤ f (Ty) ≤ f (y),

· · · ≤ f
(
Tnx

) ≤ · · · ≤ f
(
T2x

) ≤ f (Tx) ≤ f (x) ≤ f (y).

Hence

DT (x, y) = f (y) = d(x, y)

holds. Therefore PT = QT holds. �

Example 13 Let X = [0,∞) and define a function d from X × X into [0,∞) by (5), where
f (x) = x. That is,

d(x, y) =

⎧
⎨

⎩
0 if x = y,

max{x, y} if x �= y
(6)

holds. Define a mapping T on X by

Tx =

⎧
⎨

⎩
0 if x ≤ 1,

1 if x > 1.

Then the following hold:
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(i) (X, d) is a complete metric space;
(ii) f (x) > 0 implies f (Tx) < f (x);
(iii) f (x) = 0 implies Tx = x;
(iv) PT = QT = {(t, 1) : 1 < t};
(v) PT and QT are Mat;
(vi) neither PT nor QT are MK.

Proof We can prove (i)-(iii) easily. Using Lemma 12, we can prove (iv). (v) and (vi) follow
from Example 9. �

Example 14 Put X = [0, 2) and define f and d as in Example 13. Define a mapping T on
X by

Tx =

⎧
⎨

⎩
0 if x ≤ 1,

2x – 2 if x ≥ 1.

Then (i)-(iii) of Example 13 and the following hold:
(iv) PT = QT = {(1 + λ, 2λ) : λ ∈ (0, 1)};
(v) PT and QT are BW;
(vi) neither PT nor QT are Mat.

Proof We can prove (i)-(iii) easily. Using Lemma 12, we can prove (iv). (v) and (vi) follow
from Example 10. �

Example 15 Let X = [0, 1) ∪ (1,∞) and define a function d from X × X into [0,∞) by (5),
where f (x) = min{x, 1}. Define a mapping T on X by

Tx =

⎧
⎨

⎩
0 if x < 1,

1/x if x > 1.

Then (i)-(iii) of Example 13 and the following hold:
(iv) PT = QT = {(1, u) : 0 < u < 1};
(v) PT and QT are MK;
(vi) neither PT nor QT are NT.

Proof We can prove (i)-(iii) easily. Using Lemma 12, we can prove (iv). (v) and (vi) follow
from Example 11. �

We finally give the following example, which tells us that we cannot extend Theorem 1
to a Meir-Keeler type contractive condition.

Example 16 Let X = [0, 1) and define a function d from X × X into [0,∞) by (6). Define
a mapping T on X by

Tx =

⎧
⎨

⎩
1/2 if x = 0,
√

x if x �= 0.
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Then the following hold:
(i) (X, d) is a complete metric space;

(ii) d(x, y) < 1 holds for any x, y ∈ X ;
(iii) for any x ∈ X , {Tnx} converges to 1 in the Euclidean space R

1;
(iv) DT (x) = 1 holds for any x ∈ X ;
(v) TX = (0, 1);

(vi) QT = {(1, u) : 0 < u < 1};
(vii) QT is MK;

(viii) QT is not NT;
(ix) T does not have a fixed point.

Proof We can easily prove (i)-(vi) and (ix). (vii) and (viii) follow from Example 11. �

4 Conclusions
In this paper, introducing a new contractive condition (see Definition 8(6)), we generalize
Hegedüs-Szilágyi’s fixed point theorem (Theorem 1) in complete metric spaces proved in
1980. In Section 3, we discuss the relationship between the new contractive condition and
other contractive conditions. We also show that we cannot extend Theorem 1 to Meir-
Keeler type (see Example 16).
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