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Abstract
The Hardy–Rogers p-proximal cyclic contraction, which includes the cyclic, Kannan,
Chatterjea and Reich contractions as sub-classes, is developed in uniform spaces.
The existence and uniqueness results of best proximity points for these contractions
are proved. The results, which are for non-self maps, apart from the fact that they are
new in literature, generalise several other similar results in literature. Examples are
given to validate the results obtained.
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1 Introduction
There are several metrical fixed point theorems for self-mappings satisfying certain con-
tractive type conditions. In each of these results, the authors consider sequences of iterates
which, due to the contractive conditions, become Cauchy sequences whose limits are fixed
points of the mappings. Research on the fixed points of contractive maps has become a
centre of strong research activity for many researchers in mathematics. The reason being
that the applications of fixed point theory play a basic role in various areas of mathemat-
ics. It provides a technique for solving a variety of applied problems in many branches
of mathematics, see [8, 12, 18, 22, 27]. It now has applications in fields such as computer
science, engineering, chemistry, biology, economics and statistics.

In 1922, Stefan Banach (1892–1945) popularised the research in metrical fixed point
theory with the famous Banach contraction principle [4]. Since then, several authors
have established fixed point results for numerous contraction mappings in metric spaces.
Rhoades [29] made a comparison of different types of contraction mappings including
Kannan [15], Chatterjea [7], Reich [28], Ciric [9], Zamfirescu [32] and Hardy and Rogers
[13].

If the mapping under consideration is not a self-mapping, say T : A → B where A, B
are nonempty subsets of X, then T does not necessarily have a fixed point. It is there-
fore of interest to determine an element x called the best proximity point that is in some
sense closest to Tx. The aim of the best proximity point theorem is to provide sufficient
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conditions to ascertain the existence of an optimal solution to the problem of globally
minimising the error d(x, Tx), see [11]. Since d(x, Tx) ≥ d(A, B) for all x, a best proximity
point theorem offers sufficient conditions for the existence of an element x, satisfying the
condition that d(x, Tx) = d(A, B), which is the optimal solution in the sense that d(x, Tx) is
minimum. The best proximity point is a natural generalisation of fixed point for it reduces
to a fixed point if the mapping under consideration is a self-mapping. The notion of best
proximity point was introduced in [19].

Best proximity point theory of a cyclic contraction map has been studied by many au-
thors. For results regarding cyclic contractive conditions when the intersection of the sets
is nonempty, see [2, 16]. In [11], Eldred and Veeramani extended the cyclic contractive
condition above to the case when A ∩ B is empty and proved the existence of best prox-
imity point. For further results in this area, see [3, 5, 17, 20, 23, 25, 26, 30].

Further improvement on the Banach contraction principle includes the use of uniform
spaces rather than the metric spaces. One of the spaces in literature that generalises the
metric space is the uniform space. Weil [31] was the first to introduce uniform spaces in
terms of a family of pseudometrics, and Bourbaki [6] provided the definition of a uniform
structure in terms of entourages.

Aamri and El Moutawakil [1] gave some results on a common fixed point of some
contractive and expansive maps in uniform spaces and introduced the definitions of A-
distance and E-distance. Also, Dhagat et al. [10] proved some common fixed point theo-
rems for pairs of weakly and semi-compatible mappings with the notation of E-distance in
uniform spaces. Hussain et al. [14] applied the concept of cyclic (ψ)-contractions to estab-
lish certain fixed and common point theorems on a Hausdorff uniform space. But none of
these authors have worked on Kannan, Chatterjea, Reich and Hardy–Rogers contractions
in uniform spaces.

It is also interesting to note that all those results in uniform spaces are of self-mappings,
but to the best of authors’ knowledge, few results of non-self mappings in uniform spaces
exist in literature (see [24]).

In 2011, Basha [5] established some necessary and sufficient conditions for the existence
of a best proximity point for proximal contraction which are analogues of non-self con-
tractive mappings and also gave some best proximity and convergence theorems. But the
authors are yet to popularise the results of best proximity point of proximal contractions
in uniform spaces.

Furthermore, Karapinar and Erhan [16] introduced the Kannan, Chatterjea and Reich
cyclic contractions and proved the fixed point theorems for these maps.

Also, Mihaela [20] introduced a new class of cyclic contractions, called the weak cyclic
Kannan contractions, and gave sufficient conditions for the existence of a unique best
proximity point of these maps. But to the best of the authors’ knowledge, no work has
been extended to the best proximity points of Hardy–Rogers type mappings in uniform
spaces.

Motivated by the results above, the authors introduce a modified class of Hardy–Rogers
p-proximal cyclic contractions in uniform spaces and establish the best proximity point
results for this type of contractions in uniform spaces.

1.1 Methods
The source of the materials used in this study include past and current journal articles
and text books. These relevant materials were obtained by searching through the Inter-
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net. The authors of these materials with well-known results are internationally recognised
experts in this area of study. The study includes the related works on fixed point and best
proximity point theory. The maps, on the other hand, are used to obtain the existence of
best proximity points of Hardy and Rogers p-proximal cyclic contractive maps in uniform
spaces. To show our results, modified and simpler methods are used.

1.1.1 Aim
The aim of this study is to extend the fixed point results for self-maps in metric spaces
to best proximity point results for non-self Hardy–Rogers p-proximal cyclic contractive
map in uniform spaces.

2 Preliminary
Here are some basic definitions and concepts relating to the main result of this paper.

A uniform space (X,�) is a non-empty set equipped with a uniform structure, which is
a family � of subsets of Cartesian product X × X, satisfying the following conditions:

(i) If U ∈ �, then U contains the diagonal � = {(x, x) : x ∈ X}.
(ii) If U ∈ �, then U–1 = {(y, x) : (x, y) ∈ U} is also in �.

(iii) If U , V ∈ �, then U ∩ V ∈ �.
(iv) If U ∈ � and V ⊆ X × X , which contains U , then V ∈ �.
(v) If U ∈ �, then there exists V ∈ � such that whenever (x, y) and (y, z) are in V , then

(x, z) is in U .
Note that � is called the uniform structure or uniformity of X and its elements are called
entourages, neighbourhoods, surroundings or vicinities, see [6].

A uniform structure � defines a unique topology τ (�) on X for which the neighbour-
hoods of x ∈ X are the sets V (x) = {y ∈ X : (x, y) ∈ V }, V ∈ �.

We recall the following definitions in uniform spaces.

Definition 2.1 ([1]) Let (X,�) be a uniform space. A function p : X × X → R+ is said to
be an

(a) A-distance if, for any V ∈ �, there exists δ > 0 such that if p(z, x) ≤ δ and p(z, y) ≤ δ

for some z ∈ X , then (x, y) ∈ V ;
(b) E-distance if p is an A-distance and p(x, y) ≤ p(x, z) + p(z, y) for all x, y, z ∈ X .

Definition 2.2 ([1]) Let (X,�) be a uniform space and p be an A-distance on X.
(a) If V ∈ �, (x, y) ∈ V and (y, x) ∈ V , then x and y are said to be V -close, and a

sequence {xn} ∈ X is a Cauchy sequence for � if, for any V ∈ �, there exists N ≥ 1
such that xn and xm are V -close for n, m ≥ N .

(b) A sequence in X is p-Cauchy if it satisfies the usual metric condition.
(c) X is S-complete if, for every p-Cauchy sequence {xn}, there exists x ∈ X such that

limn→∞ p(xn, x) = 0. And X is p-Cauchy complete if, for every p-Cauchy sequence
{xn}, there exists x ∈ X such that limn→∞ xn = x with respect to τ (�).

(d) f : X × X is p-continuous if limn→∞ p(xn, x) = 0 implies limn→∞ p(f (xn), f (x)) = 0.
(e) X is said to be p-bounded if δp(X) = sup{p(x, y) : x, y ∈ X} < ∞.

Definition 2.3 ([1]) A uniform space (X,�) is said to be Hausdorff if and only if the inter-
section of all V ∈ � reduces to the diagonal � of X. For example, (x, y) ∈ V for all V ∈ �

implies x = y. This guarantees the uniqueness of the limits of the sequences.
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The following lemma, which is true for self-mappings (see Lemma 2.4 [1]), can be proved
for non-self mappings.

Lemma 2.4 Let (X,�) be a Hausdorff uniform space and p be an A-distance on X. Let
{xn}∞n=0, {yn}∞n=0 be arbitrary sequences in X and {αn}∞n=0, {βn}∞n=0 be sequences in R+ con-
verging to 0. Then, for all x, y, z ∈ X, the following hold:

(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn ∀n ∈ N , then y = z. In particular, if p(x, y) = 0 and
p(x, z) = 0, then y = z.

(b) If p(xn, yn) = p(A, B) and p(xn, zn) = p(A, B), then yn = zn, ∀n.
(c) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn ∀n ∈ N , then (yn)∞n=0 converges to z.
(d) If p(xn, xm) ≤ αn ∀m > n, then (xn)∞n=0 is a p-Cauchy sequence in (X,�).

Let A and B be non-empty subsets of a uniform space (X,�). We adopt the following
notations to the context of uniform spaces when p is an E-distance on X.

(i) A0 = {x ∈ A : p(x, y) = p(A, B) for some y ∈ B}.
(ii) B0 = {y ∈ B : p(x, y) = p(A, B) for some x ∈ A}.

(iii) Let T : A → B, a point x ∈ A is called a best proximity point if p(x, Tx) = p(A, B),
where p(A, B) = inf{p(a, b) : a ∈ A, b ∈ B}.

In another development, Kirk et al. [19] defined cyclic map and cyclic contraction: Let
A and B be nonempty subsets of a metric space (X, d) and T : A ∪ B → A ∪ B. T is called
a cyclic map if

(i) T(A) ⊆ B and T(B) ⊆ A.
T is a cyclic contraction if, for some k ∈ [0, 1),

(ii) d(Tx, Ty) ≤ kd(x, y) + (1 – k)d(A, B) ∀x ∈ A, y ∈ B.
Also, Karapinar and Erhan [16] gave the following definitions of different types of cyclic
contractions and proved the existence of unique fixed points for maps (i)–(iii) below.

Definition 2.5 Let (X, d) be a metric space and A and B be non-empty subsets of X.
A cyclic map T : A ∪ B → A ∪ B is said to be a:

(i) Kannan type cyclic contraction if there exists k ∈ (0, 1
2 ) such that

d
(
T(x), T(y)

) ≤ k
[
d
(
x, T(x)

)
+ d

(
y, T(y)

)]
, ∀x ∈ A,∀y ∈ B. (2.1)

(ii) Chatterjea type cyclic contraction if there exists k ∈ (0, 1
2 ) such that

d
(
T(x), T(y)

) ≤ k
[
d
(
x, T(y)

)
+ d

(
y, T(x)

)]
, ∀x ∈ A,∀y ∈ B. (2.2)

(iii) Reich type cyclic contraction if there exists k ∈ (0, 1
3 ) such that

d
(
T(x), T(y)

) ≤ k
[
d(x, y) + d

(
x, T(x)

)
+ d

(
y, T(y)

)]
, ∀x ∈ A,∀y ∈ B. (2.3)

Also, Hardy and Rogers type cyclic contraction states that there exist non-negative con-
stants ai, i = 1, 2, 3, 4, 5, such that a1 + a2 + a3 + a4 + a5 < 1 satisfying

d
(
T(x), T(y)

) ≤ a1d(x, y) + a2d
(
x, T(x)

)
+ a3d

(
y, T(y)

)
+ a4d

(
x, T(y)

)

+ a5d
(
y, T(x)

)
(2.4)

for all x ∈ A and y ∈ B.
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Furthermore, Eldred and Veramani [11] presented some results using Kannan type con-
tractions when A ∩ B = ∅. In this case, they did not seek for the existence of a fixed point
of T but for the existence of a best proximity point. Motivated by the results of Eldred and
Veramani for the case A∩B = ∅, in this paper we present some best proximity point results
for Hardy–Rogers p-proximal cyclic contraction in uniform spaces which is an analogue of
the Hardy and Rogers results in [13], and a unification and extension of cyclic contraction,
Kannan, Chatterjea and Reich cyclic contractions for non-self maps in uniform spaces.

Below are the definitions of proximal contraction in [5] and proximal cyclic contraction
in [21].

Definition 2.6 ([5]) Let (A, B) be a non-empty subset of a complete metric space (X, d).
A mapping T : A → B is said to be a proximal contraction if there exists a non-negative
real number α < 1 such that

{
d(u, T(x)) = d(A, B)
d(v, T(y)) = d(A, B)

�⇒ d(u, v) ≤ αd(x, y) (2.5)

for all u, x, v, y ∈ A.

Definition 2.7 ([21]) Suppose that (A, B) is a non-empty subset of a complete metric space
(X, d), and let S : A → B and T : B → A be mappings. The pair (S, T) is called a proximal
cyclic contraction pair if there exists α ∈ [0, 1) such that

{
d(a, S(x)) = d(A, B)
d(b, T(y)) = d(A, B)

�⇒ d(a, b) ≤ αd(x, y) + (1 – α)d(A, B) (2.6)

for all a, x ∈ A and b, y ∈ B.

Basha [5] proved the following theorem.

Theorem 2.8 ([5]) Suppose that A, B are two nonempty subsets of a complete metric space
(X, d). Let T : A → B and T(A0) be nonempty and closed satisfying the following contrac-
tions:

(a) T is a proximal contraction,
(b) T(A0) ⊆ B0.

Then there exists a point x ∈ A such that d(x, T(x)) = d(A, B). Moreover, if T is injective on
A, then the point x such that d(x, T(x)) = d(A, B) is unique.

Now, we introduce some analogues of Hardy and Rogers non-self proximal maps in uni-
form spaces.

Definition 2.9 Let (A, B) be a pair of non-empty subsets of an S-complete Hausdorff uni-
form space (X,�) such that p is an E-distance on X. A mapping F : A → B is said to be a
Hardy–Rogers p-proximal contraction if there exist non-negative real constants U , V , C,
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D, W such that U + V + C + D + W < 1 and for all j, l, k, m ∈ A,

{
p(j, F(k)) = p(A, B)
p(l, F(m)) = p(A, B)

�⇒ p(j, l) ≤ Up(k, m) + Vp
(
k, F(k)

)
+ Cp

(
m, F(m)

)

+ Dp
(
k, F(m)

)
+ Wp

(
m, F(k)

)
. (2.7)

Definition 2.10 Let (A, B) be a pair of non-empty subsets of an S-complete Hausdorff uni-
form space (X,�) such that p is an E-distance on X. Suppose that F : A → B and G : B → A
are mappings. The pair (F , G) is said to be a Hardy–Rogers p-proximal cyclic contraction
if there exist non-negative real constants U , V , C, D, W such that U + V + C + D + W < 1
and for all j, k ∈ A and l, m ∈ B,

{
p(j, F(k)) = p(A, B)
p(l, G(m)) = p(A, B)

�⇒ p(j, l) ≤ Up(k, m) + Vp
(
k, F(k)

)

+ Cp
(
m, G(m)

)
+ Dp

(
k, G(m)

)
+ Wp

(
m, F(k)

)

+ (1 – U – V – C – D – W )p(A, B). (2.8)

It is easy to see that a self-mapping that is a proximal Hardy–Rogers contraction is a
Hardy and Rogers contraction. But a non-self p-proximal Hardy–Rogers contraction is
not necessarily a Hardy and Rogers contractive map. Also, (2.8) and (2.7) reduce to the
Reich contraction map if A = B, S = T , D = W = 0, in (2.8) and (2.7). Furthermore, the
contractive condition (2.7) reduces to (2.4) if the E-distance p is replaced with a metric d,
in the sense that if we set � = {(x, y) ∈ X2 : d(x, y) < ε} in (2.7), then we obtain (2.4).

The following definition is needed for our work.

Definition 2.11 Let A, B be two non-empty subsets of an S-complete Hausdorff uniform
space (X,�). Suppose that S : A → B and g : A → A are isometry, the mapping S is said to
preserve the isometric distance with respect to g if

p
(
S
(
g(x)

)
, S

(
g(y)

))
= p

(
S(x), S(y)

) ∀x, y ∈ A. (2.9)

3 Main results and discussion
This research is limited to mappings defined in uniform spaces. The study is theoreti-
cal and analytical based and centred on mappings satisfying contractive like conditions.
However, applications to real life are not within the scope.

Now we state and prove the main results.

Theorem 3.1 Let (X,�) be a Hausdorff uniform space and p an E-distance on X. Suppose
that (A, B) is a pair of non-empty closed subsets of the p-bounded and S-complete space
(X,�) such that A0, B0 �= ∅. Let F : A → B, G : B → A and h : A ∪ B → A ∪ B satisfy the
following conditions:

(i) F and G are p-proximal Hardy–Rogers contractions;
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(ii) h is an isometry;
(iii) the pair (F , G) is a p-proximal Hardy–Rogers cyclic contraction (2.8);
(iv) F(A0) ⊆ B0, G(B0) ⊆ A0;
(v) A0 ⊆ h(A0) and B0 ⊆ h(B0).

Then there exist unique points x ∈ A and y ∈ B such that

p
(
h(x), F(x)

)
= p

(
h(y), G(y)

)
= p(x, y) = p(A, B).

Moreover, for any best proximity point x0 ∈ A0, the sequence {xn} defined by

p
(
h(xn+1), F(xn)

)
= p(A, B)

converges to the element x.
Similarly, for any best proximity point y0 ∈ B0, the sequence {yn} defined by

p
(
h(yn+1), G(yn)

)
= p(A, B)

converges to the element y.

Proof Let x0 ∈ A0, since A0 �= ∅ and F(A0) ⊆ B0, there exists x1 ∈ A0 such that p(x1, F(x0)) =
p(A, B). Also, since F(x1) ∈ B0, there exists x2 ∈ A0 such that p(x2, F(x1)) = p(A, B). Further-
more, we obtain a sequence {xn} ⊂ A0 such that p(xn+1, F(xn)) = p(A, B) ∀n ∈ N . We show
that {xn} is a p-Cauchy complete sequence whose limit is the unique best proximity point
of F . Since F is a p-proximal Hardy–Rogers cyclic contraction, ∀n ∈ N , we have

p
(
xn+1, F(xn)

)
= p(A, B),

p
(
xn, F(xn–1)

)
= p(A, B)

(3.1)

imply

p(xn+1, xn) ≤ Up(xn, xn–1) + Vp
(
xn, F(xn)

)
+ Cp

(
xn–1, F(xn–1)

)

+ Dp
(
xn, F(xn–1)

)
+ Wp

(
xn–1, F(xn)

)

+ [1 – (U + V + C + D + W )p(A, B)

≤ Up(xn, xn–1) + V
[
p(xn, xn+1) + p

(
xn+1, F(xn)

)]

+ C
[
p(xn–1, xn), p

(
xn, F(xn–1)

)]
+ Dp

(
xn, F(xn–1)

)

+ W
[
p(xn–1, xn) + p(xn, xn+1) + p

(
xn+1, F(xn)

)]

+
[
1 – (U + V + C + D + W )

]
p(A, B),

p(xn+1, xn) ≤ 1
1 – (V + W )

[
(U + C + W )p(xn–1, xn) + (V + W )p(xn+1, xn)

+ (V + C + D + W )p(A, B) +
[
1 – (U + V + C + D + W )

]
p(A, B)

]
.
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Thus, by induction,

p(xn+1, xn) ≤
∞∑

n→1

(V + W )n[(U + C + V )np(x0, x1)

+
[
1 – (U)n]p(A, B)

]
.

Since U + C + V + D + W < 1, we have limn→∞(U + C + V + D + W )n = 0 and
∑∞

n→1(V +
W )n = 1.

Hence,

lim
n→∞ p(xn, xn+1) = p(A, B). (3.2)

Also, since p is an E-distance, we have

p(xn, xm) ≤ p(xn, xn+1) + · · · + p(xm–1, xm).

Now, for λ ≥ 1,

p(xn, xn+λ) ≤ ηnp(x0, x1) + · · · + ηn+λ–1p(x0, x1).

Let Cn =
∑n

t=0 ηtp(x0, x1), n ≥ 0, then

p(xn, xn+λ) ≤ Cn+λ–1 – Cn–1. (3.3)

Next, we show that {xn} is p-Cauchy in the S-complete space X, that is,

lim
n→∞ p(xn, xn+λ) = 0

and

lim
n→∞ p(xn+λ, xn) = 0

for any λ ≥ 1.
Recall that

p
(
xn+1, F(xn)

)
= p(A, B).

If there exists n0 ∈ N such that xn0+1 = xn0 , we end the proof and xn0 is the required best
proximity point of F . Therefore, we assume that xn+1 �= xn.

Suppose p(x0, x1) > 0, now using inequality (3.2), we have

∞∑

t=0

ηtp(x0, x1) < ∞.

So, there exists C ∈ [0,∞) such that limn→∞ Cn = C.
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Then, by (3.2),

lim
n→∞ p(xn, xn+λ) = 0.

Repeating the same argument, we obtain

lim
n→∞ p(xn+λ, xn) = 0.

So, the sequence {xn} is p-Cauchy in the S-complete space (X,�).
Hence, {xn} converges to some element x ∈ A. Similarly, since F(B0) ⊆ A0 and A0 ⊆

h(A0), there exists a sequence {yn} such that it converges to some element y ∈ B. Since
the pair (F , G) is a p-proximal Hardy–Rogers cyclic contraction and h is isometry, by
Lemma 2.4(b), we have

p
(
h(xn+1), F(xn)

)
= p

(
h(yn+1), G(yn)

)
= p(A, B).

Then

p
(
h(xn+1), h(yn+1)

)
= p(xn+1, yn+1)

≤ Up(xn, yn) + Vp
(
xn, F(xn)

)
+ Cp

(
yn, G(yn)

)

+ Dp
(
xn, G(yn)

)
+ Wp

(
yn, F(xn)

)
+ (1 – μ)p(A, B), (3.4)

where μ = U + V + C + D + W . Using Lemma 2.4(e) and taking limit as n → ∞ in (3.4)
yields

p(x, y) = p(A, B). (3.5)

Thus, x ∈ A0 and y ∈ B0. Since F(A0) ⊆ B0 and G(B0) ⊆ A0, there exist h(x) ∈ A and h(y) ∈ B
such that

p
(
h(x), F(x)

)
= p(A, B) (3.6)

and

p
(
h(y), G(y)

)
= p(A, B).

Thus, from (3.5) and (3.6), we get

p(x, y) = p
(
h(x), F(x)

)
= p

(
h(y), G(y)

)
= p(A, B).

Next, we prove the uniqueness of x and y. Suppose that there exist x∗ ∈ A and y∗ ∈ B with
x �= x∗ and y �= y∗ such that

p
(
h
(
x∗), F

(
x∗)) = p(A, B) (3.7)



Olisama et al. Fixed Point Theory and Applications  (2018) 2018:18 Page 10 of 15

and

p
(
h
(
y∗), G

(
y∗)) = p(A, B). (3.8)

Since h is an isometry and F is a p-proximal Hardy–Rogers cyclic contraction, using equa-
tions (3.6), (3.7) and Lemma 2.4(b), we have

p
(
h(x), h

(
x∗)) = p

(
x, x∗)

≤ Up
(
x, x∗) + Vp

(
x,F(x)

)
+ Cp

(
x∗, F

(
x∗))

+ Dp
(
x, F

(
x∗)) + Wp

(
x∗, F(x)

)
+ (1 – μ)p(A, B). (3.9)

p(x, x∗) ≤ (ν+1–μ)
1–U p(A, B) = p(A, B) as ν + 1 – μ = 1 – U , a contradiction, since p(A, B) <

p(x, x∗). Recall that ν = V + C + D + W and μ = U + V + C + D + W .
Hence, p(x, x∗) = 0. Similarly, we show that p(x∗, x) = 0. But since p is an E-distance, we

have

p
(
x∗, x∗) ≤ p

(
x∗, x

)
+ p

(
x, x∗).

Therefore,

p
(
x∗, x∗) = 0.

Now, we have p(x∗, x∗) = 0 and p(x, x∗) = 0. By Lemma 2.4(a), we conclude that x∗ = x.
Similarly, y∗ = y. �

Finally, we give some examples to show that inequalities (2.7) and (2.8) are distinct from
inequalities (2.5), (2.6) and Kannan proximal cyclic contractions, respectively. The follow-
ing examples support Theorem 3.1.

Example 3.2 Consider the space X = R with Euclidean metric. Take the sets A = [–8, –2]
and B = [2, 8] ∪ {–12}. Note that A0 = –2, B0 = 2. Clearly, d(A, B) = 4. Let F : A → B and
G : B → A be defined by

F(x) =

{
24
x , x < 0,

– 16
x , x > 0,

and G(y) = –
14
y

.

Clearly, taking x1 = –8, x2 = –2, y1 = 2 and y2 = 7, d(x1, F(x2)) = d(y1, G(y2)) = d(A, B) = 4.
We show that the pair (F , G) defined on a metric space is not a Hardy–Rogers proximal
cyclic contraction. Clearly, by (2.8),

d(x1, y1) ≤ Ud(x2, y2) + Vd
(
x2, F(x2)

)
+ Cd

(
y2, G(y2)

)
+ Dd

(
x2, G(y2)

)

+ Wd
(
y2, F(x2)

)
+ (1 – η)d(A, B),

where η = U + V + C + D + W < 1.

d(–8, 2) ≤ Ud(–2, 7) + Vd(–2, –12) + Cd(7, –2) + Dd(–2, –2) + Wd(7, –12)

– 4[U + V + C + D + W ] + (1 – η)4.
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However,

10 > 9U + 10V + 9C + 0 + 19W + (1 – η)4,

a contradiction. For example, choose U = 1
30 , V = 1

45 , C = 1
18 , D = 1

2 , W = 1
5 , clearly U + V +

C + D + W < 1.
Thus, (F , G) is not a Hardy–Rogers proximal cyclic contraction. Clearly, (F , G) has no

best proximity point since there is no x ∈ A and y ∈ B such that d(x, F(x)) = d(y, G(y)) = 4.
Now, we consider the case where (F , G) is defined on a uniform space and X, A and B

are defined as above.
Suppose that p is defined as follows:

p(x, y) =

⎧
⎨

⎩
| x

2 |, x ∈ A, y ∈ B,

|2y|, otherwise. (Note that P(A, B) = 1.)

We show that (F , G), defined on a uniform space, is not a Reich proximal cyclic contraction

p(x1, y1) ≤ Up(x2, y2) + Vp
(
x2, F(x2)

)
+ Cp

(
y2, G(y2)

)

+
(
1 – (U + V + C)

)
p(A, B),

p(–8, 2) ≤ Up(–2, 7) + Vp(–2, –12)) + Cp(7, –2)) +
(
1 – (U + V + C)

)
(1).

However,

4 > U(1) + V (1) + C(1) +
(
1 – (U + V + C)

)
(1).

A contradiction, since (U + V + C) < 1. (F , G) is not a Reich proximal cyclic contraction.
It is not difficult to see that (F , G) satisfies the Hardy–Rogers p-proximal cyclic contrac-

tion for all x ∈ A and y ∈ B, and –2 is the unique best proximity point of F , while 2 is the
unique best proximity point of G and p(A, B) = 1.

From the example, we see that:

A0 =
{

x ∈ A : p(x, y) = p(A, B) for some y ∈ B
}

=
{

x ∈ A : p(x, y) = 1 for some y ∈ B
}

,

A0 = {–2},
B0 =

{
y ∈ B : p(x, y) = 1 for some x ∈ A

}

= B.

Therefore, the Hardy–Rogers p-proximal cyclic contraction is more general than the
Hardy–Rogers cyclic contraction and the Reich proximal cyclic contractions.

Example 3.3 Consider the complete metric space R2 with the metric defined by

d
(
(x1, x2), (y1, y2)

)
= |x1 – y1| + |x2 – y2| ∀(x1, x2), (y1, y1) ∈ R2.
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Let

A =
{

(0, x) : x ∈ R
}

, B =
{

(5, y) : y ∈ R
}

.

Define the mapping F : A → B, G : B → A, h : A ∪ B → A ∪ B as follows:

F(0, x) =
(

5,
5|x|

1 + |x|
)

, G(5, y) =
(

0,
5|y|

1 + |y|
)

and h(x, y) = (x, –y).

Then d(A, B) = 5, A0 = A, B0 = B and the mapping h is isometry.
Now, we show that the pair (F , G) defined on a complete metric space is not a proximal

Hardy–Rogers cyclic contraction.
Let (0, u), (0, x) ∈ A and (0, v), (0, y) ∈ B satisfying

d
(
(0, u), F(0, x)

)
= d(A, B) = 5,

d
(
(0, v), G(0, y)

)
= d(A, B) = 5.

Then, we get u = 5|x|
1+|x| , v = 5|y|

1+|y| .
Also,

d
(
(0, u), d(5, v)

)
= |u – v| + 5

=
∣
∣∣
∣
5|2x – x|

1 + |x| –
5|2y – y|

1 + |y|
∣
∣∣
∣ + 5

=
∣
∣∣
∣
5|x + x – x – y – y + y)|

(1 + |x|)(1 + |y|)
∣
∣∣
∣ + 5

≤ 5(|x – y| + |x – y| + |y – x| + |x – x| + |y – y|)
(1 + |x|)(1 + |y|) + 5

≤ 5
(|x – y| +

∣
∣x – F(x)

∣
∣ +

∣
∣y – G(y)

∣
∣ +

∣
∣x – G(y)

∣
∣ +

∣
∣y – F(x)

∣
∣) + 5,

taking y = F(x), x = G(y)

> a1|x – y| + a2
∣∣x – F(x)

∣∣ + a3
∣∣y – G(y)

∣∣ + a4
∣∣x – G(y)

∣∣

+ a5
∣∣y – F(x)

∣∣ + 5) + (1 – η)5,η = a1 + a2 + a3 + a4 + a5

= a1d
(
(0, x), (0, y)

)
+ a2d

(
(0, x), S(0, x)

)
+ a3d

(
(0, y), G(0, y)

)

+ a4d
(
(0, x), G(0, y)

)
+ a5d

(
(5, y), G(5, x)

)
+ (1 – η)d(A, B), η < 1,

a contradiction.
Hence (F , G) is not a proximal Hardy–Rogers cyclic contraction.
Now defining (F , G) on a uniform space and letting

p
[
(x1, x2)(y1, y2)

]
=

⎧
⎪⎪⎨

⎪⎪⎩

|x1–y1|
17 + |x2–y2|

17 , x1, x2, y1, y2 ∈ N ∪ {0},
|x1 – y1| + |x2 – y2|, x1, x2, y1, y2 ∈ Q,
|x1–y1|

17 + |x2 – y2|, otherwise.
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Then

p
(
(0, u), p(5, v)

) ≤ a1p
(
(0, x), (0, y)

)
+ a2p

(
(0, x), S(0, x)

)
+ a3p

(
(0, y), G(0, y)

)

+ a4p
(
(0, x), G(0, y)

)
+ a5p

(
(5, y), G(5, x)

)
+ (1 – η)p(A, B), η < 1,

is true for all x ∈ A and y ∈ B.
(F , G) is a Hardy–Rogers p-proximal cyclic contraction and (0, 0) ∈ A, (5, 0) ∈ B are the

unique best proximity points such that

p
(
h(0, 0), F(0, 0)

)
= p

(
h(5, 0), G(5, 0)

)
= p

(
(0, 0), (5, 0)

)
= p(A, B).

The following corollaries further show that our theorem extends many known results in
literature.

Corollary 3.4 ([20]) Let (X, d) be a complete metric space. Suppose T : A ∪ B → A ∪ B sat-
isfies p(T(x), T(y)) ≤ kd(x, y) + (1 – k)d(A, B), k ∈ (0, 1), then T has a unique best proximity
point.

Proof Set � = {(x, y) ∈ X2 : d(x, y) < ε}, and suppose F = G = T , j = T(x), l = T(y) and V =
C = D = W = 0 in inequality (2.8), then the result follows. �

Remarks The result also follows when A and B are nonempty closed convex subsets of a
uniformly convex space [11].

Corollary 3.5 ([16]) Let (X, d) be a metric space and A, B be two nonempty closed subsets
of X. Let T : A ∪ B → A ∪ B be a Reich type cyclic contraction, then T has a unique fixed
point in A ∩ B.

Proof The proof is complete by taking D = W = 0, U = V = C = k, F = T , j = T(x), l = T(y),
p(A, B) = 0, and setting � = {(x, y) ∈ X2 : d(x, y) < ε} in inequality (2.8). �

Corollary 3.6 ([13]) Let (X, d) be a complete metric space and A, B be two nonempty
closed subsets of X. Let T : X → X be a Hardy and Rogers contraction, that is, if there
exist non-negative constants ai (i = 1, 2, 3, 4, 5) such that a1 + a2 + a3 + a4 + a5 < 1 satisfy-
ing d(T(x), T(y)) ≤ a1d(x, y) + a2d(x, T(x)) + a3d(y, T(y)) + a4d(x, T(y)) + a5d(y, T(x)) for all
x, y ∈ X, then T has a unique fixed point.

Proof The proof of this corollary follows by taking A = B, F = G = T and setting � =
{(x, y) ∈ X2 : d(x, y) < ε} in inequality (2.7). �

Corollary 3.7 Let (A, B) be a pair of non-empty subsets of an S-complete Hausdorff uni-
form space (X,�) such that p is an E-distance on X. Suppose that F : A → B and G : B → A
are mappings satisfying one of the following conditions:

(a) (F , G) is a p-proximal cyclic contraction;
(b) (F , G) is a Kannan p-proximal cyclic contraction;
(c) (F , G) is a Chatterjea p-proximal cyclic contraction;
(d) (F , G) is a Reich p-proximal cyclic contraction.
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Then there exists a unique point x ∈ A and y ∈ B such that p(x, F(x)) = p(y, G(x)) = p(A, B).
Moreover, for any best proximity point x0 ∈ A0, the sequence {xn} defined by p(xn+1, F(xn)) =
p(A, B) converges to the element x. Similarly, for any best proximity point y0 ∈ B0, the se-
quence {yn} defined by p(yn+1, G(yn)) = p(A, B) converges to the element y.

Proof Taking (a) V = C = D = W = 0 and j = T(x), l = T(y) in inequality (2.8), we obtain
Corollary 3.7(a);

(b) C = D = W = 0 and j = T(x), l = T(y) in inequality (2.8), we obtain Corollary 3.7(b);
(c) U = V = C = 0 and j = T(x), l = T(y) in inequality (2.8), we obtain Corollary 3.7(c);
(d) D = W = 0 and j = T(x), l = T(y) in inequality (2.8), we obtain Corollary 3.7(d). �

4 Conclusion
In this work, we have investigated the best proximity point results for Hardy–Rogers p-
proximal cyclic contraction in uniform spaces. This provides a positive answer to the ques-
tion of whether best proximity point results for Hardy and Rogers type mappings could be
established in uniform spaces. We also gave corollaries and examples to show that the best
proximity point results for Hardy and Rogers type mappings in literature become simple
consequences of this result. We hope that the findings in this paper will help researchers
enhance and promote the further studies on best proximity point of more maps in uni-
form spaces and other more general spaces to carry out a general framework for their
applications in real life.
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