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Abstract
In this paper, motivated and inspired by Samet et al., we introduce the notion of
generalized weakly contractive mappings in metric spaces and prove the existence
and uniqueness of fixed point for such mappings, and we obtain a coupled fixed
point theorem in metric spaces. These theorems generalize many previously obtained
fixed point results. An example is given to illustrate the main result. Finally, we give
applications of our results to fixed point results in partial metric spaces.

MSC: 47H10; 54H25

Keywords: fixed point; coupled fixed point; generalized weak contractive mapping

1 Introduction and preliminaries
In 1977, Alber et al. [1] generalized Banach’s contraction principle by introducing the con-
cept of weak contraction mappings in Hilbert spaces. Weak contraction principle states
that every weak contraction mapping on a complete Hilbert space has a unique fixed point.
Rhoades [2] extended weak contraction principle in Hilbert spaces to metric spaces. Since
then, many authors (for example, [3–14]) obtained generalizations and extensions of the
weak contraction principle. Khan et al. [15] obtained fixed point theorems in metric spaces
by introducing the concept of altering distance functions.

In particular, Choudhury et al. [8] obtained a generalization of the weak contraction
principle in metric spaces by using altering distance functions as follows.

Theorem 1.1 ([8]) Suppose that a mapping g : X → X, where X is a metric space with
metric d, satisfies the following condition:

ψ
(
d(gx, gy)

)

≤ ψ

(
max

{
d(x, y), d(x, gx), d(y, gy),

1
2
{

d(x, gy) + d(y, gx)
}})

– φ
(
max

{
d(x, y), d(y, gy)

})
(1.1)
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for all x, y ∈ X, where φ : [0,∞) → [0,∞) is a continuous function, and ψ : [0,∞) → [0,∞)
is an altering distance function, that is, ψ is a nondecreasing and continuous function, and
ψ(t) = 0 if and only if t = 0.

Then T has a unique fixed point.

Matthews [16] introduced the notion of partial metric spaces, and extended Banach’s
contraction principle to partial metric spaces, and then a lot of authors gave fixed point
results in partial metric spaces (see [5, 17–30]). Also, Aydi et al. [31] extended Ekeland’s
variational principle to partial metric spaces, and Aydi et al. [32] extended Caristi’s fixed
point theorem to partial metric spaces.

In particular, Abdeljawad [3] extended the result of Choudhury et al. [8] to partial metric
spaces.

Samet et al. [33] gave a generalization of Banach’s contraction principle and an applica-
tion to fixed point results in partial metric spaces.

In this paper, motivated and inspired by Samet et al. [33], we introduce the notion of
generalized weakly contractive mappings in metric spaces and prove a fixed point theorem
for generalized weakly contractive mappings defined on complete metric spaces, which is
a generalization of the results of [8–10, 33]. Also, we obtain a coupled fixed point theorem
in metric spaces by applying our main result, and we give applications to fixed point and
coupled fixed point theorems in partial metric spaces.

A function f : X → [0,∞), where X is a metric space, is called lower semicontinuous if,
for all x ∈ X and {xn} ⊂ X with limn→∞ xn = x, we have

f (x) ≤ lim
n→∞ inf f (xn).

Let

� =
{
ψ : [0,∞) → [0,∞) | ψ is continuous and ψ(t) = 0 ⇔ t = 0

}
.

Also, we denote

� =
{
φ : [0,∞) → [0,∞) | φ is lower semicontinuous and φ(t) = 0 ⇔ t = 0

}
.

Lemma 1.1 ([34]) If a sequence {xn} in X is not Cauchy, then there exist ε > 0 and two
subsequences {xm(k)} and {xn(k)} of {xn} such that m(k) is the smallest index for which m(k) >
n(k) > k,

d(xm(k), xn(k)) ≥ ε, (1.2)

and

d(xm(k)–1, xn(k)) < ε. (1.3)

Moreover, suppose that limn→∞ d(xn, xn+1) = 0.
Then we have:
(1) limn→∞ d(xm(k), xn(k)) = ε;
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(2) limn→∞ d(xm(k)–1, xn(k)–1) = ε;
(3) limn→∞ d(xm(k), xn(k)–1) = ε;
(4) limn→∞ d(xm(k)–1, xn(k)) = ε.

2 Fixed point results
Let X be a metric space with metric d, let T : X → X, and let ϕ : X → [0,∞) be a lower
semicontinuous function.

Then T is called a generalized weakly contractive mapping if it satisfies the following
condition:

ψ
(
d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)

)

≤ ψ
(
m(x, y, d, T ,ϕ)

)
– φ

(
l(x, y, d, T ,ϕ)

) ∀x, y ∈ X, (2.1)

where ψ ∈ � ,φ ∈ �, and

m(x, y, d, T ,ϕ) = max

{
d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx),

d(y, Ty) + ϕ(y) + ϕ(Ty),
1
2
{

d(x, Ty) + ϕ(x) + ϕ(Ty)

+ d(y, Tx) + ϕ(y) + ϕ(Tx)
}}

, (2.2)

and

l(x, y, d, T ,ϕ) = max
{

d(x, y) + ϕ(x) + ϕ(y), d(y, Ty) + ϕ(y) + ϕ(Ty)
}

. (2.3)

Let X be a metric space with metric d, let T : X → X, and let ϕ : X → [0,∞) be a lower
semicontinuous function.

Theorem 2.1 Let X be complete. If T is a generalized weakly contractive mapping, then
there exists a unique z ∈ X such that z = Tz and ϕ(z) = 0.

Proof Let x0 ∈ X be a fixed point, and define a sequence {xn} by xn+1 = Txn for all n =
0, 1, 2, . . . .

If xn = xn+1 for some n, then xn = xn+1 = Txn. So xn is a fixed point of T , and the proof is
finished.

From now on, assume that xn 
= xn+1 for all n = 0, 1, 2, . . . .
From (2.2) with x = xn–1 and y = xn we have

m(xn–1, xn, d, T ,ϕ)

= max

{
d(xn–1, xn) + ϕ(xn–1) + ϕ(xn),

d(xn–1, Txn–1) + ϕ(xn–1) + ϕ(Txn–1), d(xn, Txn) + ϕ(xn) + ϕ(Txn),

1
2
{

d(xn–1, Txn) + ϕ(xn–1) + ϕ(Txn) + d(xn, Txn–1) + ϕ(xn) + ϕ(Txn–1)
}
}

.
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Since

1
2
{

d(xn–1, Txn) + ϕ(xn–1) + ϕ(Txn) + d(xn, Txn–1) + ϕ(xn) + ϕ(Txn–1)
}

=
1
2
{

d(xn–1, xn+1) + ϕ(xn–1) + ϕ(xn+1) + d(xn, xn) + ϕ(xn) + ϕ(xn)
}

≤ 1
2
{

d(xn–1, xn) + ϕ(xn–1) + ϕ(xn) + d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)
}

≤ max
{

d(xn–1, xn) + ϕ(xn–1) + ϕ(xn), d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)
}

,

we obtain

m(xn–1, xn, d, T ,ϕ)

= max
{

d(xn–1, xn) + ϕ(xn–1) + ϕ(xn), d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)
}

. (2.4)

Also, we have

l(xn–1, xn, d, T ,ϕ)

= max
{

d(xn–1, xn) + ϕ(xn–1) + ϕ(xn), d(xn, Txn) + ϕ(xn) + ϕ(Txn)
}

= max
{

d(xn–1, xn) + ϕ(xn–1) + ϕ(xn), d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)
}

.

It follows from (2.1) that

ψ
(
d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)

)

= ψ
(
d(Txn–1, Txn) + ϕ(Txn–1) + ϕ(Txn)

)

≤ ψ
(
m(xn–1, xn, d, T ,ϕ)

)
– φ

(
l(xn–1, xn, d, T ,ϕ)

)
. (2.5)

If

d(xn–1, xn) + ϕ(xn–1) + ϕ(xn) < d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)

for some positive integer n, then from (2.5) we obtain

ψ
(
d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)

)

≤ ψ
(
d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)

)
– φ

(
d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)

)
,

which implies

φ
(
d(xn+1, xn) + ϕ(xn+1) + ϕ(xn)

)
= 0,

and so

d(xn+1, xn) + ϕ(xn+1) + ϕ(xn) = 0.
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Hence

xn+1 = xn and ϕ(xn+1) = ϕ(xn) = 0,

which is a contradiction.
Thus we have

d(xn, xn+1) + ϕ(xn) + ϕ(xn+1) ≤ d(xn–1, xn) + ϕ(xn–1) + ϕ(xn) (2.6)

for all n = 1, 2, 3, . . . , and so

m(xn–1, xn, d, T ,ϕ) = d(xn–1, xn) + ϕ(xn–1) + ϕ(xn)

and

l(xn–1, xn, d, T ,ϕ) = d(xn–1, xn) + ϕ(xn–1) + ϕ(xn)

for all n = 1, 2, 3, . . . .
It follows from (2.5) that

ψ
(
d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)

)

≤ ψ
(
d(xn–1, xn) + ϕ(xn–1) + ϕ(xn)

)

– φ
(
d(xn–1, xn) + ϕ(xn–1) + ϕ(xn)

)
. (2.7)

It follows from (2.6) that the sequence {d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)} is nonincreasing.
Thus we have

d(xn, xn+1) + ϕ(xn) + ϕ(xn+1) → r as n → ∞

for some r ≥ 0.
Assume that r > 0.
Letting n → ∞ in (2.7), by the continuity of ψ and the lower semicontinuity of φ it

follows that

ψ(r) ≤ψ(r) – lim
n→∞ infφ

(
d(xn–1, xn) + ϕ(xn–1) + ϕ(xn)

)

≤ψ(r) – φ(r).

Since r > 0, φ(r) > 0. Hence

ψ(r) ≤ ψ(r) – φ(r) < ψ(r),

a contradiction.
Hence

lim
n→∞

{
d(xn, xn+1) + ϕ(xn) + ϕ(xn+1)

}
= 0,
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which implies

lim
n→∞ d(xn, xn+1) = 0 (2.8)

and

lim
n→∞ϕ(xn) = 0. (2.9)

Now, we prove that the sequence {xn} is Cauchy.
If {xn} is not Cauchy, then by Lemma 1.1 there exist ε > 0and subsequences {xm(k)} and

{xn(k)} of {xn} such that (1.2) and (1.3) hold.
From (2.2) we have

m(xn(k), xm(k), d, T ,ϕ)

= max

{
d(xn(k), xm(k)) + ϕ(xn(k)) + ϕ(xm(k)),

d(xn(k), Txn(k)) + ϕ(xn(k)) + ϕ(Txn(k)), d(xm(k), Txm(k)) + ϕ(xm(k)) + ϕ(Txm(k)),

1
2
{

d(xn(k), Txm(k)) + ϕ(xn(k)) + ϕ(Txm(k)) + d(xm(k), Txn(k)) + ϕ(xm(k)) + ϕ(Txn(k))
}
}

= max

{
d(xn(k), xm(k)) + ϕ(xn(k)) + ϕ(xm(k)), d(xn(k), xn(k)+1) + ϕ(xn(k)) + ϕ(xn(k)+1),

d(xm(k), xm(k)+1) + ϕ(xm(k)) + ϕ(xm(k)+1),
1
2
{

d(xn(k), xm(k)+1) + ϕ(xn(k)) + ϕ(xm(k)+1)

+ d(xm(k), xn(k)+1) + ϕ(xm(k)) + ϕ(xn(k)+1)
}}

. (2.10)

Letting k → ∞ in (2.10) and applying Lemma 1.1, (2.8), and (2.9), it follows that

lim
k→∞

m(xn(k), xm(k), d, T ,ϕ) = ε. (2.11)

Also, it follows from (2.3) that

l(xn(k), xm(k), d, T ,ϕ)

= max
{

d(xn(k), xm(k)) + ϕ(xn(k)) + ϕ(xm(k)), d(xm(k), Txm(k)) + ϕ(xm(k)) + ϕ(Txm(k))
}

= max
{

d(xn(k), xm(k)) + ϕ(xn(k)) + ϕ(xm(k)), d(xm(k), xm(k)+1) + ϕ(xm(k)) + ϕ(xm(k)+1)
}

.

Hence

lim
n→∞ l(xn(k), xm(k), d, T ,ϕ) = ε. (2.12)

From (2.1) we have

ψ
(
d(xn(k)+1, xm(k)+1) + ϕ(xn(k)+1) + ϕ(xm(k)+1)

)

≤ ψ
(
m(xn(k), xm(k), d, T ,ϕ)

)
– φ

(
l(xn(k), xm(k), d, T ,ϕ)

)
.
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Letting k → ∞ in this inequality, by Lemma 1.1, the continuity of ψ , the lower semi-
continuity of φ, and by (2.9), (2.11), and (2.12) we have

ψ(ε) ≤ ψ(ε) – φ(ε),

which is a contradiction because φ(ε) > 0.
Hence the sequence {xn} is Cauchy, and hence

lim
n→∞ xn = z ∈ X exists

because X is complete. Since ϕ is lower semicontinuous,

ϕ(z) ≤ lim
n→∞ infϕ(xn) ≤ lim

n→∞ϕ(xn) = 0,

which implies

ϕ(z) = 0. (2.13)

It follows from (2.2) that

m(xn, z, d, T ,ϕ) = max

{
d(xn, z) + ϕ(xn) + ϕ(z),

d(xn, Txn) + ϕ(xn) + ϕ(Txn), d(z, Tz) + ϕ(z) + ϕ(Tz),

1
2
{

d(xn, Tz) + ϕ(xn) + ϕ(Tz) + d(z, Txn) + ϕ(z) + ϕ(Txn)
}}

= max

{
d(xn, z) + ϕ(xn) + ϕ(z),

d(xn, xn+1) + ϕ(xn) + ϕ(xn+1), d(z, Tz) + ϕ(z) + ϕ(Tz),

1
2
{

d(xn, Tz) + ϕ(xn) + ϕ(Tz) + d(z, xn+1) + ϕ(z) + ϕ(xn+1)
}
}

.

So we have

lim
n→∞ m(xn, z, d, T ,ϕ) = d(z, Tz) + ϕ(z) + ϕ(Tz) = d(z, Tz) + ϕ(Tz). (2.14)

Also, we have

lim
n→∞ l(xn, z, d, T ,ϕ) = lim

n→∞ max
{

d(xn, z) + ϕ(xn) + ϕ(z), d(z, Tz) + ϕ(z) + ϕ(Tz)
}

= d(z, Tz) + ϕ(z) + ϕ(Tz) = d(z, Tz) + ϕ(Tz). (2.15)

It follows from (2.1) that

ψ
(
d(xn+1, Tz) + ϕ(xn+1) + ϕ(Tz)

)
= ψ

(
d(Txn, Tz) + ϕ(Txn) + ϕ(Tz)

)

≤ ψ
(
m(xn, z, d, T ,ϕ)

)
– φ

(
l(xn, z, d, T ,ϕ)

)
. (2.16)
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By taking the limit as n → ∞ in (2.16) and by applying the continuity of ψ , the lower
semicontinuity of φ, (2.14), and (2.15) we have

ψ
(
d(z, Tz) + ϕ(Tz)

) ≤ ψ
(
d(z, Tz) + ϕ(Tz)

)
– φ

(
d(z, Tz) + ϕ(Tz)

)
.

Hence d(z, Tz) + ϕ(Tz) = 0, and hence z = Tz and ϕ(Tz) = 0.
Suppose that u is another fixed point of T .
Then

u = Tu and ϕ(u) = 0.

By applying (2.1) with x = z and y = u we have

ψ
(
d(z, u)

)
= ψ

(
d(Tz, Tu)

)

= ψ
(
d(Tz, Tu) + ϕ(Tz) + ϕ(Tu)

)

≤ ψ
(
m(z, u, d, T ,ϕ)

)
– φ

(
l(z, u, d, T ,ϕ)

)

= ψ
(
d(z, u)

)
– φ

(
d(z, u)

)
,

which implies z = u. �

The following example illustrates Theorem 2.1 and shows that it is a real generalization
of Theorem 3.1 in [8].

Example 2.1 Let X = [0,∞) and d(x, y) = |x – y| for x, y ∈ X, let ψ(t) = 3
2 t for t ≥ 0, and let

ϕ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 t (0 ≤ t ≤ 1),
1
2 t + 1

2 (1 < t ≤ 2),

t (t > 2).

Then ψ ∈ � , ϕ is lower semicontinuous, and 1
2 t ≤ ϕ(t) ≤ t, t ≥ 0.

Define the map T : X → X by

Tx =
x2

2(1 + x)
.

Assume that a function φ : [0,∞) → [0,∞) is defined by

φ(t) =
3t

4 + 2t
.

Then φ ∈ �.
We now show that (2.1) holds.
Without loss of generality, suppose that x ≥ y.
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Then we have

1
2
{

d(x, Ty) + ϕ(x) + ϕ(Ty) + d(y, Tx) + ϕ(y) + ϕ(Tx)
}

≥ 1
2

{
d(x, Ty) +

1
2

x +
1
2

Ty + d(y, Tx) +
1
2

y +
1
2

Tx
}

≥ 1
2

{
1
2
{

d(x, Ty) + x + Ty + d(y, Tx) + y + Tx
}}

=

⎧
⎨

⎩

1
2 {x + x2

1+x } (y ≤ x2

2(1+x) ),
1
2 {x + y} otherwise

>
1
2

x.

Thus we have

m(x, y, d, T ,ϕ)

= max

{
d(x, y) + ϕ(x) + ϕ(y), d(x, Tx) + ϕ(x) + ϕ(Tx),

d(y, Ty) + ϕ(y) + ϕ(Ty),
1
2
{

d(x, Ty) + ϕ(x) + ϕ(Ty) + d(y, Tx) + ϕ(y) + ϕ(Tx)
}}

≥ 1
2

max

{
d(x, y) + x + y, d(x, Tx) + x + Tx,

d(y, Ty) + y + Ty,
1
2
{

d(x, Ty) + x + Ty + d(y, Tx) + y + Tx
}
}

=
1
2

max

{
2x, 2x, 2y,

1
2

x
}

= x

and

l(x, y, d, T ,ϕ) = max
{

d(x, y) + ϕ(x) + ϕ(y), d(y, Ty) + ϕ(y) + ϕ(Ty)
}

≤ max
{

d(x, y) + x + y, d(y, Ty) + y + Ty
}

= max{2x, 2y}
= 2x.

Also, we have

ψ
(
d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)

) ≤ ψ
(
d(Tx, Ty) + Tx + Ty

)

=
3
2

(∣
∣∣
∣

x2

2(1 + x)
–

y2

2(1 + y)

∣
∣∣
∣ +

x2

2(1 + x)
+

y2

2(1 + y)

)

=
3
2

· 2x2

2(1 + x)

=
3
2

· x2

1 + x
.
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Hence

ψ
(
m(x, y, d, T ,ϕ)

)
– φ

(
l(x, y, d, T ,ϕ)

) ≥ 3
2

x –
3x/2
1 + x

=
3
2

· x2

1 + x

≥ ψ
(
d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)

)
,

where the equality is satisfied when x = 0.
Thus (2.1) is satisfied.
By Theorem 2.1, T has a unique fixed point z = 0, and ϕ(z) = 0.
However, (1.1) is not satisfied. In fact, let x = 3, y = 1, and ϕ(t) = 0, t ≥ 0.
Then

ψ
(
m

(
(x, y, d, T ,ϕ)

))
=

45
2

,

φ
(
l
(
(x, y, d, T ,ϕ)

))
=

3
4

,

ψ
(
d(Tx, Ty)

)
=

51
2

,

and so

ψ
(
d(Tx, Ty)

)
=

204
8

>
147

8
= ψ

(
m

(
(x, y, d, T ,ϕ)

))
– φ

(
l
(
(x, y, d, T ,ϕ)

))
.

The proofs of the following Corollary 2.2 and Corollary 2.3 are similar to that of Theo-
rem 2.1. So, here the proofs are omitted.

Corollary 2.2 Let X be complete. Suppose that T satisfies the following condition:

ψ
(
d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)

)

≤ ψ
(
m(x, y, d, T ,ϕ)

)
– φ

(
m(x, y, d, T ,ϕ)

)

∀x, y ∈ X, where ψ ∈ � and φ ∈ �.

Then there exists a unique z ∈ X such that z = Tz and ϕ(z) = 0.

Corollary 2.3 Let (X, d) be complete. Suppose that T satisfies the following condition:

ψ
(
d(Tx, Ty) + ϕ(Tx) + ϕ(Ty)

)

≤ ψ
(
d(x, y) + ϕ(x) + ϕ(y)

)
– φ

(
d(x, y) + ϕ(x) + ϕ(y)

)

∀x, y ∈ X, where ψ ∈ � and φ ∈ �.

Then there exists a unique z ∈ X such that z = Tz and ϕ(z) = 0.
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Corollary 2.4 Let X be complete. Suppose that T satisfies the following condition:

ψ
(
d
(
Tkx, Tky

)
+ ϕ

(
Tkx

)
+ ϕ

(
Tky

))

≤ ψ
(
m

(
x, y, d, Tk ,ϕ

))
– φ

(
l
(
x, y, d, Tk ,ϕ

))

∀x, y ∈ X, where ψ ∈ � ,φ ∈ �, and k is a positive integer.

Then there exists a unique z ∈ X such that z = Tz and ϕ(z) = 0.

Proof Let S = Tk . Then by Theorem 2.1 S has a unique fixed point, say z.
Then Tkz = Sz = z and

ϕ(z) = ϕ(Sz) = ϕ
(
Tkz

)
= 0.

Since Tk+1z = Tz,

STz = Tk(Tz) = Tk+1z = Tz,

and so Tz is a fixed point of S. By the uniqueness of a fixed point of S, Tz = z. �

Remark 2.1 If we have ϕ = 0, then ψ is nondecreasing and continuous, and φ is contin-
uous in Theorem 2.1 (resp. Corollary 2.3, Corollary 2.4), then we obtain Theorem 3.1 of
[8] (resp. Theorem 2.1 of [10], Corollary 3.1 of [8]).

Remark 2.2 If ϕ = 0 and if ψ and φ are nondecreasing and continuous in Corollary 2.3,
then we obtain Theorem 2.1 of [10].

Remark 2.3 If ϕ = 0 and ψ is nondecreasing and continuous in Corollary 2.2, then we
obtain Theorem 2.2 of [9].

3 Discussion
In this section, we obtain a new coupled fixed point result from Theorem 2.1.

Let X be a nonempty set.
We say that (x, y) ∈ X × X is a coupled fixed point [35] of a mapping G : X × X → X if

G(x, y) = x and G(y, x) = y.

Lemma 3.1 ([36]) Let X be a nonempty set, (x, y) ∈ X × X, and let G : X × X → X.
Then the following are equivalent.
(1) G(x, y) = x and G(y, x) = y;
(2) H(x, y) = (x, y), that is, H has a fixed point (x, y),

where H : X × X → X × X is a mapping defined by

H(x, y) =
(
G(x, y), G(y, x)

)
. (3.1)

Lemma 3.2 ([37]) Let (X, d) be a complete metric space (resp. complete partial metric
space).
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Define ρ : X × X → [0,∞) by

ρ
(
(x, y), (u, v)

)
= max

{
d(x, u), d(y, v)

}
. (3.2)

Then (X × X,ρ) is a complete metric space (resp. complete partial metric space).

Let (X, d) be a metric space (or partial metric space), G : X × X → X, and let H : (X ×
X,ρ) → (X × X,ρ) be a mapping defined as in (3.1).

Let

M
(
(x, y), (u, v), d, G,ϕ∗)

= max

{
max

{
d(x, u), d(y, v)

}
+ ϕ∗(x, y) + ϕ∗(u, v),

max
{

d
(
x, G(x, y)

)
, d

(
y, G(y, x)

)}
+ ϕ∗(x, y) + ϕ∗(G(x, y), G(y, x)

)
,

max
{

d
(
u, G(u, v)

)
, d

(
v, G(v, u)

)}
+ ϕ∗(u, v) + ϕ∗(G(u, v), G(v, u)

)
,

1
2
[
max{d(

x, G(u, v)
)
, d

(
y, G(v, u)

)
+ ϕ∗(x, y) + ϕ∗(G(u, v), G(v, u)

)

+ max
{

d
(
u, G(x, y)

)
, d

(
v, G(y, x)

)}
+ ϕ∗(u, v) + ϕ∗(G(x, y), G(y, x)

)]
}

,

and let

L
(
(x, y), (u, v), d, G,ϕ∗)

= max
{
max

{
d(x, u), d(y, v)

}
+ ϕ∗(x, y) + ϕ∗(u, v),

max
{

d
(
u, G(x, y)

)
, d

(
v, G(y, x)

)}
+ ϕ∗(u, v) + ϕ∗(G(x, y), G(y, x)

)}
,

where ϕ∗ : X × X → [0,∞).
Then we have

M
(
(x, y), (u, v), d, G,ϕ∗)

= max

{
ρ
(
(x, y), (u, v)

)
+ ϕ∗(x, y) + ϕ∗(u, v),

ρ
(
(x, y), H(x, y)

)
+ ϕ∗(x, y) + ϕ∗(H(x, y)

)
,

ρ
(
(u, v), H(u, v)

)
+ ϕ∗(u, v) + ϕ∗(H(u, v)

)
,

1
2
[
ρ
(
(x, y), H(u, v)

)
+ ϕ∗(x, y) + ϕ∗(H(u, v)

)

+ ρ
(
(u, v), H(x, y)

)
+ ϕ∗(u, v) + ϕ∗(H(x, y)

)]}

= m
(
(x, y), (u, v),ρ, H ,ϕ∗). (3.3)

Also, we have

L
(
(x, y), (u, v), d, G,ϕ∗) = l

(
(x, y), (u, v),ρ, H ,ϕ∗). (3.4)
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Theorem 3.1 Let X be complete. Suppose that G : X × X → X is a mapping such that

ψ
(
d
(
G(x, y), G(u, v)

)
+ ϕ

(
G(x, y), G(y, x)

)
+ ϕ

(
G(u, v), G(v, u)

))

≤ ψ
(
M

(
(x, y), (u, v), d, G,ϕ∗)) – φ

(
L
(
(x, y), (u, v), d, G,ϕ∗)), (3.5)

for all (x, y), (u, v) ∈ X × X, where ψ ∈ � , φ ∈ �, and ϕ∗ : X × X → [0,∞) is lower semi-
continuous.

Then G has a unique coupled fixed point (x∗, y∗) ∈ X × X, and ϕ∗(x∗, y∗) = 0.

Proof Let ρ be the metric on X × X defined as (3.2), and let H : (X × X,ρ) → (X × X,ρ)
be a mapping defined as in (3.1) for (x, y), (u, v) ∈ X × X.

It follows from (3.3), (3.4), and (3.5) that

ρ
(
H(x, y), H(u, v)

) ≤ ψ(m
(
(x, y), (u, v),ρ, H ,ϕ∗) – φ

(
l
(
(x, y), (u, v),ρ, H ,ϕ∗))

for (x, y), (u, v) ∈ X × X.
By Theorem 2.1, H has a unique fixed point, and so by Lemma 3.1 G has a unique coupled

fixed point. �

Corollary 3.2 Let X be complete. Suppose that G : X × X → X is a mapping such that

ψ
(
d
(
G(x, y), G(u, v)

)
+ ϕ

(
G(x, y), G(y, x)

)
+ ϕ

(
G(u, v), G(v, u)

))

≤ ψ
(
M

(
(x, y), (u, v), d, G,ϕ∗)) – φ

(
M

(
(x, y), (u, v), d, G,ϕ∗))

for all (x, y), (u, v) ∈ X × X, where ψ ∈ � , φ ∈ �, and ϕ∗ : X × X → [0,∞) is lower semi-
continuous.

Then G has a unique coupled fixed point (x∗, y∗) ∈ X × X, and ϕ∗(x∗, y∗) = 0.

Corollary 3.3 Let X be complete. Suppose that G : X × X → X is a mapping such that

ψ
(
d
(
G(x, y), G(u, v)

)
+ ϕ

(
G(x, y), G(y, x)

)
+ ϕ

(
G(u, v), G(v, u)

))

≤ ψ
(
max

{
d(x, u), d(y, v)

}
+ ϕ∗(x, y) + ϕ∗(u, v)

)

– φ
(
max

{
d(x, u), d(y, v)

}
+ ϕ∗(x, y) + ϕ∗(u, v)

)

for all (x, y), (u, v) ∈ X × X, where ψ ∈ � , φ ∈ �, and ϕ∗ : X × X → [0,∞) is lower semi-
continuous.

Then G has a unique coupled fixed point (x∗, y∗) ∈ X × X, and ϕ∗(x∗, y∗) = 0.

Taking ϕ∗ = 0 in Theorem 3.1, we have the following corollary.

Corollary 3.4 Let X be complete. Suppose that G : X × X → X is a mapping such that

ψ
(
d
(
G(x, y), G(u, v)

)) ≤ ψ(M
(
(x, y), (u, v), d, G, 0

)
– φ

(
L
(
(x, y), (u, v), d, G, 0

))

for all (x, y), (u, v) ∈ X × X, where ψ ∈ � and φ ∈ �.
Then G has a unique coupled fixed point.
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Corollary 3.5 Let X be complete. Suppose that G : X × X → X is a mapping such that

ψ
(
d
(
G(x, y), G(u, v)

))

≤ ψ(M
(
(x, y), (u, v), d, G, 0

)
– φ

(
M

(
(x, y), (u, v), d, G, 0

))

for all (x, y), (u, v) ∈ X × X, where ψ ∈ � and φ ∈ �.
Then G has a unique coupled fixed point.

Corollary 3.6 Let X be complete. Suppose that G : X × X → X is a mapping such that

ψ
(
d
(
G(x, y), G(u, v)

))

≤ ψ(max
{

d(x, u), d(y, v)
}

– φ
(
max

{
d(x, u), d(y, v)

})

for all (x, y), (u, v) ∈ X × X, where ψ ∈ � and φ ∈ �.
Then G has a unique coupled fixed point.

4 Applications
In this section, we give application to fixed point theorems in partial metric spaces.

Recall some definitions and basic results in partial metric spaces. For more details, we
refer to [16].

Let Z be a nonempty set. A function p : Z × Z → [0,∞) is called a partial metric on Z
if, for all x, y, z ∈ Z, the following are satisfied:

(1) p(x, x) = p(y, y) = p(x, y) ⇔ x = y;
(2) p(x, x) ≤ p(x, y);
(3) p(x, y) = p(y, x);
(4) p(x, z) ≤ p(x, y) + p(y, z) – p(y, y).
The pair (Z, p) is called a partial metric space.
Note that if p(x, y) = 0, then x = y.
An example of a partial metric defined on [0,∞) is p(x, y) = max{x, y}, x, y ≥ 0. For more

examples of partial metrics, we refer to [16].
It is well known that each partial metric p on a nonempty set Z generates a T0 topology

on Z and that {B(x, ε) : ε > 0, x ∈ Z} is a base for the topology, where B(x, ε) = {y ∈ Z :
p(x, y) < p(x, x) + ε} for all x ∈ Z and ε > 0.

Also, it is known that the function ps : Z × Z → [0,∞) defined by

ps(x, y) = 2p(x, y) – p(x, x) – p(y, y) (4.1)

is a metric on Z.
Let Z be a partial metric space with partial metric p, let {xn}(⊂ Z) be a sequence, and let

x ∈ Z. Then we say that
(1) {xn} is convergent to x if limn→∞ p(x, xn) = p(x, x);
(2) {xn} is called a Cauchy sequence if there exists limn,m→∞ p(xn, xm) such that it is

finite;
(3) Z is complete if every Cauchy sequence in Z is convergent to a point z ∈ Z such that

lim
n,m→∞ p(xn, xm) = p(z, z).
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Remark 4.1 A partial metric space Z is complete if and only if for every Cauchy sequence
{xn} in Z, there exists z ∈ Z such that

lim
n,m→∞ p(xn, xm) = lim

n,m→∞ p(xn, z) = p(z, z).

Remark 4.2 Let {xn}(⊂ Z) be a sequence, and let x ∈ Z. If the sequence {xn} is convergent
to x in (Z, ps), then it is convergent to x in (Z, p), and the converse is not true (see [16]).

4.1 Fixed points on partial metric spaces
Theorem 4.1 Let Z be complete with partial metric p. Suppose that T : Z → Z is a map-
ping such that

ψ
(
p(Tx, Ty)

) ≤ ψ

(
max

{
p(x, y), p(x, Tx), p(y, Ty),

1
2
{

p(x, Ty) + p(y, Tx)
}})

– φ
(
max

{
p(x, y), p(y, Ty)

})
(4.2)

for all x, y ∈ Z, where ψ ∈ � and φ ∈ �.
Then there exists a unique z ∈ Z such that z = Tz and p(z, z) = 0.

Proof From (4.1) we have

p(x, y) =
ps(x, y) + p(x, x) + p(y, y)

2

for all x, y ∈ Z.
Let d(x, y) = ps(x,y)

2 and ϕ(x) = p(x,x)
2 for all x, y ∈ Z.

Then Z is a complete metric space with metric d, and ϕ : Z → [0,∞) is a lower semicon-
tinuous function. Also, (4.2) reduces to (2.1). By Theorem 2.1 there exists a unique z ∈ Z
such that z = Tz and p(z, z) = 0. �

Remark 4.3 Theorem 4.1 is a generalization of Theorem 8 of [3]. In fact, let φ and ψ be
nondecreasing and continuous functions.

Then Theorem 4.1 reduces to Theorem 8 of [3].

Corollary 4.2 Let Z be complete with partial metric p. Suppose that T : Z → Z is a map-
ping such that

ψ
(
p(Tx, Ty)

) ≤ ψ

(
max

{
p(x, y), p(x, Tx), p(y, Ty),

1
2
{

p(x, Ty) + p(y, Tx)
}})

– φ

(
max

{
p(x, y), p(x, Tx), p(y, Ty),

1
2
{

p(x, Ty) + p(y, Tx)
}})

for all x, y ∈ Z, where ψ ∈ � and φ ∈ �.
Then there exists a unique z ∈ Z such that z = Tz and p(z, z) = 0.

Remark 4.4 If φ is continuous in Corollary 4.2, then we obtain Theorem 2.5 of [6].
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Corollary 4.3 Let Z be complete with partial metric p. Suppose that T : Z → Z is a map-
ping such that

ψ
(
p(Tx, Ty)

) ≤ ψ
(
p(x, y)

)
– φ

(
p(x, y)

)

for all x, y ∈ Z, where ψ ∈ � and φ ∈ �.
Then there exists a unique z ∈ Z such that z = Tz and p(z, z) = 0.

4.2 Coupled fixed points on partial metric spaces
Theorem 4.4 Let Z be complete with partial metric p. Suppose that G : Z × Z → Z is a
mapping such that

ψ
(
p
(
G(x, y), G(u, v)

))

≤ ψ
(
M

(
(x, y), (u, v), p, G, 0

))
– φ

(
L
(
(x, y), (u, v), p, G, 0

))
(4.3)

for all (x, y), (u, v) ∈ Z × Z, where ψ ∈ � and φ ∈ �.
Then G has a unique coupled fixed point.

Proof Let ρ be the partial metric on Z × Z defined as in (3.2), and let H : (Z × Z,ρ) →
(Z × Z,ρ) be a mapping defined as in (3.1).

It follows from (4.3), (3.3), and (3.4) with ϕ∗ = 0 that

ρ
(
H(x, y), H(u, v)

) ≤ ψ(m
(
(x, y), (u, v),ρ, H , 0

)
– φ

(
l
(
(x, y), (u, v),ρ, H , 0

))

for all (x, y), (u, v) ∈ Z × Z.
By Theorem 4.1, H has a unique fixed point, and so by Lemma 3.1 G has a unique coupled

fixed point. �

Corollary 4.5 Let Z be complete with partial metric p. Suppose that G : Z × Z → Z is a
mapping such that

ψ
(
p
(
G(x, y), G(u, v)

))

≤ ψ
(
M

(
(x, y), (u, v), p, G, 0

))
– φ

(
M

(
(x, y), (u, v), p, G, 0

))

for all (x, y), (u, v) ∈ Z × Z, where ψ ∈ � and φ ∈ �.
Then G has a unique coupled fixed point.

Corollary 4.6 Let Z be complete with partial metric p. Suppose that G : Z × Z → Z is a
mapping such that

ψ
(
p
(
G(x, y), G(u, v)

))

≤ ψ
(
max

{
p(x, y), p(u, v)

})
– φ

(
max

{
p(x, y), p(u, v)

})

for all (x, y), (u, v) ∈ Z × Z, where ψ ∈ � and φ ∈ �.
Then G has a unique coupled fixed point.
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5 Conclusions
Motivated by the result of Samet et al. [33], we introduce the notion of generalized weakly
contractive mappings and prove the existence and uniqueness of fixed points for such
mappings. We give applications to the existence of fixed points in partial metric spaces.

This investigation can be extended to a quasi-metric spaces with applications to studies
of fixed points in quasi-partial metric spaces.
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