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Abstract
In this paper, we propose two strongly convergent algorithms which combines
diagonal subgradient method, projection method and proximal method to solve split
equilibrium problems and split common fixed point problems of nonexpansive
mappings in a real Hilbert space: fixed point set constrained split equilibrium
problems (FPSCSEPs) in real Hilbert spaces. The computations of first algorthim
requires prior knowledge of operator norm. To estimate the norm of an operator is
not always easy, and if it is not easy to estimate the norm of an operator, we purpose
another iterative algorithm with a way of selecting the step-sizes such that the
implementation of the algorithm does not need any prior information as regards the
operator norm. The strong convergence properties of the algorithms are established
under mild assumptions on equilibrium bifunctions. We also report some
applications and numerical results to compare and illustrate the convergence of the
proposed algorithms.
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1 Introduction
In 1994 Censor and Elfving [1] introduced a notion of the split feasibility problem, which
is to find an element of a closed convex subset of the Euclidean space whose image un-
der a linear operator is an element of another closed convex subset of a Euclidean space.
Then, in 2009 Censor and Segal [2] introduced the split common fixed point problem
(SCFPP) where split feasibility problem becomes a special case of SCFPP. Many convex
optimization problems in a Hilbert space can be written in the form of SCFPP and SCFPPs
have played an import role in the study of several unrelated problems arising in physics,
finance, economics, network analysis, elasticity, optimization, water resources, medical
images, structural analysis, image analysis and several other real-world applications (see,
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e.g., [3, 4]). As they have a wide range of applications SCFPPs have emerged as an inter-
esting and fascinating research area of mathematics.

Let � be a nonempty closed convex subset of a real Hilbert space H equipped with
the inner product 〈·, ·〉 and with the corresponding norm ‖ · ‖ and let U : � → � be an
operator. We denote by Fix U = {x ∈ � : Ux = x} the subset of fixed points of U . We say
that U is nonexpansive if ‖U(x) – U(y)‖ ≤ ‖x – y‖ ∀x, y ∈ �.

Throughout the paper, unless otherwise is stated, we assume that H1 and H2 be two
real Hilbert spaces and A : H1 → H2 be a nonzero bounded linear operator. Suppose C be
nonempty closed convex subset of H1 and T : C → C be nonexpansive operator, and D
be nonempty closed convex subset of H2 and V : D → D be nonexpansive operator. Given
two bifunctions f : C × C → R and g : D × D → R. The notation EP(f , C) represents the
following equilibrium problem: find x∗ ∈ C such that f (x∗, y) ≥ 0 ∀y ∈ C, and SEP(f , C)
represents its solution set. Many problems in physics, optimization, and economics can
be reduced to find the solution of equilibrum problem EP(f , C); see, e.g., [5]. In 1997, Com-
bettes and Hirstoaga [6] introduced an iterative scheme of finding the solution of EP(f , C)
under the assumption that SEP(f , C) is nonempty. Later on, many iterative algorithms are
considered to find the element of Fix T ∩ SEP(f , C); see [7–10]. In 2013, Kazmi and Rizvi
[11] considered a split equilibrium problem (SEP):

find x∗ ∈ H1 such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x∗ ∈ C,

f (x∗, y) ≥ 0, ∀y ∈ C,

u∗ = Ax∗ ∈ D,

g(u∗, u) ≥ 0, ∀u ∈ D.

They introduced the iterative scheme which converges strongly to a common solution of
the split equilibrium problem, the variational inequality problem and the fixed point prob-
lem for a nonexpansive mapping. Many researchers have also been proposed algorithms
for finding solution point of SEP; see, for example, [12–14] and the references therein.
Hieu [14] proposed an algorithm for solving SEP which combines three methods includ-
ing the projection method, the proximal method and the diagonal subgradient method.
Recently, Dinh, Son, and Anh [15] considered the following fixed point set-constrained
split equilibrium problems (FPSCSEPs):

find x∗ ∈ C such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x∗ ∈ Fix T ,

f (x∗, y) ≥ 0, ∀y ∈ C,

u∗ = Ax∗ ∈ Fix V ,

g(u∗, u) ≥ 0, ∀u ∈ D.

(1)

Let SFPSCSEP(f , C, T ; g, D, V ) or simply S denotes the solution set of FPSCSEP (1). The
problem (1) includes two fixed point set-constrained equilibrium problems (FPSCEPs).
Consider the following fixed point set-constrained equilibrium problem (FPSCEP(f ,
C, T)):

find x∗ ∈ C such that

⎧
⎨

⎩

x∗ ∈ Fix T ,

f (x∗, y) ≥ 0, ∀y ∈ C,
(2)
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and let SFPSCEP(f , C, T) or simply S1 denotes its solution set. Similarly, let FPSCEP(g,
D, V ) denote the fixed point set-constrained equilibrium problem

find u∗ ∈ D such that

⎧
⎨

⎩

u∗ ∈ Fix V ,

g(u∗, u) ≥ 0, ∀u ∈ D,
(3)

and SFPSCEP(g, D, V ) or simply S2 denotes its solution set. Therefore, from (1), (2), and
(3) we have S = {x∗ ∈ S1 : Ax∗ ∈ S2}. Moreover, S1 = {x∗ ∈ C : x∗ ∈ SEP(f , C) ∩ Fix T}. Sim-
ilarly, S2 = {u∗ ∈ D : u∗ ∈ SEP(g, D) ∩ Fix V }. In [15], Dinh, Son, and Anh proposed the
extragradient algorithms for finding a solution of the problem (FPSCSEP). Under certain
conditions on parameters, the proposed iteration sequences are proved to be weakly and
strongly convergent to a solution of (FPSCSEP). Furthermore, Dinh, Son, Jiao and Kim
[16] proposed the linesearch algorithm which combines the extragradient method incor-
porated with the Armijo linesearch rule for solving the problem (FPSCSEP) in real Hilbert
spaces under the assumptions that the first bifunction is pseudomonotone with respect to
its solution set, the second bifunction is monotone, and fixed point mappings are non-
expansive. For obtaining a strong convergence result, they combined the proposed algo-
rithm with hybrid cutting technique. The main advantages of the two mentioned extra-
gradient methods are that they can be worked with pseudomonotone bifunctions and also
the subproblems can be numerically solved more easily than subproblems in the proximal
method. However, the problems of solving strongly convex optimization subproblems and
of finding shrinking projections in [15, 16] is expensive excepts special cases when the fea-
sible set has a simple structure.

In this paper, we propose two strongly convergent algorithms for finding a solution of the
problem (FPSCSEP). In the first algorithm, two projections on feasible set and a projected
subgradient step followed by a proximal step is need to be computed per each iteration. In
the second algorithm, we propose a modification of the first algorithm where the second
projection is performed on feasible set while the first projection over C is replaced by a
projection onto a tangent plane to C in order to reduce the number of optimization sub-
problems to be solved. Moreover, in the second algorithm, a way of selecting an adaptive
step-size in the second projection has allowed us to avoid the prior knowledge of operator
norm. Comparing with the algorithms in [15, 16], the proposed algorithms has a simple
structure, and the metric projection, in general, is simpler than solving strongly convex
optimization subproblems on a same feasible set and finding shrinking projections.

The paper is organized as follows. In the next section we describe the properties and
lemmas which will be used in the proof for the convergence of the proposed algorithms.
The algorithms and the convergence analysis of the algorithms is presented in the third
section. Finally, in the last section we will see applications supported by an example and
numerical results.

2 Preliminary
To investigate the convergence of our proposed algorithm, in this section we will introduce
notations, and recall properties and technical lemmas which will be used in the sequel.
We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x as n → ∞, and
xn → x means that {xn} converges strongly to x. It is well known that adjoint operator A∗

of a bounded linear operator A : H1 → H2 exists.
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Let � be a subset of a real Hilbert space H and f : � × � → R be a bifunction. Then f
is said to be

(i) strongly monotone on �, if there is M > 0 (shortly M-strongly monotone on �) iff

f (x, y) + f (y, x) ≤ –M‖y – x‖2, ∀x, y ∈ �;

(ii) monotone on � iff

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ �;

(iii) pseudomonotone on � with respect to x ∈ � iff

f (x, y) ≥ 0 implies f (y, x) ≤ 0, ∀y ∈ �.

We say that f is pseudomonotone on � with respect to � ⊂ � if it is pseudomonotone
on � with respect to every x ∈ � . When � = �, f is called pseudomonotone on �. Clearly,
(i) ⇒ (ii) ⇒ (iii) for every x ∈ �.

Definition 2.1 Let � be a nonempty closed convex subset of a real Hilbert space H . The
metric projection on � is a mapping P� : H → � defined by

P�(x) = arg min
{‖y – x‖ : y ∈ �

}
.

Properties Let � be a nonempty closed convex subset of a real Hilbert space H and let P�

is a metric projection on �. Since � is nonempty, closed and convex, P�(x) exists and is
unique. From the definition of P�, it is easy to show that P� has the following characteristic
properties.

(i) For all y ∈ �,

∥
∥P�(x) – x

∥
∥ ≤ ‖x – y‖.

(ii) For all x, y ∈ �,

∥
∥P�(x) – P�(y)

∥
∥2 ≤ 〈

P�(x) – P�(y), x – y
〉
, ∀x, y ∈ H .

(iii) For all x ∈ �, y ∈ H ,

∥
∥x – P�(y)

∥
∥2 +

∥
∥P�(y) – y

∥
∥2 ≤ ‖x – y‖2.

(iv) z = P�(x) if and only if 〈x – z, y – z〉 ≤ 0, ∀y ∈ �.

Definition 2.2 Let H be a Hilbert space and f : � × � → R be a bifunction where f (x, ·)
is convex function for each x in �. Then for ε ≥ 0 the ε-subdifferential (ε-diagonal subd-
ifferential) of f at x, denoted by ∂ε f (x, ·)(x) or ∂ε f (x, x), is given by

∂ε f (x, ·)(x) =
{

w ∈ H : f (x, y) – f (x, x) + ε ≥ 〈w, y – x〉,∀y ∈ �
}

.
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Lemma 2.1 Given λ ∈ [0, 1], x, y ∈ H where H is Hilbert space. Then

∥
∥λx + (1 – λ)y

∥
∥2 = λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)‖x – y‖2.

Lemma 2.2 (Opial’s condition) For any sequence {xk} in the Hilbert space H with xk ⇀ x,
the inequality

lim inf
k→+∞

∥
∥xk – x

∥
∥ < lim inf

k→+∞
∥
∥xk – y

∥
∥

holds for each y ∈ H with y �= x.

The next lemma will be a useful tool to obtain the boundedness of the sequences gen-
erated by the algorithms and also to obtain the convergence of the whole sequence to the
solution.

Lemma 2.3 If {ak}∞k=0 and {bk}∞k=0 are two nonnegative real sequences such that

ak+1 ≤ ak + bk , ∀k ≥ 0

with
∑∞

k=0 bk < ∞, then the sequence {ak}∞k=0 converges.

Lemma 2.4 Let � be closed and convex subset of a Hilbert space H . If U : � → � is non-
expansive, then Fix U is closed and convex.

Now, we assume that the bifunctions g : D × D → R and f : C × C → R satisfy the
following assumptions, Condition A and Condition B, respectively.

Condition A
(A1) g(u, u) = 0, for all u ∈ D.
(A2) g is monotone on D, i.e., g(u, v) + g(v, u) ≤ 0, for all u, v ∈ D.
(A3) For each u, v, w ∈ D,

lim sup
α↓0

g
(
αw + (1 – α)u, v

) ≤ g(u, v).

(A4) g(u, ·) is convex and lower semicontinuous on D for each u ∈ D.

Condition B
(B1) f (x, x) = 0 for all x ∈ C.
(B2) f is pseudomonotone on C with respect to x ∈ SEP(f , C), i.e., if x ∈ SEP(f , C) then

f (x, y) ≥ 0 implies f (y, x) ≤ 0, ∀y ∈ C.
(B3) f satisfies the following condition, called the strict paramonotonicity property:

x ∈ SEP(f , C), y ∈ C, f (y, x) = 0 ⇒ y ∈ SEP(f , C).

(B4) f is jointly weakly upper semicontinuous on C × C in the sense that, if x, y ∈ C and
{xk}, {yk} ⊂ C converge weakly to x and y, respectively, then f (xk , yk) → f (x, y) as
k → ∞.



Gebrie and Wangkeeree Fixed Point Theory and Applications  (2018) 2018:5 Page 6 of 28

(B5) f (x, ·) is convex, lower semicontinuous and subdifferentiable on C, for all x ∈ C.
(B6) If {xk} is bounded sequence in C and εk → 0, then the sequence {wk} with

wk ∈ ∂εk f (xk , ·)(xk) is bounded.

The following three results are from equilibrium programming in Hilbert spaces.

Lemma 2.5 ([17, Lemma 2.12]) Let g satisfies Condition A. Then, for each r > 0 and u ∈ H2,
there exists w ∈ D such that

g(w, v) +
1
r
〈v – w, w – u〉 ≥ 0, ∀v ∈ D.

Lemma 2.6 ([17, Lemma 2.12]) Let g satisfy Condition A. Then, for each r > 0 and u ∈ H2,
define a mapping (called the resolvent of g), given by

Tg
r (u) =

{

w ∈ D : g(w, v) +
1
r
〈v – w, w – u〉 ≥ 0,∀v ∈ D

}

.

Then the following holds:
(i) Tg

r is single-valued;
(ii) Tg

r is a firmly nonexpansive, i.e., for all u, v ∈ H ,

∥
∥Tg

r (u) – Tg
r (v)

∥
∥2 ≤ 〈

Tg
r (u) – Tg

r (v), u – v
〉
;

(iii) Fix(Tg
r ) = SEP(g, D), where Fix(Tg

r ) is the fixed point set of Tg
r ;

(iv) SEP(g, D) is closed and convex.

Lemma 2.7 ([17, Lemma 2.12]) For r, s > 0 and u, v ∈ H2. Under the assumptions of
Lemma 2.6, then

∥
∥Tg

r (u) – Tg
s (v)

∥
∥ ≤ ‖u – v‖ +

|s – r|
s

∥
∥Tg

s (v) – v
∥
∥

3 Main result
In this section, we propose two strongly convergent algorithms for solving FPSCSEPs (1)
which combines three methods including the projection method, the proximal method
and the diagonal subgradient method.

3.1 Projected subgradient-proximal algorithm
Algorithm 3.1
Initialization: Choose x0 ∈ C. Take {ρk}, {βk}, {εk}, {rk}, {δk} and {μk} such that

ρk ≥ ρ > 0, βk ≥ 0, εk ≥ 0, rk ≥ r > 0, 0 < a < δk < b < 1,

0 < c ≤ μk ≤ b <
1

‖A‖2 ,

∞∑

k=0

βk

ρk
= +∞,

∞∑

k=0

βkεk

ρk
< +∞,

∞∑

k=0

β2
k < +∞.

Step 1: Take wk ∈ H1 such that wk ∈ ∂εk f (xk , ·)(xk).
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Step 2: Calculate

αk =
βk

ηk
, ηk = max

{
ρk ,

∥
∥wk∥∥

}

and

yk = PC
(
xk – αkwk).

Step 3: Evaluate

tk = δkxk + (1 – δk)T
(
yk).

Step 4: Evaluate

uk = Tg
rk

(
Atk).

Step 5: Evaluate

xk+1 = PC
(
tk + μkA∗(V

(
uk) – Atk)).

Step 6: Set k := k + 1 and go to Step 1.

Remark 3.1 Since f (x, ·) is a lower semicontinuous convex function and C ⊂ dom f (x, ·)
for every x ∈ C, then the εk-diagonal subdifferential ∂εk f (xk , ·)(xk) �= ∅ for every εk > 0.
Moreover, ρk ≥ ρ > 0. Therefore, each step of the algorithm are well defined, implying
that Algorithm 3.1 is well defined.

Remark 3.2 f is pseudomonotone on C with respect to SEP(f , C), then under Condition B
((B1) and (B4)), the set SEP(f , C) is closed and convex.

Therefore, by Lemma 2.4, Remark 3.2 and by the linearity property of the operator A
the solution set S of the FPSCSEP is convex and closed. In this paper, the solution set S is
assumed to be nonempty.

Lemma 3.1 Let {yk}, {tk} and {xk} be sequences generated by Algorithm 3.1. For x∗ ∈ S,

∥
∥tk – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 2αk(1 – δk)f
(
xk , x∗) – Lk + ξk ,

where

Lk = (1 – δk)
∥
∥xk – yk∥∥2 + δk(1 – δk)

∥
∥T

(
yk) – xk∥∥2

and

ξk = 2(1 – δk)
βkεk

ρk
+ 2(1 – δk)β2

k .
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Proof Let x∗ ∈ S. From yk = PC(xk – βk
ηk

wk) and x∗ ∈ S we have

〈
xk – αkwk – yk , yk – x∗〉 ≥ 0,

implying that

〈
x∗ – yk , xk – yk 〉 ≤ αk

〈
wk , x∗ – yk 〉

= αk
〈
wk , x∗ – xk 〉 + αk

〈
wk , xk – yk 〉

≤ αk
〈
wk , x∗ – xk 〉 + αk

∥
∥wk∥∥

∥
∥xk – yk∥∥. (4)

But also xk ∈ C. Thus,

〈
xk – αkwk – yk , yk – xk 〉 ≥ 0,

and this together with (4) gives us

〈
xk – yk , xk – yk 〉 =

∥
∥xk – yk∥∥2 ≤ αk

〈
wk , xk – yk 〉 ≤ αk

∥
∥wk∥∥

∥
∥xk – yk∥∥.

That is,

∥
∥xk – yk∥∥ ≤ αk

∥
∥wk∥∥.

Thus,

αk
∥
∥wk∥∥

∥
∥xk – yk∥∥ ≤ (

αk
∥
∥wk∥∥

)2 =
(

βk‖wk‖
ηk

)2

= β2
k

( ‖wk‖
max{ρk ,‖wk‖}

)2

≤ β2
k . (5)

Since xk ∈ C and wk ∈ ∂εk f (xk , ·)(xk) we have

f
(
xk , x∗) + εk = f

(
xk , x∗) – f

(
xk , xk) + εk

≥ 〈
wk , x∗ – xk 〉. (6)

Using the definitions of αk and ηk we obtain

αk =
βk

ηk
=

βk

max{ρk ,‖wk‖} ≤ βk

ρk
. (7)

From (4)-(7) we have

〈
x∗ – yk , xk – yk 〉 ≤ αkf

(
xk , x∗) +

βkεk

ρk
+ β2

k . (8)

But

2
〈
x∗ – yk , xk – yk 〉 =

∥
∥yk – x∗∥∥2 +

∥
∥xk – yk∥∥2 –

∥
∥xn – x∗∥∥2. (9)
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From (8) and (9) we have

∥
∥yk – x∗∥∥2 ≤ ∥

∥xn – x∗∥∥2 –
∥
∥xk – yk∥∥2 + 2αkf

(
xk , x∗) + 2

βkεk

ρk
+ 2β2

k . (10)

Then by definition of tk we have

∥
∥tk – x∗∥∥2 =

∥
∥δkxk + (1 – δk)T

(
yk) – x∗∥∥2

=
∥
∥δk

(
xk – x∗) + (1 – δk)

(
T

(
yk) – x∗)∥∥2

= δk
∥
∥xk – x∗∥∥2 + (1 – δk)

∥
∥T

(
yk) – x∗∥∥2 – δk(1 – δk)

∥
∥T

(
yk) – xk∥∥2

= δk
∥
∥xk – x∗∥∥2 + (1 – δk)

∥
∥T

(
yk) – T

(
x∗)∥∥2 – δk(1 – δk)

∥
∥T

(
yk) – xk∥∥2

≤ δk
∥
∥xk – x∗∥∥2 + (1 – δk)

∥
∥yk – x∗∥∥2 – δk(1 – δk)

∥
∥T

(
yk) – xk∥∥2,

and this together with (10) we have

∥
∥tk – x∗∥∥2 ≤ δk

∥
∥xk – x∗∥∥2 + (1 – δk)

(
∥
∥xk – x∗∥∥2 –

∥
∥xk – yk∥∥2

+ 2αkf
(
xk , x∗) + 2

βkεk

ρk
+ 2β2

k

)

– δk(1 – δk)
∥
∥T

(
yk) – xk∥∥2.

That is,

∥
∥tk – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 2αk(1 – δk)f
(
xk , x∗) – Lk + ξk ,

where

Lk = (1 – δk)
∥
∥xk – yk∥∥2 + δk(1 – δk)

∥
∥T

(
yk) – xk∥∥2

and

ξk = 2(1 – δk)
βkεk

ρk
+ 2(1 – δk)β2

k . �

Remark 3.3 Since x∗ ∈ SEP(C, f ) we have f (x∗, x) ≥ 0 for all x ∈ C, and by pseudomono-
tonicity of f with respect to SEP(C, f ) we have f (x, x∗) ≤ 0 for all x ∈ C. Thus since the
sequence {xk} is in C we have f (xk , x∗) ≤ 0. Thus, we can also have

∥
∥tk – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 – Lk + ξk . (11)

Lemma 3.2 Let {yk}, {uk}, and {xk} be sequences generated by Algorithm 3.1. Let x∗ ∈ S.
Then

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 2(1 – δk)αkf
(
xk , x∗) + ξk – Kk ,

where

Kk = μk
(
1 – μk‖A‖2)∥∥V

(
uk) – Atk∥∥2 + μk

∥
∥uk – Atk∥∥2 + (1 – δk)

∥
∥xk – yk∥∥2

+ δk(1 – δk)
∥
∥T

(
yk) – xk∥∥2
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and

ξk = 2(1 – δk)
βkεk

ρk
+ 2(1 – δk)β2

k .

Proof Let x∗ ∈ S. By Lemma 2.6, we have

∥
∥Tg

rk
Atk – Ax∗∥∥2 =

∥
∥Tg

rk
Atk – Tg

rk
Ax∗∥∥2

≤ 〈
Tg

rk
Atk – Tg

rk
Ax∗, Atk – Ax∗〉

=
〈
Tg

rk
Atk – Ax∗, Atk – Ax∗〉

=
1
2
(∥
∥Tg

rk
Atk – Ax∗∥∥2 +

∥
∥Atk – Ax∗∥∥2 –

∥
∥Tg

rk
Atk – Atk∥∥2).

That is,

∥
∥Tg

rk
Atk – Ax∗∥∥2 ≤ 1

2
(∥
∥Tg

rk
Atk – Ax∗∥∥2 +

∥
∥Atk – Ax∗∥∥2 –

∥
∥Tg

rk
Atk – Atk∥∥2). (12)

In view of (12), we have

∥
∥Tg

rk
Atk – Ax∗∥∥2 ≤ ∥

∥Atk – Ax∗∥∥2 –
∥
∥Tg

rk
Atk – Atk∥∥2.

Thus,

∥
∥V

(
uk) – Ax∗∥∥2 =

∥
∥VTg

rk
Atk – VAx∗∥∥2

=
∥
∥Tg

rk
Atk – Ax∗∥∥2

≤ ∥
∥Atk – Ax∗∥∥2 –

∥
∥Tg

rk
Atk – Atk∥∥2, (13)

which gives

〈
A

(
tk – x∗), V

(
uk) – Atk 〉

=
〈
A

(
tk – x∗) + V

(
uk) – Atk – V

(
uk) + Atk , V

(
uk) – Atk 〉

=
〈
V

(
uk) – Ax∗, V

(
uk) – Atk 〉 –

∥
∥V

(
uk) – Atk∥∥2

=
1
2
(∥
∥V

(
uk) – Ax∗∥∥2 +

∥
∥V

(
uk) – Atk∥∥2 –

∥
∥Atk – Ax∗∥∥2) –

∥
∥V

(
uk) – Atk∥∥2

=
1
2
(∥
∥V

(
uk) – Ax∗∥∥2 –

∥
∥V

(
uk) – Atk∥∥2 –

∥
∥Atk – Ax∗∥∥2).

Hence,

〈
A

(
tk – x∗), V

(
uk) – Atk 〉

=
1
2
(∥
∥V

(
uk) – Ax∗∥∥2 –

∥
∥V

(
uk) – Atk∥∥2 –

∥
∥Atk – Ax∗∥∥2). (14)

From (13) and (14) we have

〈
A

(
tk – x∗), V

(
uk) – Atk 〉 ≤ –

1
2
(∥
∥Tg

rk
Atk – Atk∥∥2 +

∥
∥V

(
uk) – Atk∥∥2). (15)



Gebrie and Wangkeeree Fixed Point Theory and Applications  (2018) 2018:5 Page 11 of 28

Then from (13) and (15) we have

∥
∥xk+1 – x∗∥∥2

=
∥
∥PC

(
tk + μkA∗(V

(
uk) – Atk)) – PC

(
x∗)∥∥

≤ ∥
∥
(
tk – x∗) + μk

(
V

(
uk) – Atk)∥∥2

=
∥
∥tk – x∗∥∥2 +

∥
∥μkA∗(V

(
uk) – Atk)∥∥2 + 2μk

〈
tk – x∗, A∗(V

(
uk) – Atk)〉

≤ ∥
∥tk – x∗∥∥2 + μ2

k
∥
∥A∗∥∥2∥∥

(
V

(
uk) – Atk)∥∥2 + 2μk

〈
A

(
tk – x∗), V

(
uk) – Atk 〉

≤ ∥
∥tk – x∗∥∥2 + μ2

k
∥
∥A∗∥∥2∥∥

(
V

(
uk) – Atk)∥∥2 – μk

(∥
∥Tg

αk
Atk – Atk∥∥2 +

∥
∥Vuk – Atk∥∥2)

=
∥
∥tk – x∗∥∥2 – μk

(
1 – μk‖A‖2)∥∥V

(
uk) – Atk∥∥2 – μk

∥
∥Tg

rk
Atk – Atk∥∥2

=
∥
∥tk – x∗∥∥2 – μk

(
1 – μk‖A‖2)∥∥V

(
uk) – Atk∥∥2 – μk

∥
∥uk – Atk∥∥2

=
∥
∥tk – x∗∥∥2 – μk

(
1 – μk‖A‖2)∥∥V

(
uk) – Atk∥∥2 – μk

∥
∥uk – Atk∥∥2.

That is,

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥tk – x∗∥∥2 – μk
(
1 – μk‖A‖2)∥∥V

(
uk) – Atk∥∥2 – μk

∥
∥uk – Atk∥∥2. (16)

Therefore, from Lemma 3.1 and from (16) we have

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 2αk(1 – δk)f
(
xk , x∗) – Lk + ξk

– μk
(
1 – μk‖A‖2)∥∥V

(
uk) – Atk∥∥2 – μk

∥
∥uk – Atk∥∥2. (17)

That is,

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 2(1 – δk)αkf
(
xk , x∗) + ξk – Kk , (18)

where

Kk = μk
(
1 – μk‖A‖2)∥∥V

(
uk) – Atk∥∥2 + μk

∥
∥uk – Atk∥∥2 + (1 – δk)

∥
∥xk – yk∥∥2

+ δk(1 – δk)
∥
∥T

(
yk) – xk∥∥2

and

ξk = 2(1 – δk)
βkεk

ρk
+ 2(1 – δk)β2

k . �

Lemma 3.3 Let {yk}, {tk}, {uk}, and {xk} be sequences generated by Algorithm 3.1. Then:
(i) For x∗ ∈ S, the limit of the sequence {‖xk – x∗‖2} exists (and {xk} is bounded).

(ii) lim supk→∞ f (xk , x) = 0 for all x ∈ S.
(iii)

lim
k→∞

∥
∥V

(
uk) – Atk∥∥ = lim

k→∞
∥
∥uk – Atk∥∥ = 0,

lim
k→∞

∥
∥xk – yk∥∥ = lim

k→∞
∥
∥T

(
yk) – xk∥∥ = 0.
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(iv)

lim
k→∞

∥
∥tk – xk∥∥ = lim

k→∞
∥
∥T

(
xk) – xk∥∥ = lim

k→∞
∥
∥V

(
uk) – uk∥∥ = 0.

Proof (i) Let x∗ ∈ S. Since f (xk , x∗) ≤ 0, Kk ≥ 0, from Lemma 3.2 we can have

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + ξk .

Observing that ξk = 2(1 – δk) βkεk
ρk

+ 2(1 – δk)β2
k ≤ 2 βkεk

ρk
+ 2β2

k and using the initialization
condition of the parameters we can see that

∑∞
k=0 ξk < ∞.

Therefore, limk→∞ ‖xk – x∗‖2 exists and this implies that the sequence {xk} is bounded.
(ii) From lemma 3.2 we have

Kk + 2(1 – δk)αk
[
–f

(
xk , x∗)]

≤ ∥
∥xk – x∗∥∥2 –

∥
∥xk+1 – x∗∥∥2 + ξk

=
∥
∥xk – x∗∥∥2 –

∥
∥xk+1 – x∗∥∥2 + 2(1 – δk)

βkεk

ρk
+ 2(1 – δk)β2

k

≤ ∥
∥xk – x∗∥∥2 –

∥
∥xk+1 – x∗∥∥2 + 2

βk

ρk
εk + 2β2

k .

Summing up the above inequalities for every N , we obtain

0 ≤
N∑

k=0

(
Kk + 2(1 – δk)αk

[
–f

(
xk , x∗)])

≤
N∑

k=0

(
∥
∥xk – x∗∥∥2 –

∥
∥xk+1 – x∗∥∥2 + 2

βk

ρk
εk + 2β2

k

)

.

This will yield

0 ≤
N∑

k=0

Kk +
N∑

k=0

(
2(1 – δk)αk

[
–f

(
xk , x∗)])

≤ ∥
∥x0 – x∗∥∥2 –

∥
∥xN+1 – x∗∥∥2 + 2

N∑

k=0

βk

ρk
εk + 2

N∑

k=0

β2
k .

Letting N → +∞, we have

0 ≤
∞∑

k=0

Kk +
∞∑

k=0

(
2(1 – δk)αk

[
–f

(
xk , x∗)]) < +∞.

Hence,

∞∑

k=0

Kk < +∞ (19)
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and

∞∑

k=0

(
2(1 – δk)αk

[
–f

(
xk , x∗)]) < +∞.

Since the sequence {xk} is bounded by Condition B(B6) the sequence {wk} is also bounded.
Thus, there is a real number w ≥ ρ such that ‖wk‖ ≤ w. Thus,

αk =
βk

ηk
=

βk

max{ρk ,‖wk‖} =
βk

ρk max{1, ‖wk‖
ρk

}
≥ βkρ

ρkw
. (20)

Noting

0 ≤ 2(1 – b)
∞∑

k=0

(
αk

[
–f

(
xk , x∗)]) ≤

∞∑

k=0

(
2(1 – δk)αk

[
–f

(
xk , x∗)]) < +∞,

we have

0 ≤ 2(1 – b)
∞∑

k=0

(
αk

[
–f

(
xk , x∗)]) < +∞. (21)

From (20) and (21) we have

0 ≤ 2(1 – b)
∞∑

k=0

(
βkρ

ρkw
[
–f

(
xk , x∗)]

)

≤ 2(1 – b)
∞∑

k=0

(
αk

[
–f

(
xk , x∗)]) < +∞.

That is,

0 ≤ 2ρ(1 – b)
w

∞∑

k=0

(
βk

ρk

[
–f

(
xk , x∗)]

)

< +∞.

Since
∑∞

k=0
βk
ρk

= +∞ and –f (x∗, xk) ≤ 0 we can conclude that

lim sup
k→∞

f
(
xk , x

)
= 0

for all x ∈ S.
(iii) From (19) and since 0 < c ≤ μk ≤ b < 1

‖A‖2 , 0 < δk < 1 we have

lim
k→∞

∥
∥V

(
uk) – Atk∥∥2 = lim

k→∞
∥
∥uk – Atk∥∥2 = lim

k→∞
∥
∥xk – yk∥∥2 = lim

k→∞
∥
∥T

(
yk) – xk∥∥2 = 0.

Hence, the result follows.
(iv) The result follows from (iii) and from the following inequalities:

∥
∥tk – xk∥∥ ≤ ∥

∥δkxk + (1 – δk)T
(
yk) – xk∥∥ = (1 – δk)

∥
∥xk – T

(
yk)∥∥ ≤ ∥

∥xk – T
(
yk)∥∥,

∥
∥T

(
xk) – xk∥∥ ≤ ∥

∥T
(
xk) – T

(
yk)∥∥ +

∥
∥xk – T

(
yk)∥∥ ≤ ∥

∥xk – yk∥∥ +
∥
∥xk – T

(
yk)∥∥,

and ‖V (uk) – uk‖ ≤ ‖V (uk) – Atk‖ + ‖uk – Atk‖. �
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Theorem 3.4 Assume Condition A and Condition B are satisfied and let {yk}, {tk}, {uk},
and {xk}, be sequences generated by Algorithm 3.1. Then the sequences {yk}, {tk} and {xk}
converge strongly to a point p ∈ S and {uk} converge strongly to a point Ap ∈ S2. Moreover,

p = lim
k→+∞

PS
(
xk).

Proof Let x∗ ∈ S. From Lemma 3.3(i) we have seen that the sequence {xk} is bounded.
There exists a subsequence {xkj} of {xk} such that xkj ⇀ p as j → +∞, where p ∈ C
and

lim sup
j→+∞

f
(
xkj , x∗) = lim

i→+∞ f
(
xki , x∗).

But by the weakly upper semicontinuity of f (·, x∗) and by Lemma 3.3(ii) we have

f
(
p, x∗) ≥ lim sup

j→+∞
f
(
xkj , x∗) = lim

i→+∞ f
(
xki , x∗) = lim sup

k→+∞
f
(
xk , x∗) = 0.

Since x∗ ∈ S and p ∈ C we have f (x∗, p) ≥ 0. As f is pseudomonotone we have f (p, x∗) ≤ 0.
Thus, this together with the above fact gives f (x∗, p) = 0. Hence, by Condition B(B3) we
have p ∈ SEP(f , C).

Since

〈
ykj , h

〉
=

〈
ykj – xkj , h

〉
+

〈
xkj , h

〉
, ∀h ∈ H1,

and using limk→+∞ ‖xk – yk‖ = 0 from Lemma 3.3 we have ykj ⇀ p as j → +∞. Therefore,
Aykj ⇀ Ap as j → +∞. Similarly, we can have tkj ⇀ p as j → +∞ and hence Atkj ⇀ Ap as
j → +∞.

Assume p /∈ Fix T , that is, T(p) �= p. Thus, using Opial’s condition and Lemma 3.3

lim inf
j→+∞

∥
∥xkj – p

∥
∥ < lim inf

j→+∞
∥
∥xkj – T(p)

∥
∥

= lim inf
j→+∞

∥
∥xkj – T

(
xkj

)
+ T

(
xkj

)
– T(p)

∥
∥

≤ lim inf
j→+∞

(∥
∥xkj – T

(
xkj

)∥
∥ +

∥
∥T

(
xkj

)
– T(p)

∥
∥
)

= lim inf
j→+∞

∥
∥T

(
xkj

)
– T(p)

∥
∥

≤ lim inf
j→+∞

∥
∥xkj – p

∥
∥,

which is a contradiction. Hence, it must be the case that p ∈ Fix T .
Hence,

p ∈ S1. (22)

Since limk→+∞ ‖uk – Atk‖ = 0 and

〈
ukj , l

〉
=

〈
ukj – Atkj , l

〉
+

〈
Atkj , l

〉
, ∀l ∈ H2,
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we have ukj ⇀ Ap as j → +∞. Assume Ap /∈ Fix V . Thus, using Opial’s condition and
Lemma 3.2

lim inf
j→+∞

∥
∥ukj – Ap

∥
∥ < lim inf

j→+∞
∥
∥ukj – V (Ap)

∥
∥

= lim inf
j→+∞

∥
∥ukj – V

(
ukj

)
+ V

(
ukj

)
– V (Ap)

∥
∥

≤ lim inf
j→+∞

(∥
∥ukj – V

(
ukj

)∥
∥ +

∥
∥V

(
ukj

)
– V (Ap)

∥
∥
)

= lim inf
j→+∞

∥
∥V

(
ukj

)
– V (Ap)

∥
∥

= lim inf
j→+∞

∥
∥ukj – Ap

∥
∥,

which is a contradiction. Hence, it must be the case that Ap ∈ Fix V . Let r > 0. Assume
Ap /∈ Fix(Tg

r ). Thus, Tg
r (Ap) �= Ap. Thus, using Opial’s condition, Lemma 3.2, Lemma 3.3

we obtain the following:

lim inf
j→+∞

∥
∥Atkj – Ap

∥
∥ < lim inf

j→+∞
∥
∥Atkj – Tg

r (Ap)
∥
∥

= lim inf
j→+∞

∥
∥Atkj – ukj + ukj – Tg

r (Ap)
∥
∥

≤ lim inf
j→+∞

(∥
∥Atkj – ukj

∥
∥ +

∥
∥ukj – Tg

r (Ap)
∥
∥
)

= lim inf
j→+∞

∥
∥ukj – Tg

r (Ap)
∥
∥

= lim inf
j→+∞

∥
∥Tg

rkj

(
Atkj

)
– Tg

r (Ap)
∥
∥

≤ lim inf
j→+∞

(
∥
∥Atkj – Ap

∥
∥ +

|rkj – r|
rkj

∥
∥Tg

r
(
Atkj

)
– Atkj

∥
∥

)

= lim inf
j→+∞

(
∥
∥Atkj – Ap

∥
∥ +

|rkj – r|
rkj

∥
∥ukj – Atkj

∥
∥

)

= lim inf
j→+∞

∥
∥Atkj – Ap

∥
∥,

which is a contradiction. Hence, it must be the case that Ap ∈ Fix(Tg
r ). By Lemma 2.6(iii)

we have Ap ∈ SEP(g, D). Therefore,

Ap ∈ S2. (23)

Therefore, from (22) and (23) we have p ∈ S. That is, p ∈ S and p is a weak cluster point
of the sequence {xk}. By Lemma 3.3 {‖xk – p‖2} converges. Hence, we conclude that the
sequence {xk} strongly converges to p. As a result of this it is easy to see that tk → p and
yk → p as j → +∞. Moreover, Ayk → Ap, Atk → Ap, and Axk → Ap. From

∥
∥uk – Ap

∥
∥ ≤ ∥

∥uk – Atk∥∥ +
∥
∥Atk – Ap

∥
∥
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we have uk → Ap. We will end the proof by showing p = limk→+∞ PS(xk). From Lemma 3.2
we have

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + ξk , ∀x∗ ∈ S. (24)

Let zk = PS(xk). Since PS(xk) ∈ S we have

∥
∥xk+1 – zk∥∥2 ≤ ∥

∥xk – zk∥∥2 + ξk . (25)

But by property of metric projection we have

∥
∥xk+1 – zk+1∥∥2 ≤ ∥

∥xk+1 – x∗∥∥2, ∀x∗ ∈ S.

Thus,

∥
∥xk+1 – zk+1∥∥2 ≤ ∥

∥xk+1 – zk∥∥2. (26)

From (25) and (26) we have

∥
∥xk+1 – zk+1∥∥2 ≤ ∥

∥xk – zk∥∥2 + ξk .

Since
∑∞

k=0 ξk < ∞, by Lemma 2.3 we see that limk→+∞ ‖xk – zk‖2 exists. Using the defini-
tion of a metric projection we can have

∥
∥PS

(
xn) – PS

(
xm)∥

∥2 +
∥
∥xm – PS

(
xm)∥

∥2 ≤ ∥
∥xm – PS

(
xn)∥∥2. (27)

Let m ≥ n. Then using (24) and (27) we have

∥
∥zn – zm∥

∥2 =
∥
∥PS

(
xn) – PS

(
xm)∥

∥2

≤ ∥
∥xm – PS

(
xn)∥∥2 –

∥
∥xm – PS

(
xm)∥

∥2

=
∥
∥xm – zn∥∥2 –

∥
∥xm – zm∥

∥2

≤ ∥
∥xm–1 – zn∥∥2 + ξm–1 –

∥
∥xm – zm∥

∥2

≤ ∥
∥xn – zn∥∥2 +

m–1∑

i=n

ξm–1 –
∥
∥xm – zm∥

∥2.

As a result of
∑∞

k=0 ξk < ∞ and limk→+∞ ‖xk – zk‖2 exists if we let m, n → +∞ we can see
that ‖zn – zm‖2 → 0. This implies the sequence {zk} is a Cauchy sequence and hence it
converges to some point z in S. Since zk = PS(xk) we have

〈
xk – zk , x∗ – zk 〉 ≤ 0, ∀x∗ ∈ S.

Thus

〈
xk – zk , p – zk 〉 ≤ 0.
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Thus,

‖z – p‖2 = 〈p – z, p – z〉 = lim
k→+∞

〈
xk – zk , p – zk 〉 ≤ 0.

Hence, p = z and limk→+∞ PS(xk) = p. �

Let Id represents identity operator. Then, if T = Id and V = Id, then FPSCSEP (1) is
reduced to SEP. Hence, Algorithm 3.1 can be rewritten as follows.

Algorithm 3.1B
Initialization: Choose x0 ∈ C. Take {ρk}, {βk}, {εk}, {rk}, {δk} and {μk} such that

ρk ≥ ρ > 0, βk ≥ 0, εk ≥ 0, rk ≥ r > 0, 0 < a < δk < b < 1,

0 < c ≤ μk ≤ b <
1

‖A‖2 ,

∞∑

k=0

βk

ρk
= +∞,

∞∑

k=0

βkεk

ρk
< +∞,

∞∑

k=0

β2
k < +∞.

Step 1: Take wk ∈ H1 such that wk ∈ ∂εk f (xk , ·)(xk).
Step 2: Calculate

αk =
βk

ηk
, ηk = max

{
ρk ,

∥
∥wk∥∥

}

and

yk = PC
(
xk – αkwk).

Step 3: Evaluate

tk = δkxk + (1 – δk)yk .

Step 4: Evaluate

uk = Tg
rk

(
Atk).

Step 5: Evaluate

xk+1 = PC
(
tk + μkA∗(uk – Atk)).

Step 6: Set k := k + 1 and go to Step 1.

The following corollary is an immediate consequence of Theorem 3.4.

Corollary 3.5 Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a nonzero
bounded linear operator. Suppose C be nonempty closed convex subset of H1, D be nonempty
closed convex subset of H2, and f : C × C → R and g : D × D → R be bifunction. Assume
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Condition A and Condition B are satisfied and let {yk}, {tk}, {uk}, and {xk}, be sequences
generated by Algorithm 3.1B. If S = {x∗ ∈ SEP(f , C) : Ax∗ ∈ SEP(g, D)} �= ∅, then sequences
{yk}, {tk} and {xk} converge strongly to a point p ∈ S and {uk} converges strongly to a point
Ap ∈ SEP(g, D).

3.2 Modified projected subgradient-proximal algorithm
The computation of Algorithm 3.1 involves the evaluation of two projections on the feasi-
ble set C and the estimated value of operator norm ‖A‖. It is not an easy task to calculate
or at least to estimate the operator norm A. Based on Algorithm 3.1, we propose an algo-
rithm with a way of selecting the step-sizes such that its implementation does not need
any prior information as regards the operator norm, and the algorithm involves only one
projection on the feasible set C.

For any α > 0 define hα(x) = 1
2‖VTg

αA(x) – A(x)‖2 for all x ∈ H1, and so ∇hα(x) =
A∗(VTg

αA(x) – A(x)).

Algorithm 3.2
Initialization: Choose x0 ∈ C. Take {ρk}, {βk}, {εk}, {rk}, {δk} and {ηk} such that

ρk ≥ ρ > 0, βk ≥ 0, εk ≥ 0, rk = r > 0, 0 < a < δk < b < 1,

0 < η ≤ ηk ≤ 4 – η,
∞∑

k=0

βk

ρk
= +∞,

∞∑

k=0

βkεk

ρk
< +∞,

∞∑

k=0

β2
k < +∞.

Step 1: Find wk ∈ H1 such that wk ∈ ∂εk f (xk , ·)(xk).
Step 2: Evaluate yk = PTk (xk – αkwk) where αk = βk

ηk
, ηk := max{ρk ,‖wk‖}, and T0 = C, Tk =

{z ∈ H1 : 〈tk–1 + μk–1∇hr(tk–1) – xk , z – xk〉 ≤ 0} for k = 1, 2, 3, . . . .
Step 3: Evaluate tk = δkxk + (1 – δk)T(yk).
Step 4: Evaluate uk = Tg

r (Atk).
Step 5: Evaluate

xk+1 = PC
(
tk + μk∇hr

(
tk)),

where

μk =

⎧
⎨

⎩

0, if ∇hr(tk) = 0,
ηk hr (tk )

‖∇hr (tk )‖2 , otherwise.

Step 6: Set k = k + 1 and go to Step 1.

Remark 3.4 By definition of Tk , we see that Tk is either half-space or the whole space
H1. Therefore, for each k, Tk is closed and convex set, and the computation of projection
yk = PTk (xk – αkwk) in Step 2 of Algorithm 3.2 is explicit and easier than the computation
of projection yk = PC(xk – αkwk) in Step 2 of Algorithm 3.1 when C has a complex struc-
ture. Moreover, by a similar reasoning to Algorithm 3.1, Algorithm 3.2 is well defined and
obviously the solution set S of the FPSCSEP is convex and closed.
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Lemma 3.6 Let {yk}, {tk} and {xk} be sequences generated by Algorithm 3.2.
(i) C ⊂ Tk for all k ≥ 0.

(ii) For x∗ ∈ S,

∥
∥tk – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 2αk(1 – δk)f
(
xk , x∗) – Lk + ξk ,

where

Lk = (1 – δk)
∥
∥xk – yk∥∥2 + δk(1 – δk)

∥
∥T

(
yk) – xk∥∥2

and

ξk = 2(1 – δk)
βkεk

ρk
+ 2(1 – δk)β2

k .

Proof (i) From xk = PC(tk–1 + μk–1∇hr(tk–1)) and by property of metric projection we have

〈
tk–1 + μk–1∇hr

(
tk–1) – xk , z – xk 〉, ∀z ∈ C,

which together with the definition of Tk implies that C ⊂ Tk .
(ii) Let x∗ ∈ S. From yk = PTk (xk – βk

ηk
wk) and x∗, xk ∈ C ⊂ Tk we have

〈
xk – αkwk – yk , yk – x∗〉 ≥ 0.

Then, with a similar proof as for Lemma 3.1 we have

∥
∥tk – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 2αk(1 – δk)f
(
xk , x∗) – Lk + θk ,

where

Lk = (1 – δk)
∥
∥xk – yk∥∥2 + δk(1 – δk)

∥
∥T

(
yk) – xk∥∥2

and

ξk = 2(1 – δk)
βkεk

ρk
+ 2(1 – δk)β2

k . �

Lemma 3.7 Let {yk}, {uk}, and {xk} be sequences generated by Algorithm 3.2. For x∗ ∈ S

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 2(1 – δk)αkf
(
xk , x∗) + ξk – Kk – ωk ,

where

Kk = (1 – δk)
∥
∥xk – yk∥∥2 + δk(1 – δk)

∥
∥T

(
yk) – xk∥∥2 –

∥
∥Tg

rk
Atk – Atk∥∥2,

ξk = 2(1 – δk)
βkεk

ρk
+ 2(1 – δk)β2

k ,
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and

ωk =

⎧
⎨

⎩

0, if ∇hr(tk) = 0,

ηk(4 – ηk) hr(tk )
‖∇hr(tk )‖2 , otherwise.

Proof Let x∗ ∈ S. By Lemma 2.6,

∥
∥Tg

r Atk – Ax∗∥∥2 =
∥
∥Tg

r Atk – Tg
r Ax∗∥∥2

≤ 〈
Tg

r Atk – Tg
r Ax∗, Atk – Ax∗〉

=
〈
Tg

r Atk – Ax∗, Atk – Ax∗〉

=
1
2
[∥
∥Tg

r Atk – Ax∗∥∥2 +
∥
∥Atk – Ax∗∥∥2 –

∥
∥Tg

r Atk – Atk∥∥2].

That is,

∥
∥Tg

r Atk – Ax∗∥∥2 ≤ 1
2
(∥
∥Tg

r Atk – Ax∗∥∥2 +
∥
∥Atk – Ax∗∥∥2 –

∥
∥Tg

r Atk – Atk∥∥2). (28)

In view at (28) we get

∥
∥Tg

r Atk – Ax∗∥∥2 ≤ ∥
∥Atk – Ax∗∥∥2 –

∥
∥Tg

r Atk – Atk∥∥2.

Hence,

∥
∥V

(
uk) – Ax∗∥∥2 ≤ ∥

∥Tg
r Atk – Ax∗∥∥2 ≤ ∥

∥Atk – Ax∗∥∥2 –
∥
∥Tg

r Atk – Atk∥∥2. (29)

Using (29) we have

〈
tk – x∗,∇hr

(
tk)〉

=
〈
tk – x∗, A∗(V

(
uk) – Atk)〉

=
〈
A

(
tk – x∗), V

(
uk) – Atk 〉

=
〈
A

(
tk – x∗) + V

(
uk) – Atk – V

(
uk) + Atk , V

(
uk) – Atk 〉

=
〈
V

(
uk) – Ax∗, V

(
uk) – Atk 〉 –

∥
∥V

(
uk) – Atk∥∥2

=
1
2
(∥
∥V

(
uk) – Ax∗∥∥2 +

∥
∥V

(
uk) – Atk∥∥2 –

∥
∥Atk – Ax∗∥∥2) –

∥
∥V

(
uk) – Atk∥∥2

=
1
2
(∥
∥V

(
uk) – Ax∗∥∥2 –

∥
∥V

(
uk) – Atk∥∥2 –

∥
∥Atk – Ax∗∥∥2)

≤ –
1
2
(∥
∥Tg

r Atk – Atk∥∥2 +
∥
∥V

(
uk) – Atk∥∥2)

= –
1
2
(∥
∥Tg

r Atk – Atk∥∥2 + 2hr
(
tk)).

That is,

〈
tk – x∗,∇hr

(
tk)〉 ≤ –

1
2
(∥
∥uk – Atk∥∥2 + 2hr

(
tk)). (30)
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By Lemma 2.6 and (30), we have

∥
∥xk+1 – x∗∥∥2 =

∥
∥PC

(
tk + μk∇hr

(
tk)) – PC

(
x∗)∥∥2

≤ ∥
∥tk + μk∇hr

(
tk) – x∗∥∥2

=
∥
∥tk – x∗∥∥2 + μ2

k
∥
∥∇hr

(
tk)∥∥2 – 2μk

〈∇hr
(
tk), tk – x∗〉

≤ ∥
∥tk – x∗∥∥2 +

(
μk

∥
∥∇hr

(
tk)∥∥

)2 – 4μkhr
(
tk) –

∥
∥uk – Atk∥∥2

=
∥
∥tk – x∗∥∥2 –

∥
∥uk – Atk∥∥2 –

[
4μkhr

(
tk) –

(
μk

∥
∥∇hr

(
tk)∥∥

)2].

That is,

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥tk – x∗∥∥2 –
∥
∥uk – Atk∥∥2 –

[
4μkhr

(
tk) –

(
μk

∥
∥∇hr

(
tk)∥∥

)2]. (31)

Therefore, using (31) and Lemma 3.6, we have

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + 2(1 – δk)αkf
(
xk , x∗) + ξk – Kk – ωk ,

where

Kk = (1 – δk)
∥
∥xk – yk∥∥2 + δk(1 – δk)

∥
∥T

(
yk) – xk∥∥2 –

∥
∥uk – Atk∥∥2,

ξk = 2(1 – δk)
βkεk

ρk
+ 2(1 – δk)β2

k ,

and

ωk = 4μkhr
(
tk) –

(
μk

∥
∥∇hr

(
tk)∥∥

)2.

Note that by the definition of μk we have

ωk =

⎧
⎨

⎩

0, if ∇hr(tk) = 0,

ηk(4 – ηk) hr(tk )
‖∇hr(tk )‖2 , otherwise. �

Lemma 3.8 Let {yk}, {tk}, {uk}, and {xk} be sequences generated by Algorithm 3.2. Then:
(i) For x∗ ∈ S, the limit of the sequence {‖xk – x∗‖2} exists (and {xk} is bounded).

(ii) lim supk→∞ f (xk , x) = 0 for all x ∈ S.
(iii)

lim
k→∞

∥
∥uk – Atk∥∥ = lim

k→∞
∥
∥xk – yk∥∥ = lim

k→∞
∥
∥T

(
yk) – xk∥∥ = 0,

lim
k→∞

∥
∥tk – xk∥∥ = lim

k→∞
∥
∥T

(
xk) – xk∥∥ = 0.

(iv)

lim
k→∞

hr
(
tk) = lim

k→∞
∥
∥V

(
uk) – uk∥∥ = 0.
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Proof (i) Let x∗ ∈ S. Since f (xk , x∗) ≤ 0, Kk ≥ 0, ωk ≥ 0 from Lemma 3.2 we can have

∥
∥xk+1 – x∗∥∥2 ≤ ∥

∥xk – x∗∥∥2 + ξk .

Therefore, the result follows.
(ii) From Lemma 3.7 we can have

ωk + Kk + 2(1 – δk)αk
[
–f

(
xk , x∗)] ≤ ∥

∥xk – x∗∥∥2 –
∥
∥xk+1 – x∗∥∥2 + ξk

≤ ∥
∥xk – x∗∥∥2 –

∥
∥xk+1 – x∗∥∥2 + 2

βk

ρk
εk + 2β2

k .

Summing up the above inequalities for every N , we obtain

0 ≤
N∑

k=0

(
ωk + Kk + 2(1 – δk)αk

[
–f

(
xk , x∗)])

≤
N∑

k=0

(
∥
∥xk – x∗∥∥2 –

∥
∥xk+1 – x∗∥∥2 + 2

βk

ρk
εk + 2β2

k

)

.

This will yield

0 ≤
N∑

k=0

ωk +
N∑

k=0

Kk +
N∑

k=0

(
2(1 – δk)αk

[
–f

(
xk , x∗)])

≤ ∥
∥x0 – x∗∥∥2 –

∥
∥xN+1 – x∗∥∥2 + 2

N∑

k=0

βk

ρk
εk + 2

N∑

k=0

β2
k .

Letting N → +∞, we have

0 ≤
∞∑

k=0

ωk +
∞∑

k=0

Kk +
∞∑

k=0

(
2(1 – δk)αk

[
–f

(
xk , x∗)]) < +∞.

Hence,

∞∑

k=0

ωk < +∞,
∞∑

k=0

Kk < +∞,
∞∑

k=0

(
2(1 – δk)αk

[
–f

(
xk , x∗)]) < +∞. (32)

In the same way as proving Lemma 3.2 the result follows.
(iii) From

∑∞
k=0 Kk < +∞ and 0 < δk < 1 we have

lim
k→∞

∥
∥uk – Atk∥∥2 = lim

k→∞
∥
∥xk – yk∥∥2 = lim

k→∞
∥
∥T

(
yk) – xk∥∥2 = 0.

The remaining result follows from the following inequalities:

∥
∥tk – xk∥∥ ≤ ∥

∥δkxk + (1 – δk)T
(
yk) – xk∥∥ = (1 – δk)

∥
∥xk – T

(
yk)∥∥ ≤ ∥

∥xk – T
(
yk)∥∥

and

∥
∥T

(
xk) – xk∥∥ ≤ ∥

∥T
(
xk) – T

(
yk)∥∥ +

∥
∥xk – T

(
yk)∥∥ ≤ ∥

∥xk – yk∥∥ +
∥
∥xk – T

(
yk)∥∥.
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(iv) From (32) we have
∑∞

k=0[4μkhr(tk) – (μk‖∇hr(tk)‖)2] < +∞. Without loss of general-
ity, we can assume that ∇hr(tk) �= 0 for all k. Thus,

∑∞
k=0[4μkhr(tk) – (μk‖∇hr(tk)‖)2] < +∞

implies that

∞∑

k=0

ηk(4 – ηk)
hr(tk)

‖∇hr(tk)‖2 < +∞.

Since 0 < η ≤ ηk ≤ 4 – η we have

∞∑

k=0

hr(tk)
‖∇hr(tk)‖2 < +∞.

Since limk→∞ ‖tk – xk‖ = 0 and {xk} is bounded, {tk} is also bounded. Thus, it follows from
the Lipschitz continuity of ∇hr(·) that {‖∇hr(tk)‖2} is bounded. This together with the last
relation implies that limk→∞ hr(tk) = 0. The inequality ‖V (uk) – uk‖ ≤ (2hr(tk)) 1

2 + ‖uk –
Atk‖ yields

lim
k→∞

∥
∥V

(
uk) – uk∥∥ = 0. �

Theorem 3.9 Assume Condition A and Condition B are satisfied and let {yk}, {tk}, {uk},
and {xk}, be sequences generated by Algorithm 3.2. Then the sequences {yk}, {tk} and {xk}
converge strongly to a point p ∈ S and {uk} converge strongly to a point Ap ∈ S2. Moreover,

p = lim
k→+∞

PS
(
xk).

Proof With consideration of the definition of hr(tk) the proof remains the same as for
Theorem 3.4. �

For any α > 0 define hα(x) = 1
2‖Tg

αA(x) – A(x)‖2 for all x ∈ H1, and so ∇hα(x) =
A∗(Tg

αA(x) – A(x)). Setting T = Id and V = Id, the FPSCSEP (1) is reduced to SEP. Hence,
Algorithm 3.2 can be rewritten as follows:

Algorithm 3.2B
Initialization: Choose x0 ∈ C. Take {ρk}, {βk}, {εk}, {rk}, {δk} and {ηk} such that

ρk ≥ ρ > 0, βk ≥ 0, εk ≥ 0, rk = r > 0, 0 < a < δk < b < 1,

0 < η ≤ ηk ≤ 4 – η,
∞∑

k=0

βk

ρk
= +∞,

∞∑

k=0

βkεk

ρk
< +∞,

∞∑

k=0

β2
k < +∞.

Step 1: Find wk ∈ H1 such that wk ∈ ∂εk f (xk , ·)(xk).
Step 2: Evaluate yk = PTk (xk – αkwk) where αk = βk

ηk
, ηk := max{ρk ,‖wk‖} and

Tk =

⎧
⎨

⎩

C, if k = 0,

{z ∈ H1 : 〈tk–1 + μk–1∇hr(tk–1) – xk , z – xk〉 ≤ 0}, otherwise.
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Step 3: Evaluate tk = δkxk + (1 – δk)yk .
Step 4: Evaluate uk = Tg

r (Atk).
Step 5: Evaluate

xk+1 = PC
(
tk + μk∇hr

(
tk)),

where

μk =

⎧
⎨

⎩

0, if ∇hr(tk) = 0,
ηk hr (tk )

‖∇hr (tk )‖2 , otherwise.

Step 6: Set k = k + 1 and go to Step 1.

The following corollary is an immediate consequence of Theorem 3.9.

Corollary 3.10 Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a nonzero
bounded linear operator. Suppose C be nonempty closed convex subset of H1, D be nonempty
closed convex subset of H2, and f : C × C → R and g : D × D → R be bifunction. Assume
Condition A and Condition B are satisfied and let {yk}, {tk}, {uk}, and {xk}, be sequences
generated by Algorithm 3.2B. If S = {x∗ ∈ SEP(f , C) : Ax∗ ∈ SEP(g, D)} �= ∅, then sequences
{yk}, {tk} and {xk} converge strongly to a point p ∈ S and {uk} converges strongly to a point
Ap ∈ SEP(g, D).

4 Application and numerical result
In this section we will see some applications and we perform several numerical exper-
iments to illustrate the computational performance of the proposed algorithms (Algo-
rithm 3.1 and Algorithm 3.2) and we compare the convergence of one with the other.

Let A : H1 → H2 be nonzero bounded linear operator where H1 and H2 be two real
Hilbert spaces, and C and D be two nonempty closed convex subsets of H1 and H2, re-
spectively. Let ψ : C →R and φ : D →R be functions with ψ and φ are convex and lower
semicontinuous, and ψ is upper semicontinuous and ε-subdifferentiable at every point
in C. Then the following is an optimization problem:

find x∗ ∈ H1 such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x∗ ∈ C,

ψ(x∗) ≤ ψ(y), ∀y ∈ C,

u∗ = Ax∗ ∈ D,

φ(u∗) ≤ φ(v), ∀v ∈ D.

(33)

Set f (x, y) = ψ(y) – ψ(x) and g(u, v) = φ(v) – φ(u). Thus, g satisfies Condition A and f sat-
isfies Condition B as a result of the given conditions satisfied by ψ and φ. Therefore, op-
timization problem (33) is SEP which is particular case of FPSCSEP, and Algorithm 3.1B
and Algorithm 3.2B solves (33).

Let H be real Hilbert spaces, and C be nonempty closed convex subset of H . Let
ψ : C → R and φ : C → R be functions with ψ and φ are convex, lower semicontinu-
ous, upper semicontinuous and ε-subdifferentiable at every point in C. The following is a
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multi-objective optimization problem:

min
{
ψ(x),φ(x)

}

s.t. x ∈ C.
(34)

Therefore, multi-objective optimization problem (34) is equilibrium problem which is
also a particular case of FPSCSEP. Next we will see simple case optimization problem
and its numerical result as an application. The algorithms are coded in Matlab R2017a
(9.2.0.556344) and are operated on MacBook 1.1 GHz Intel Core m3 8 GB 1867 MHz
LPDDR3.

Example 4.1 Consider the fixed point constrained optimization problem

find x∗ ∈ C such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x∗ ∈ Fix T ,

ψ(x∗) ≤ ψ(y), ∀y ∈ C,

u∗ = Ax∗ ∈ Fix V ,

φ(u∗) ≤ φ(v), ∀v ∈ D,

where R = H1, R2 = H2, A : H1 → H2 given by A(x) = (– x
2 , x

2 ), C = {x ∈ R : x ≥ 1}, D =
{(u1, u2) ∈ R

2 : u2 – u1 ≥ 1}, ψ : C → R given by ψ(x) = 2x + 5, and φ : D → R given by
φ(u) = φ(u1, u2) = u2 – u1, and the nonexpansive mappings T : C → C given by T(x) = u+1

2
and V : D → D given by V (u) = V (u1, u2) = (–u2, –u1).

Set f (x, y) = ψ(y) – ψ(x) = 2y – 2x and g(u, v) = φ(v) – φ(u) = (v2 – v1) – (u2 – u1).
It is easy to check that g and f satisfy Condition A and Condition B, respectively. It is

also clear to see that A∗(u) = A∗(u1, u2) = – 1
2 u1 + 1

2 u2 and ‖A‖ = 1
2 . Hence, Fix T = {1},

SEP(f , C) = {1}, Fix V = {(u1, u2) ∈ D : u2 = –u1}, and SEP(g, D) = {(u1, u2) ∈ D : u2 – u1 =
1}. Therefore, SFPSCEP(f , C, T) = {1} and SFPSCEP(g, D, V ) = {(– 1

2 , 1
2 )}. Since A(1) =

(– 1
2 , 1

2 ), we see that the solution set of this problem is singleton set S = {p} where p = 1.

Initialization for Algorithm 3.1: Take ρk = 1, εk = 0, μk = 1
2 , rk = 1

1000 , βk = log(k+4)
8k+16 and

δk = 3k+1+100
100(3k+1) .

Initialization for Algorithm 3.2: Take ρk = 1, εk = 0, ηk = 1, rk = r = 1
1000 , βk = log(k+4)

8k+16 and
δk = 3k+1+100

100(3k+1) .

Note that this choice of parameters satisfies the initialization of each of the algorithms.
Choose x0 ∈ C. Let xk , wk , yk , tk , x, y are in R, and uk = (uk

1, uk
2), v = (v1, v2) in R

2. For this
example Algorithm 3.1 is expressed as an iteration,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk =

⎧
⎨

⎩

xk – βk , if xk – βk ≥ 0,

1, otherwise,

tk = δkxk + (1 – δk) yk +1
2 ,

uk = ( 1
1000 – 1

2 tk , – 1
1000 + 1

2 tk),

xk+1 =

⎧
⎨

⎩

3tk –uk
1+uk

2
4 , if 3tk – uk

1 + uk
2 ≥ 4,

1, otherwise,

(35)
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Figure 1 Convergence of iteration (35).

and Algorithm 3.2 is expressed as an iteration,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T0 = C,

Tk = {z ∈ H1 : (tk–1 + μk–1∇hr(tk–1) – xk)(z – xk) ≤ 0} for k ≥ 1,

yk = PTk (xk – βk),

tk = δkxk + (1 – δk) yk +1
2 ,

uk = ( 1
1000 – 1

2 tk , – 1
1000 + 1

2 tk),

μk =

⎧
⎨

⎩

0, if ∇hr(tk) = 0,
ηk hr(tk )

‖∇hr(tk )‖2 , otherwise,

xk+1 = PC(tk + μk
uk

2–uk
1–tk

2 ).

(36)

By using Matlab, we compute the numerical experiment results of iteration (35) and (36)
for their respective parameter sequence given with the same initial point x0 = 100 ∈ C.

Let {zk} be a sequence in C. Set Dzk
k = Dk = ‖zk – p‖. The convergence of the sequences

{Dyk

k }, {Dtk
k }, and {Dxk

k } to 0 implies that {yk}, {tk}, and {xk} converges to the solution of
the problem p. Hence, from Figures 1 and 2, we see that the sequences {yk}, {tk}, and {xk}
converge to 1, and from Figure 3, we see that {uk

1} converges to – 1
2 and {uk

2} converges to
1
2 (implying that {uk} converges to A(1) = (– 1

2 , 1
2 )). Moreover, for the solution control pa-

rameter values and initialization given above for iteration (35) and iteration (36), iteration
(36) converge to the solution faster than iteration (35).

5 Conclusion
We have proposed two strongly convergent algorithms using a projected subgradient-
proximal method for solving a fixed point set-constrained split equilibrium problem
FPSCSEP(f , C, T ; g, D, V ) in real Hilbert spaces in which the bifunction f is pseudomono-
tone on C with respect to its solution set, the bifunction g is monotone on D, and T and
V are nonexpansive mappings. The strong convergence of the iteration sequence gener-
ated by the algorithms to a solution of this problem are obtained. Finally, we have seen
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Figure 2 Convergence of iteration (36).

Figure 3 Convergence of {uk} for iteration (35) and iteration (36).

the application in solving optimization problems and numerical result to analyze and also
compare the convergence speed of the algorithms for our particular example.
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