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Abstract
We investigate strongly nonlinear differential equations of the type

(�(k(t)u′(t)))′ = f (t,u(t),u′(t)), a.e. on [0, T ],

where � is a strictly increasing homeomorphism and the nonnegative function k
may vanish on a set of measure zero. By using the upper and lower solutions method,
we prove existence results for the Dirichlet problem associated with the above
equation, as well as for different boundary conditions involving the function k. Our
existence results require a weak form of a Wintner–Nagumo growth condition.
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1 Introduction
The study of differential equations governed by nonlinear differential operators is now a
well-investigated subject. Recently many authors have studied boundary value problems
for equations of the type

(
�

(
u′))′ = f

(
t, u, u′), (1)

where f is a Carathédory function and � is the classical r-Laplacian operator �(y) :=
y|y|r–2 with r > 1 or, more generally, � : R → R is an increasing homeomorphism such
that �(0) = 0, the so-called �-Laplacian operator (see, e.g., [2–4, 7, 13, 15]). Other papers
have been devoted to the case of singular or non-surjective operators (see [1, 8, 9]). The
�-Laplacian operators are involved in some models, e.g., in non-Newtonian fluid theory,
diffusion of flows in porous media, nonlinear elasticity, and theory of capillary surfaces.
Other types of models, e.g., reaction-diffusion equations with non-constant diffusivity and
porous media equations, include mixed differential operators, that is, equations of the type

(
a(u)�

(
u′))′ = f

(
t, u, u′),

where a is a continuous positive function (see, e.g., [5, 6]).
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In this framework, the existence results are usually obtained by means of a fixed point
technique combined with the upper and lower solutions method. Another important tool
to get a priori bounds for the derivatives of the solutions is a Nagumo-type growth con-
dition on the function f . Let us observe that, when the nonlinear term a is present in the
differential operator, some assumptions are required to the differential operator �, which
in general is assumed to be homogeneous, or having at most linear growth at infinity.

In the recent paper [14], the authors considered a more general equation, that is,

(
a
(
t, u(t)

)
�

(
u′(t)

))′ = f
(
t, u(t), u′(t)

)
, a.e. on I := [0, T], (2)

where a is continuous and positive. They assumed a weak form of Wintner–Nagumo
growth condition, namely

∣∣f (t, x, y)
∣∣ ≤ ψ

(
a(t, x)

∣∣�(y)
∣∣) · (�(t) + ν(t)|y| s–1

s
)
, (3)

with ν ∈ Ls(I), s > 1, � ∈ L1(I), ψ measurable and such that

∫ +∞ ds
ψ(s)

= +∞.

This assumption is weaker than other Nagumo-type conditions previously considered,
and allows us to consider a very general operator �, which in [14] is only required to be
a strictly increasing homeomorphism, not necessarily homogeneous, nor having polyno-
mial growth.

We devote this paper to a different generalization of equation (1), considering non-
autonomous differential operators having an explicit dependence on t inside the operator
�, namely

(
�

(
k(t)u′(t)

))′ = f
(
t, u(t), u′(t)

)
, a.e. on I. (4)

Moreover, we also allow the function k to vanish in a set having null measure, so that the
differential equation under consideration can become singular. In this context, we search
for solutions no more belonging to C1(I), but to the space W 1,p(I), where p is the exponent
of the space Lp(I) to which we assume that 1/k belongs.

According to our knowledge, very few papers have been devoted to this type of equa-
tions, just for a restricted class of nonlinearities f (see [11, 12]).

Our goal is to obtain existence results for the Dirichlet problem associated with (4), as
well as for other boundary value problems with different boundary conditions, including,
as particular cases, the classical periodic, Neumann, and Sturm–Liouville problems, but
involving the (possibly vanishing) function k.

In more detail, we consider the following Dirichlet problem:

⎧
⎨

⎩
(�(k(t)u′(t)))′ = f (t, u(t), u′(t)), a.e. on I,

u(0) = a, u(T) = b
(P)
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where a, b ∈ R, � : R → R is a strictly increasing homeomorphism, k : I → R is a contin-
uous nonnegative function satisfying

k(t) > 0 for a.e. t ∈ I and
1
k

∈ Lp(I), p > 1, (5)

and f is a Carathéodory function. We prove an existence result under rather weak as-
sumptions (see Theorem 3.1 in Sect. 3), which can be applied to very general contexts.
For instance, we can treat equations of the type

(
�

(
k(t)u′(t)

))′ = μ(t)
(
u(t) + ρ(t)

)
+ g

(
u(t)

)
u′(t),

where no relation is required between the general operator �, the function k(t), and the
terms appearing on the right-hand side (see Example 3.4). We also can treat equation of
the type

(
�r

(
k(t)u′(t)

))′ = g
(
u(t)

)∣∣u′(t)
∣∣α ,

where � is the classical r-Laplacian, showing the existence of a solution under a simple
relation among the exponents r, p, and α (see Remark 3.6).

In order to obtain the existence result, we adopt a suitable combination of fixed point
techniques applied to an auxiliary functional Dirichlet problem, and the method of lower
and upper solutions (see Sect. 2). Our main growth assumption on the right-hand side f
is a weak form of the Wintner–Nagumo condition similar to the one in (3).

The last part of the paper (see Sect. 4) is devoted to various types of boundary value
problems, including the periodic problem, Neumann problem, and Sturm–Liouville prob-
lem, for which we derive the existence of a solution by applying the existence result for
some auxiliary Dirichlet problems.

2 Auxiliary results
In this section we consider the following functional Dirichlet problem:

⎧
⎨

⎩
(�(k(t)u′(t)))′ = Fu(t), a.e. on I := [0, T],

u(0) = a, u(T) = b,
(6)

where a, b ∈ R are given constants, k : I → R is a continuous function verifying (5) for
some p > 1, � : R → R is a strictly increasing homeomorphism, and F : W 1,p(I) → L1(I),
x �→ Fx, is a continuous operator. Throughout the section we assume that there exists a
function η ∈ L1(I) such that

∣
∣Fx(t)

∣
∣ ≤ η(t), a.e. on I, for every x ∈ W 1,p(I). (7)

For brevity we denote

kp :=
∥∥
∥∥

1
k

∥∥
∥∥

Lp
and k1 :=

∥∥
∥∥

1
k

∥∥
∥∥

L1
. (8)



Calamai et al. Fixed Point Theory and Applications  (2018) 2018:20 Page 4 of 22

By a solution of problem (6) we mean a function u ∈ W 1,p(I), with u(0) = a, u(T) = b,
such that � ◦ (k · u′) ∈ W 1,1(I) and (�(k(t)u′(t)))′ = Fu(t) a.e. on I .

Let F : W 1,p(I) → C(I) be the integral operator defined by

Fx(t) =
∫ t

0
Fx(s) ds, t ∈ I.

Observe that the operator F is continuous in W 1,p(I) and, by assumption (7), we have

∣∣Fx(t)
∣∣ ≤ ‖η‖L1 for every x ∈ W 1,p(I) and t ∈ I. (9)

The following lemma will be used in the next existence result.

Lemma 2.1 Assume conditions (5) and (7). Then, for every x ∈ W 1,p(I), there is a unique
constant Ix ∈R such that

∫ T

0

1
k(t)

�–1(Ix + Fx(t)
)

dt = b – a. (10)

Moreover,

|Ix| ≤
∣∣
∣∣�

(
b – a

k1

)∣∣
∣∣ + ‖η‖L1 for every x ∈ W 1,p(I). (11)

Proof Let x ∈ W 1,p(I) be fixed and consider the function ϕx : R →R defined by

ϕx(ξ ) :=
∫ T

0

1
k(t)

�–1(ξ + Fx(t)
)

dt.

Observe that ϕx is well-defined and continuous by Lebesgue’s dominated convergence the-
orem. Moreover, since �–1 is strictly increasing, also ϕx is strictly increasing.

By (9), for every ξ ∈R, x ∈ W 1,p(I), and t ∈ I , we have

ξ – ‖η‖L1 ≤ ξ + Fx(t) ≤ ξ + ‖η‖L1 .

So, since �–1 is strictly increasing and k is positive, we get

�–1(ξ – ‖η‖L1
)∫ T

0

1
k(t)

dt ≤
∫ T

0

1
k(t)

�–1(ξ + Fx(t)
)

dt

≤ �–1(ξ + ‖η‖L1
)∫ T

0

1
k(t)

dt.

Hence, we have limξ→–∞ ϕx(ξ ) = –∞, limξ→+∞ ϕx(ξ ) = +∞, implying that ϕx is a homeo-
morphism. Therefore, for every x ∈ W 1,p(I), there exists a unique Ix ∈R such that

∫ T

0

1
k(t)

�–1(Ix + Fx(t)
)

dt = b – a.
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By the mean value theorem, for every x ∈ W 1,p(I), there exists a value Ūx ∈ I such that

b – a =
∫ T

0

1
k(t)

�–1(Ix + Fx(t)
)

dt = �–1(Ix + Fx(Ūx)
)∫ T

0

1
k(t)

dt.

Hence, we have �–1(Ix + Fx(Ūx)) = (b – a)/k1 (see (8)) implying that

Ix + Fx(Ūx) = �

(
b – a

k1

)
,

and estimate (11) follows from (9). �

The following existence result holds.

Theorem 2.2 Assume conditions (5) and (7). Then problem (6) admits a solution.

Proof Consider the operator G : W 1,p(I) → W 1,p(I), x �→ Gx, defined by

Gx(t) := a +
∫ t

0

1
k(s)

�–1(Ix + Fx(s)
)

ds for all t ∈ I. (12)

Observe that G is well defined. Indeed given x ∈ W 1,p(I), since

(Gx)′(t) =
1

k(t)
�–1(Ix + Fx(t)

)
a.e. t ∈ I,

we deduce that (Gx)′ ∈ Lp(I), and so Gx ∈ W 1,p(I).
Claim 1: G is continuous. Given x1, x2 ∈ W 1,p(I), observe that by (10) we get

∫ T

0

1
k(t)

(
�–1(Ix1 + Fx1 (t)

)
– �–1(Ix2 + Fx2 (t)

))
dt = 0.

So, by the mean value theorem, there exists t̂ ∈ I such that

�–1(Ix1 + Fx1 (t̂)
)

– �–1(Ix2 + Fx2 (t̂)
)

= 0

and since �–1 is strictly increasing,

Ix1 + Fx1 (t̂) = Ix2 + Fx2 (t̂),

that is, Ix1 – Ix2 = Fx1 (t̂) – Fx2 (t̂), which implies

|Ix1 – Ix2 | =
∣
∣Fx1 (t̂) – Fx2 (t̂)

∣
∣ ≤ ‖Fx1 – Fx2‖C(I).

Moreover, since for any t ∈ I we have

∣∣Fx1 (t) – Fx2 (t)
∣∣ ≤

∫ t

0

∣∣Fx1 (s) – Fx2 (s)
∣∣ds ≤ ‖Fx1 – Fx2‖L1 ,

we conclude that

|Ix1 – Ix2 | ≤ ‖Fx1 – Fx2‖C(I) ≤ ‖Fx1 – Fx2‖L1 . (13)
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Observe that by (9) and (11) we get

∣∣Ix + Fx(t)
∣∣ ≤

∣∣∣
∣�

(
b – a

k1

)∣∣∣
∣ + 2‖η‖L1 for all t ∈ I and x ∈ W 1,p(I). (14)

By the uniform continuity of �–1 on any compact interval of R, we get that for every ε > 0
there exists δ = δ(ε) > 0 such that

∣
∣�–1(r1) – �–1(r2)

∣
∣ < min

{
ε

2kp
,

ε

2Tk1

}
(15)

for every r1, r2 with |r1 – r2| < δ provided that |r1|, |r2| ≤ |�( b–a
k1

)| + 2‖η‖L1 .
Let now (xn)n be a sequence in W 1,p(I) converging to x ∈ W 1,p(I). By the continuity of

the operator F , we get that (Fxn )n converges to Fx in L1(I) and, by (13), (Ixn )n converges
to Ix.

Let ε > 0 be fixed and δ = δ(ε) > 0 as before. There exists n̄ = n̄(ε,η) such that, for n ≥ n̄,
‖Fxn – Fx‖L1 < δ/2. Consequently, for n ≥ n̄ and t ∈ I , by (13) we get

∣∣Ixn + Fxn (t) – Ix – Fx(t)
∣∣ ≤ 2‖Fxn – Fx‖L1 < δ.

So, for n ≥ n̄ and a.e. t ∈ I , by (15) and (14) we get

∣
∣(Gxn )′(t) – (Gx)′(t)

∣
∣ =

1
k(t)

∣
∣�–1(Ixn + Fxn (t)

)
– �–1(Ix + Fx(t)

)∣∣ <
ε

2kp
· 1

k(t)
.

Thus,

∥∥(Gxn )′ – (Gx)′
∥∥p

Lp <
(

ε

2kp

)p ∫ T

0

1
k(t)p dt

implying that ‖(Gxn )′ – (Gx)′‖Lp < ε
2 . Moreover, for n ≥ n̄ and t ∈ I , again by (15) we have

∣
∣Gxn (t) – Gx(t)

∣
∣ =

∣∣
∣∣

∫ t

0

1
k(s)

(
�–1(Ixn + Fxn (s)

)
– �–1(Ix + Fx(s)

))
ds

∣∣
∣∣

≤
∫ t

0

1
k(s)

∣∣�–1(Ixn + Fxn (s)
)

– �–1(Ix + Fx(s)
)∣∣ds <

ε

2T

implying that ‖Gxn – Gx‖Lp < ε
2 .

Summarizing, we have proved that, for any ε > 0, there exists n̄ = n̄(ε,η) such that, for
n ≥ n̄,

‖Gxn – Gx‖W 1,p = ‖Gxn – Gx‖Lp +
∥∥(Gxn )′ – (Gx)′

∥∥
Lp < ε,

that is, the operator G is continuous.
Claim 2: G is bounded. By (14) and the continuity of �–1, there exists a constant H =

H(k,η) such that

∣∣�–1(Ix + Fx(t)
)∣∣ ≤ H for all t ∈ I and x ∈ W 1,p(I). (16)
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Thus, for every x ∈ W 1,p(I) and a.e. t ∈ I , we get

∣∣(Gx)′(t)
∣∣ =

1
k(t)

∣∣�–1(Ix + Fx(t)
)∣∣ ≤ H

k(t)
(17)

implying (see (8))

∥
∥(Gx)′

∥
∥

p < Hkp for every x ∈ W 1,p(I). (18)

Moreover, for every x ∈ W 1,p(I) and t ∈ I , we have

∣∣Gx(t)
∣∣ =

∣
∣∣
∣a +

∫ t

0

1
k(s)

�–1(Ix + Fx(s)
)

ds
∣
∣∣
∣ ≤ |a| + Hk1. (19)

Consequently, ‖Gx‖Lp < (|a| + Hk1)T1/p. Finally,

‖Gx‖W 1,p(I) = ‖Gx‖Lp +
∥
∥(Gx)′

∥
∥

Lp ≤ (|a| + Hk1
)
T

1
p + Hkp.

Claim 3: G is a compact operator. Let us fix a bounded set D ⊂ W 1,p(I). We have to show
that G(D) is relatively compact, that is, for any sequence (xn)n ⊂ D, the sequence (Gxn )n

admits a subsequence converging in W 1,p(I).
Let us first show that the sequence ((Gxn )′)n admits a subsequence converging in Lp(I).

To this aim notice that by (19), for all s, t ∈ I and n ∈N, we have

∣
∣∣∣

∫ t

s
(Gxn )′(τ ) dτ

∣
∣∣∣ ≤ ∣∣Gxn (t)

∣∣ +
∣∣Gxn (s)

∣∣ ≤ 2|a| + 2Hk1. (20)

Moreover, by (17), for every n ∈ N and a.e. t ∈ I , we have

∣
∣(Gxn )′(t)

∣
∣ ≤ H

k(t)

and since 1
k ∈ Lp, we get that the sequence ((Gxn )′)n is uniformly integrable.

Hence, if we prove that

lim
h↘0

∫ T–h

0

∣∣(Gxn )′(t + h) – (Gxn )′(t)
∣∣p dt = 0, uniformly in n, (21)

we can apply the characterization of relatively compact sets in Lp given by [10, Theorem
2.3.6] and derive the relative compactness of the sequence ((Gxn )′)n.

So, in order to prove (21), let us fix ε > 0. First observe that, since 1
k ∈ Lp(I), there is

ρ1 = ρ1(ε) > 0 such that, for 0 < h < ρ1,

∫ T–h

0

∣
∣∣∣

1
k(t + h)

–
1

k(t)

∣
∣∣∣

p

dt <
ε

(2H)p . (22)

Moreover, as in Claim 1, the uniform continuity of �–1 on any compact interval of R
implies (see (8)) the existence of δ1 = δ1(ε) > 0 such that

∣∣�–1(r1) – �–1(r2)
∣∣ <

ε
1
p

2kp
(23)
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for every r1, r2 with |r1 – r2| < δ1 provided that |r1|, |r2| ≤ |�( b–a
k1

)| + 2‖η‖L1 . Further, since
η ∈ L1(I), there is ρ2 = ρ2(ε) > 0 such that

∣∣
∣∣

∫ θ2

θ1

η(t) dt
∣∣
∣∣ < δ1 for every θ1, θ2 ∈ I with |θ1 – θ2| < ρ2.

Thus,

∣∣Fxn (θ1) – Fxn (θ2)
∣∣ =

∣
∣∣
∣

∫ θ2

θ1

Fxn (t) dt
∣
∣∣
∣ <

∣
∣∣
∣

∫ θ2

θ1

η(t) dt
∣
∣∣
∣ < δ1.

Consequently, from (11) and (23) we obtain

∣∣�–1(Ixn + Fxn (θ1)
)

– �–1(Ixn + Fxn (θ2)
)∣∣ <

ε
1
p

2kp
(24)

for every θ1, θ2 ∈ I with |θ1 – θ2| < ρ2.
Now, let t ∈ I and h > 0 be fixed such that t + h ∈ I . By (16) we have

∣∣(Gxn )′(t + h) – (Gxn )′(t)
∣∣

=
∣
∣∣
∣

(
1

k(t + h)
–

1
k(t)

)
�–1(Ixn + Fxn (t)

)

+
1

k(t + h)
(
�–1(Ixn + Fxn (t + h)

)
– �–1(Ixn + Fxn (t)

))
∣∣∣
∣

≤ H
∣∣
∣∣

1
k(t + h)

–
1

k(t)

∣∣
∣∣ +

1
k(t + h)

∣
∣�–1(Ixn + Fxn (t + h)

)
– �–1(Ixn + Fxn (t)

)∣∣.

Therefore, by the convexity of the function ϕ(τ ) = |τ |p, we get

∫ T–h

0

∣
∣(Gxn )′(t + h) – (Gxn )′(t)

∣
∣p dt

≤ 2p–1Hp
∫ T–h

0

∣
∣∣
∣

1
k(t + h)

–
1

k(t)

∣
∣∣
∣

p

dt

+ 2p–1
∫ T–h

0

1
(k(t + h))p

∣∣�–1(Ixn + Fxn (t + h)
)

– �–1(Ixn + Fxn (t)
)∣∣p dt.

Let now 0 < h < ρ with ρ = min{ρ1,ρ2}. From estimates (22) and (24) with θ1 := t + h, θ2 := t,
it follows that

∫ T–h

0

∣
∣(Gxn )′(t + h) – (Gxn )′(t)

∣
∣p dt < ε

and this implies that condition (21) holds. Hence, the sequence ((Gxn )′)n verifies the as-
sumptions of [10, Theorem 2.3.6]. So, we have that there exists a subsequence, denoted
again by ((Gxn )′(t))n, converging in Lp to a certain y ∈ Lp(I).

To conclude the proof of Claim 3, put

z(t) := a +
∫ t

0
y(s) ds.
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By Hölder’s inequality we have

∣
∣Gxn (t) – z(t)

∣
∣ =

∣∣
∣∣

∫ t

0

(
(Gxn )′(s) – y(s)

)
ds

∣∣
∣∣ ≤ T1/p′∥∥(Gxn )′ – y

∥
∥

Lp ,

where p′ is the exponent conjugate to p. Therefore, Gxn (t) → z(t) uniformly in I , implying
that Gxn → z in Lp(I) and, taking into account that z′(t) = y(t) a.e., we conclude that (Gxn )n

converges to z in W 1,p(I).
This shows that G(D) is relatively compact in W 1,p(I).
By virtue of what we proved in Claims 1–3, we can apply the Schauder fixed point the-

orem to achieve the existence of a fixed point for the operator G, and this concludes the
proof. �

3 Dirichlet problem
In this section we consider problem (P), where � : R → R is a generic strictly increasing
homeomorphism, k : I → R is a continuous nonnegative function satisfying (5). Finally,
f : I ×R

2 → R is a Carathéodory function, that is, the map t �→ f (t, x, y) is measurable on
I for every (x, y) ∈ R

2, and the map (x, y) �→ f (t, x, y) is continuous on R
2 for a.e. t ∈ I .

Let us define

Wp =
{

u ∈ W 1,p(I) : k · u′ ∈ C(I),� ◦ (
k · u′) ∈ W 1,1(I)

}
. (25)

By a solution of problem (P) we mean a function u ∈Wp, satisfying u(0) = a, u(T) = b and
such that (�(k(t)u′(t)))′ = f (t, u(t), u′(t)) a.e. on I .

Similarly, a function σ ∈ Wp is called a lower [resp. upper] solution of the equation in
(P) if

(
�

(
k(t)σ ′(t)

))′ ≥ [≤] f
(
t,σ (t),σ ′(t)

)
a.e. on I.

The main result of the paper is the following existence theorem.

Theorem 3.1 Assume the existence of a pair of lower and upper solutions σ , τ ∈Wp of the
equation in (P), satisfying σ (t) ≤ τ (t) for every t ∈R.

Moreover, assume that for any R > 0 and any γ ∈ Lp
+(I), there exists hR,γ ∈ L1

+(I) such that

∣
∣f

(
t, x, y(t)

)∣∣ ≤ hR,γ (t) (26)

for a.a. t ∈ I , all x ∈ R such that |x| ≤ R, and all y ∈ Lp(I) such that |y(t)| ≤ γ (t) for a.a.
t ∈ I .

Finally, suppose that there exist a constant H > 0, a function ν ∈ Lq
+(I) for some 1 < q ≤ ∞,

a nonnegative function � ∈ L1(I), and a function ψ : (0,∞) → (0,∞), with 1/ψ ∈ L1
loc(0,∞)

and
∫ +∞ 1

ψ(s) ds = +∞, such that

∣
∣f (t, x, y)

∣
∣ ≤ ψ

(∣∣�
(
k(t)y

)∣∣) · (�(t) + ν(t)|y| q–1
q

)
a.e. on I (27)

for a.e. t ∈ I , all x ∈ [σ (t), τ (t)] and all y with |y| > H , where q–1
q = 1 if q = ∞.
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Then, for every a, b such that σ (0) ≤ a ≤ τ (0), σ (T) ≤ b ≤ τ (T), problem (P) has a solu-
tion ua,b ∈Wp such that σ (t) ≤ ua,b(t) ≤ τ (t) for every t ∈ I .

Moreover, for every M > 0, there exists a constant L = L(M, H ,ν,�,ψ) such that if
‖σ‖C(I) ≤ M, ‖τ‖C(I) ≤ M, ‖k · σ ′‖C(I) ≤ L, and ‖k · τ ′‖C(I) ≤ L, then also

‖u‖C(I) ≤ M and
∥
∥k · u′∥∥

C(I) ≤ L. (28)

Proof Let M > 0 be such that ‖σ‖C(I) ≤ M and ‖τ‖C(I) ≤ M. Let us fix N ∈ R such that

N > max

{
H ,

|b – a|
T

}
· max

t∈I
k(t); �(N) · �(–N) < 0. (29)

Moreover, since σ , τ ∈Wp (see (25)), we can choose a value L > N such that

L > max
t∈I

[
k(t)

(∣∣σ ′(t)
∣∣ +

∣∣τ ′(t)
∣∣)], (30)

min

{∫ �(L)

�(N)

ds
ψ(s)

,
∫ –�(–L)

–�(–N)

ds
ψ(s)

}
> ‖�‖L1 + ‖ν‖Lq (2M)1– 1

q . (31)

Let us now define a truncated function f ∗ : I ×R
2 →R by

f ∗(t, x, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

f (t, τ (t), τ ′(t)) + arctan(x – τ (t)) if x > τ (t),

f (t, x, y) if σ (t) ≤ x ≤ τ (t),

f (t,σ (t),σ ′(t)) + arctan(x – σ (t)) if x < σ (t)

and the following truncating operators: U : W 1,p(I) → W 1,p(I), x �→ Ux, defined by

Ux(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

τ (t) if x(t) > τ (t),

x(t) if σ (t) ≤ x(t) ≤ τ (t),

σ (t) if x(t) < σ (t),

for all t ∈ I

and V : Lp(I) → Lp(I), z �→ Vz , defined by

Vz(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

γ (t) if z(t) > γ0(t),

z(t) if –γ0(t) ≤ z(t) ≤ γ0(t),

–γ0(t) if z(t) < –γ0(t),

for a.a. t ∈ I,

where γ0(t) := L
k(t) , for a.e. t ∈ I .

Finally, consider the auxiliary problem
⎧
⎨

⎩
(�(k(t)u′(t)))′ = f ∗(t, u(t),VU ′

u (t)), a.e. on I,

u(0) = a, u(T) = b.
(32)

Claim 1: Problem (32) has a solution u ∈Wp. Let F : W 1,p(I) → L1(I), x �→ Fx be defined
by

Fx(t) := f ∗(t, x(t),VU ′
x (t)

)
for a.a. t ∈ I. (33)
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Notice that whenever σ (t) ≤ x(t) ≤ τ (t), then |x(t)| ≤ M and U ′
x(t) = x′(t) for a.a. t. There-

fore, by (26) we get

∣
∣f ∗(t, x(t),VU ′

x (t)
)∣∣ =

∣
∣f

(
t, x(t),Vx′ (t)

)∣∣ ≤ hM,γ0 (t).

Instead, whenever x(t) > σ (t) or x(t) < τ (t), then

∣∣f ∗(t, x(t),VU ′
x (t)

)∣∣ ≤ max
{∣∣f

(
t,σ (t),σ ′(t)

)∣∣,
∣∣f

(
t, τ (t), τ ′(t)

)∣∣} +
π

2
.

So, for all x ∈ W 1,p(I) and a.e. t ∈ I , we have

∣∣Fx(t)
∣∣ ≤ max

{
hM,γ0 (t),

∣∣f
(
t,σ (t),σ ′(t)

)∣∣,
∣∣f

(
t, τ (t), τ ′(t)

)∣∣} +
π

2
, (34)

where the right-hand side is a summable function. Hence, the operator F satisfies assump-
tion (7).

Let us now prove the continuity of the operator F . Let (xn)n be a sequence in W 1,p(I)
converging to x ∈ W 1,p(I). Then there exist a subsequence of (x′

n)n, labeled again (x′
n)n,

and a Lp-function g such that for a.e. t ∈ I we have

x′
n(t) → x′(t) and

∣∣x′
n(t)

∣∣ ≤ g(t). (35)

Let us first show that U ′
xn → U ′

x in Lp(I). By definition

U ′
x(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

τ ′(t) if x(t) > τ (t),

x′(t) if σ (t) ≤ x(t) ≤ τ (t),

σ ′(t) if x(t) < σ (t),

for a.a. t ∈ I

and

U ′
xn (t) :=

⎧
⎪⎪⎨

⎪⎪⎩

τ ′(t) if xn(t) > τ (t),

x′
n(t) if σ (t) ≤ xn(t) ≤ τ (t),

σ ′(t) if xn(t) < σ (t),

for a.a. t ∈ I.

Put

I◦ :=
{

t ∈ I : σ (t) < x(t) < τ (t)
}

,

I+ :=
{

t ∈ I : x(t) > τ (t)
}

, I– :=
{

t ∈ I : x(t) < σ (t)
}

.
(36)

Since, in particular, I+, I– are open sets, their boundaries ∂(I+) and ∂(I–) have null measure.
Let us now fix a point t /∈ ∂(I+)∪∂(I–) such that the derivatives σ ′(t), τ ′(t), x′(t), and x′

n(t),
for all n ∈N, exist. If t ∈ I+, then for n sufficiently large xn(t) > τ (t) too. Hence, in this case
U ′

xn (t) = U ′
x(t). Similarly, if t ∈ I– again, U ′

xn (t) = U ′
x(t) for n sufficiently large. Moreover, if

t ∈ I◦, then for large n we have also σ (t) < xn(t) < τ (t), and soU ′
xn (t) = x′

n(t) andU ′
x(t) = x′(t).

Therefore, U ′
xn (t) → U ′

x(t) for a.e. t ∈ I+ ∪ I– ∪ I◦.
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Finally, if t /∈ I+ ∪ I– ∪ I◦ ∪ ∂(I+) ∪ ∂(I–), then x(θ ) = σ (θ ) (or x(θ ) = τ (θ )) for θ in a neigh-
borhood J of t. If x(θ ) = σ (θ ) in J , then x′(θ ) = σ ′(θ ) in J and since U ′

xn (t) ∈ {x′
n(t),σ ′(t)}, we

have U ′
xn (t) → x′(t) = U ′

x(t). One can reason similarly when x(θ ) = τ (θ ) in J .
Summarizing, we have proved that

U ′
xn (t) → U ′

x(t) for a.e. t ∈ I. (37)

Moreover, since U ′
xn (t) ∈ {x′

n(t),σ ′(t), τ ′(t)}, by (35) we get

∣
∣U ′

xn (t)
∣
∣ ≤ g(t) +

∣
∣σ ′(t)

∣
∣ +

∣
∣τ ′(t)

∣
∣ for a.e. t ∈ I,

and by Lebesgue’s dominated convergence theorem we deduce that Uxn → Ux in Lp(I).
Furthermore, by (37) we also have VU ′

xn
(t) → VU ′

x (t) a.e. on I . In fact, by definition we
have

VU ′
x (t) :=

⎧
⎪⎪⎨

⎪⎪⎩

γ0(t) if U ′
x(t) > γ0(t),

U ′
x(t) if –γ0(t) ≤ U ′

x(t) ≤ γ0(t),

–γ0(t) if U ′
x(t) < –γ0(t),

for a.a. t ∈ I

and

VU ′
xn

(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

γ0(t) if U ′
xn (t) > γ0(t),

U ′
xn (t) if –γ0(t) ≤ U ′

xn (t) ≤ γ0(t),

–γ0(t) if U ′
xn (t) < –γ0(t),

for a.a. t ∈ I.

Similarly to what we have done above, it is possible to show that for a.e. t such that
U ′

x(t) �= ±γ0(t) then VU ′
xn

(t) → VU ′
x (t). Whereas, for a.e. t such that U ′

x(t) = ±γ0(t), we have
U ′

x(θ ) = ±γ0(θ ) in a neighborhood of t, hence by (37) we again have VU ′
xn

(t) → VU ′
x (t) since

VU ′
xn

(t) ∈ {U ′
xn (t),±γ0(t)}. So,

VU ′
xn

(t) → VU ′
x (t) for a.e. t ∈ I. (38)

Finally, let us prove that if xn → x in W 1,p(I), then we have

f ∗(t, xn(t),VU ′
xn

(t)
) → f ∗(t, x(t),V ′

Ux (t)
)

for a.e. t ∈ I. (39)

Indeed, with the notation as in (36), for a.e. t ∈ I+, we have that x′(t) = τ ′(t) = U ′
x(t) =

VU ′
x(t); moreover, we also have xn(t) > τ (t) for large n, hence x′

n(t) = τ ′(t), U ′
xn (t) = τ ′(t); and

consequently, VU ′
xn

(t) = U ′
xn (t) = τ ′(t). Therefore,

f ∗(t, xn(t),VU ′
xn

(t)
)

= f
(
t, τ (t), τ ′(t)

)
+ arctan

(
xn(t) – τ (t)

)

→ f ∗(t, τ (t), τ ′(t)
)

+ arctan
(
x(t) – τ (t)

)
= f ∗(t, x(t),VU ′

x (t)
)
.

Similarly we can prove the validity of (39) for a.e. t ∈ I–.
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Instead, for a.e. t ∈ I◦, we have U ′
x(t) = x′(t) and σ (t) < xn(t) < τ (t) for large n implying

that U ′
xn (t) = x′

n(t). Thus, by (38) and the continuity of the function f (t, ·, ·), we get

f ∗(t, xn(t),VU ′
xn

(t)
)

= f
(
t, xn(t),VU ′

xn
(t)

) → f
(
t, x(t),VU ′

x (t)
)
) = f ∗(t, x(t),VU ′

x (t).

Finally, for a.e. t /∈ I+ ∪ I+ ∪ I◦, we have that x(θ ) = σ (θ ) (or x(θ ) = τ (θ )) in a neighborhood
of t. Hence, in the case x(θ ) = σ (θ ) we have f ∗(t, x(t),VU ′

x (t)) = f (t,σ (t),σ ′(t)), and since

f ∗(t, xn(t),VU ′
xn

(t)
) ∈ {

f
(
t,σ (t),σ ′(t)

)
+ arctan

(
xn(t) – σ (t)

)
, f

(
t, xn(t),VU ′

xn
(t)

)}
,

we conclude that

f ∗(t, xn(t),VU ′
xn

(t)
) → f ∗(t, x(t),VU ′

x (t)
)
,

and (39) is proved.
Put R0 := maxt∈I(|σ (t)| + |τ (t)|), by assumption (26) we deduce that

∣∣f ∗(t, xn(t),VU ′
xn

(t)
)∣∣ ≤ hR0,γ0 (t)

and by Lebesgue’s dominated convergence theorem we obtain that Fxn (t) → Fx(t) in L1

(see (33)).
Consequently, Theorem 2.2 applies yielding a solution u ∈Wp of problem (32).
Claim 2: The solution u of problem (32) verifies σ (t) ≤ u(t) ≤ τ (t) for all t ∈ I . Let us

show that σ (t) ≤ u(t) for all t ∈ I , the other inequality being analogous.
Assume by contradiction that there exists t̄ ∈ I such that σ (t̄) > u(t̄). Since u(0) – σ (0) =

a–σ (0) ≥ 0, there is θ ∈ (0, T) such that u(θ )–σ (θ ) = min{u(t)–σ (t) : t ∈ I} < 0. Moreover,
since u(T) –σ (T) = b –σ (T) ≥ 0, there are t1, t2 ∈ I with t1 < θ < t2 such that u(t1) –σ (t1) =
u(t2) – σ (t2) = 0 and u(t) – σ (t) < 0 for all t ∈ (t1, t2). Therefore, for a.a. t ∈ [t1, t2], we have

(
�

(
k(t)u′(t)

))′ = f ∗(t, u(t),VU ′
u (t)

)
= f

(
t,σ (t),σ ′(t)

)
+ arctan

(
u(t) – σ (t)

)

< f
(
t,σ (t),σ ′(t)

) ≤ (
�

(
k(t)σ ′(t)

))′,

that is,

(
�

(
k(t)u′(t)

))′ ≤ (
�

(
k(t)σ ′(t)

))′ for a.a. t ∈ [t1, t2]. (40)

Notice now that the sets

A1 :=
{

t ∈ [t1, θ ] : u′(t) – σ ′(t) < 0
}

, A2 :=
{

t ∈ [θ , t2] : u′(t) – σ ′(t) > 0
}

both have positive measure. So, there exist t∗
1 ∈ A1 and t∗

2 ∈ A2 such that k(t∗
1 ) �= 0, k(t∗

2 ) �= 0.
Now, integrating in [t∗

1 , θ ], by (40), we obtain

�
(
k(θ )u′(θ )

)
– �

(
k
(
t∗
1
)
u′(t∗

1
)) ≤ �

(
k(θ )σ ′(θ )

)
– �

(
k
(
t∗
1
)
σ ′(t∗

1
))

.
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Hence, recalling the choice of t∗
1 ,

�
(
k(θ )u′(θ )

)
– �

(
k(θ )σ ′(θ )

) ≤ �
(
k
(
t∗
1
)
u′(t∗

1
))

– �
(
k
(
t∗
1
)
σ ′(t∗

1
))

< 0. (41)

Similarly, integrating in [θ , t∗
2 ], by (40), we obtain

�
(
k
(
t∗
2
)
u′(t∗

2
))

– �
(
k(θ )u′(θ )

) ≤ �
(
k
(
t∗
2
)
σ ′(t∗

2
))

– �
(
k(θ )σ ′(θ )

)
.

Hence, recalling the choice of t∗
2 ,

�
(
k(θ )u′(θ )

)
– �

(
k(θ )σ ′(θ )

) ≥ �
(
k
(
t∗
2
)
u′(t∗

2
))

– �
(
k
(
t∗
2
)
σ ′(t∗

2
))

> 0

in contradiction with (41). Therefore, we achieve that σ (t) ≤ u(t) for all t ∈ I . In an analo-
gous way one can prove that u(t) ≥ τ (t) for all t ∈ I , and the claim follows.

As a consequence of Claim 2, by definition of f ∗ and of the truncation operator U , any
solution u of problem (32) verifies the equation

(
�

(
k(t)u′(t)

))′ = f
(
t, u(t),Vu′ (t)

)
, a.e. on I.

Hence, to conclude the proof, we have to show that |u′(t)| ≤ L
k(t) for a.a. t ∈ I , so that

Vu′ (t) ≡ u′(t) a.e. on I .
Claim 3: mint∈I |k(t)u′(t)| ≤ N . We proceed by contradiction assuming that k(t)u′(t) > N

for all t ∈ I , or k(t)u′(t) < –N for all t ∈ I . Suppose that the first alternative holds. Then,
integrating we get

∫ T

0
k(t)u′(t) dt > NT .

Thus, recalling the choice of N (see (29)), we achieve

NT < max
t∈I

k(t) ·
∫ T

0
u′(t) dt < max

t∈I
k(t) · (b – a) < NT

a contradiction. In an analogous way one can prove that the second alternative does not
hold, and the claim follows.

Claim 4: The solution u of problem (32) verifies |k(t)u′(t)| ≤ L for all t ∈ I . Assume by con-
tradiction that this does not hold; then one of the following is true: either max{k(t)u′(t) :
t ∈ I} > L or min{k(t)u′(t) : t ∈ I} < –L.

Assume that the first alternative holds. Since N < L, the assertion of Claim 3 implies that
there exist t0, t1 ∈ I with (without loss of generality) t0 < t1 such that

k(t0)u′(t0) = N , k(t1)u′(t1) = L, (42)

and

N < k(t)u′(t) < L for all t ∈ [t0, t1].

Therefore, 0 < u′(t) < L
k(t) for a.e. t ∈ (t0, t1), implying that Vu′ (t) = u′(t) for a.e. t ∈ (t0, t1).
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Moreover, since by (29) we have u′(t) > N
k(t) > H , by assumption (27) and taking into

account Claim 2, for a.e. t ∈ [t0, t1], we have

∣∣(�
(
k(t)u′(t)

))′∣∣ =
∣∣f

(
t, u(t),Vu′ (t)

)∣∣

=
∣
∣f

(
t, u(t), u′(t)

)∣∣

≤ ψ
(∣∣�

(
k(t)u′(t)

)∣∣) · (�(t) + ν(t)
∣∣u′(t)

∣∣
q–1

q
)
. (43)

Observe now that by (42) and (43) and Hölder’s inequality, we have

∫ �(L)

�(N)

ds
ψ(s)

=
∫ �(k(t1)u′(t1))

�(k(t0)u′(t0))

ds
ψ(s)

=
∫ t1

t0

(�(k(t)u′(t)))′

ψ(�(k(t)u′(t)))
dt

≤
∫ t1

t0

(
�(t) + ν(t)

∣∣u′(t)
∣∣

q–1
q

)
dt

≤ ‖�‖L1 + ‖ν‖Lq

(∫ t1

t0

u′(t)
)1– 1

q
dt

= ‖�‖L1 + ‖ν‖Lq
(
u(t1) – u(t0)

)1– 1
q dt ≤ ‖�0‖L1 + ‖ν‖Lq (2M)1– 1

q

in contradiction with (31).
Similarly, one can prove that the case min{k(t)u′(t) : t ∈ I} < –L leads to a contradiction,

and Claim 4 follows.
As already pointed out, Claim 4 implies that the solution u of problem (32) obtained as

in Claim 1 actually satisfies

(
�

(
k(t)u′(t)

))′ = f
(
t, u(t), u′(t)

)
, a.e. on I,

that is, u is a solution of problem (P).
Finally, by what we have proved in Claims 2 and 4, we deduce (28). �

Remark 3.2 Let us observe that, if k(t) > 0 for all t ∈ I , then the solution u of problem (P)
is actually a C1 function. This follows from the fact that, if k(t) > 0, all the fixed points of
the operator G defined in (12) are of class C1(I).

Remark 3.3 Notice that in the Wintner–Nagumo condition (27) the function ψ could be
chosen as a constant. When this is possible (that is, when the growth of the right-hand side
f with respect the variable y is, at most, linear), then condition (27) does not require any
relation among the differential operator �, the function k(t) appearing inside �, and the
function f . Instead, when f has a superlinear growth in the variable y, then condition (27)
implies a link between the rates of growth of �, f (with respect to y), and the exponent p.
This is illustrated in the following examples.

Example 3.4 Let us consider the following Dirichlet problem:

⎧
⎨

⎩
(�(k(t)u′(t)))′ = μ(t)(u(t) + ρ(t)) + g(u(t))u′(t),

u(0) = a, u(T) = b,
(44)
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where � : R → R is a generic strictly increasing homeomorphism, k is an almost every-
where positive function with 1

k ∈ Lp(I) for some p > 1, and finally μ ∈ L1(I), ρ ∈ C(I), and
g ∈ C(R) are given functions, with μ(t) ≥ 0 for a.a. t ∈ I . Let us set

f (t, x, y) := μ(t)
(
x + ρ(t)

)
+ g(x)y.

Of course, f is a Carathéodory function; moreover, f satisfies assumption (26). Indeed, for
every R > 0 and γ ∈ Lp

+(I), put MR := maxx∈[–R,R] |g(x)|, we have

∣∣f
(
t, x, y(t)

)∣∣ ≤ μ(t)
(
R +

∣∣ρ(t)
∣∣) + MRγ (t) =: hR,γ (t)

whenever |x| ≤ R and |y(t)| ≤ γ (t) for a.e. t ∈ I , with hR,γ ∈ L1
+(I).

Observe now that put N := maxt∈I |ρ(t)|, the constant functions σ (t) := –N and τ (t) := N
are a pair of well-ordered lower and upper solutions. Moreover, for every x ∈ [–N , N], we
have

∣
∣f (t, x, y)

∣
∣ ≤ 2Nμ(t) + MN |y|,

where MN := maxx∈[–N ,N] |g(x)|. So, the Nagumo–Wintner condition (27) holds, taking
H := 1, ψ(s) := 1, �(t) := 2Nμ(t), ν(t) := MN , q = ∞.

Therefore, for every a, b ∈ [–N , N], there exists a solution of problem (44).

We provide now an application of Theorem 3.1 for a rather general right-hand side, with
possible superlinear growth with respect to u′.

Corollary 3.5 Let us consider the following Dirichlet problem:

⎧
⎨

⎩
(�r(k(t)u′(t)))′ = μ(t)g(u(t))|u′(t)|α ,

u(0) = a, u(T) = b,
(45)

where �r : R → R is the classical r-Laplacian, that is, �r(ξ ) := ξ |ξ |r–2, with r > 1, k is a
generic almost everywhere positive function with 1

k ∈ Lp(I) for some p > 1, μ ∈ Lβ (I) for some
β with 1 < β ≤ ∞, α is a positive real constant, and finally g ∈ C(R) is a given function.

Assume that

α ≤ 1 –
1
β

+ (r – 1)
(

1 –
1
p

)
; (46)

1
β

+
r – 1

p
< 1. (47)

Then problem (45) admits solutions for every a, b ∈ R.

Proof Notice that the inequalities in (46), (47) imply

α <
(

1 –
1
β

)
p. (48)



Calamai et al. Fixed Point Theory and Applications  (2018) 2018:20 Page 17 of 22

Let f (t, x, y) := μ(t)g(x)|y|α , then f is a Carathéodory function such that, for every R > 0
and γ ∈ Lp(I), we have

∣∣f (t, x, y)
∣∣ ≤ ∣∣μ(t)

∣∣ max
x∈[–R,R]

∣∣g(x)
∣∣ · (γ (t)

)α =: hR,γ (t)

and, by (48), Hölder’s inequality implies that the function hR,γ is in L1. So, condition (26)
is satisfied.

Now, for a fixed N > 0, taking MN := maxx∈[–N ,N] |g(x)|, ψ(s) := s, �(t) := 0, and finally
ν(t) := MN |μ(t)|

(k(t))r–1 , again by Hölder’s inequality and assumption (47), we get ν ∈ Lq with q :=
βp

p+β(r–1) > 1. In turn, condition (46) yields

α ≤ (r – 1) + 1 –
1
β

–
r – 1

p
= (r – 1) +

q – 1
q

,

and then

∣∣f (t, x, y)
∣∣ ≤ MN

∣∣μ(t)
∣∣|y|α ≤ MN

∣∣μ(t)
∣∣|y|r–1 · |y| q–1

q = ψ
(∣∣�

(
k(t)y

)∣∣) · ν(t)|y| q–1
q

whenever |x| ≤ N and |y| > 1. So, also condition (27) is satisfied. Therefore, since any con-
stant function is both an upper solution and a lower solution for problem (45), we conclude
that there exists a solution for any a, b ∈R. �

Remark 3.6 Observe that when

α ≤ r – 1 <
(

1 –
1
β

)
p

both the inequalities (46) and (47) are satisfied. Therefore, conditions (46) and (47) allow to
cover problems with right-hand sides having superlinear growth when |y| → +∞. Indeed,
when r > 2, it suffices to consider rates of growth with α ≤ r – 1 < (1 – 1

β
)p; otherwise,

when r = 2, then conditions (46) and (47) become α ≤ 2 – 1
p .

4 General nonlinear boundary conditions
The result established for Dirichlet problems can be applied to obtain existence results also
for more general boundary conditions, as already showed in [3] and then in [14, Sect. 4].

The key ingredient is a compactness-type result for the solutions of Dirichlet problems
(see [14, Lemma 1]) that in the present more general framework of weak solutions, be-
longing to W 1,p, has to be reformulated as follows.

Lemma 4.1 Let σ , τ ∈Wp be a pair of lower and upper solutions of equation

(
�

(
k(t)u′(t)

))′ = f
(
t, u(t), u′(t)

)
, a.e. on I (49)

satisfying σ (t) ≤ τ (t) for every t ∈ R.
Then, for every pair of sequences (an)n and (bn)n of real numbers satisfying an ∈

[σ (0), τ (0)] and bn ∈ [σ (T), τ (T)], for every n ∈ N, and for every sequence (un)n of solu-
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tions of problem

⎧
⎨

⎩
(�(k(t)u′(t)))′ = f (t, u(t), u′(t)), a.e. on I,

u(0) = an, u(T) = bn
(50)

such that σ (t) ≤ un(t) ≤ τ (t) for every n ∈ N and t ∈ I , and satisfying (28) of Theorem 3.1
for some M > 0, there exists a subsequence (unk )k such that

unk (t) → u0(t), k(t)u′
nk

(t) → k(t)u′
0(t) for every t ∈ I,

for some solution u0 of equation (49).

Proof Let (an)n, (bn)n be a pair of sequences such that σ (0) ≤ an ≤ τ (0) and σ (T) ≤ bn ≤
τ (T) for every n ∈ N, and let (un)n be a sequence of solutions of problem (50) such that
for all n ∈ N the following conditions hold: un ∈ Wp, σ (t) ≤ un(t) ≤ τ (t) for every t ∈ I .
Moreover,

‖un‖C(I) ≤ M and
∥∥k · u′

n
∥∥

C(I) ≤ L,

where, given M ≥ max{‖σ‖C(I),‖τ‖C(I)}, the constant L is as in Theorem 3.1. In particular,
this implies that |u′

n(t)| ≤ γ0(t) for a.e. t ∈ I , where γ0 ∈ Lp(I), as in the proof of Theo-
rem 3.1, is given by γ0(t) := L

k(t) for a.e. t ∈ I .
We can assume without loss of generality, by passing to subsequences, that an → a0,

bn → b0. Set now zn(t) := (�(k(t)u′
n(t)))′; from (26), we have |zn(t)| ≤ hM,γ0 (t) a.e. t ∈ I .

Hence, the two sequences (u′
n)n and (zn)n are both uniformly integrable. Thus, by applying

the Dunford–Pettis theorem, we deduce the existence of two subsequences (u′
nk

)k and
(znk )k such that u′

nk
⇀ g and znk ⇀ h weakly in L1(I) for some g, h ∈ L1. Moreover, since

|k(0) ·u′
n(0)| < L for every n ∈N, we can also assume that k(0) ·u′

n(0) → y0 for some y0 ∈R.
Set u0(t) := a0 +

∫ t
0 g(s) ds, t ∈ [0, T]. We have unk (t) → u0(t) as k → ∞ for all t ∈ I .

Moreover, since

�
(
k(t) · u′

nk
(t)

)
= �

(
k(0) · u′

nk
(0)

)
+

∫ t

0
znk (s) ds for all t ∈ I,

by the continuity of �, �–1 and the weak convergence of (znk )k , we get

k(t) · u′
nk

(t) → �–1
(

�(y0) +
∫ t

0
h(s) ds

)
for all t ∈ I.

Hence

g(t) =
1

k(t)
· �–1

(
�(y0) +

∫ t

0
h(s) ds

)
, a.e. on I;

consequently, u′
0 ∈ Lp(I), implying that u0 ∈ W 1,p(I). In addition, k · u′

0 ∈ C(I), (k · u′
nk

)k

converges pointwise to k · u′
0 in I and

�
(
k(t) · u′

0(t)
)

= �(y0) +
∫ t

0
h(s) ds.
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So the map � ◦ (k · u′
0) is absolutely continuous in I with (�(k(t) · u′

0(t)))′ = h(t) for almost
every t ∈ I . Therefore, u0 ∈ Wp (see (25)) and (u′

nk
)k converges almost everywhere to u′

0
since k(t) �= 0 for a.e. t ∈ I .

Finally, since znk ⇀ h(t) in L1(I) and

znk (t) =
(
�

(
k(t) · u′

nk
(t)

))′ = f
(
t, unk (t), u′

nk
(t)

)
,

by the continuity of f (t, ·, ·) it follows

(
�

(
k(t) · u′

0(t)
))′ = f

(
t, u0(t), u′

0(t)
)

a.e. on I,

and this concludes the proof. �

Remark 4.2 As we showed in the proof of Lemma 4.1, we also have that

u′
nk

(t) → u′
0(t) for a.e. t ∈ I.

In order to handle various types of boundary conditions, let us consider the following
general problem:

⎧
⎪⎪⎨

⎪⎪⎩

(�(k(t)u′(t)))′ = f (t, u(t), u′(t)) a.e. t ∈ I,

g(u(0), u(T), k(0)u′(0), k(T)u′(T)) = 0,

u(T) = h(u(0)),

(51)

where g : R4 →R and h : R→ R are continuous functions.
Let us observe that we consider “weighted” boundary conditions involving k(0)u′(0),

k(T)u′(T) since we look for solutions in the set Wp, that is, functions u ∈ W 1,p(I) with
k · u′ ∈ C(I).

As in [14, Theorem 3] one can prove an existence result for the general problem (51).

Theorem 4.3 Suppose there exists a well-ordered pair σ , τ of lower and upper solutions
for equation (49) such that

⎧
⎨

⎩
g(σ (0),σ (T), k(0)σ ′(0), k(T)σ ′(T)) ≥ 0,

σ (T) = h(σ (0));
⎧
⎨

⎩
g(τ (0), τ (T), k(0)τ ′(0), k(T)τ ′(T)) ≤ 0,

τ (T) = h(τ (0)).

Let assumptions (26), (27) be satisfied. Moreover, suppose that h is increasing and

g(u, v, ·, z) is increasing; g(u, v, w, ·) is decreasing. (52)

Then problem (51) admits a solution u ∈ Wp such that σ (t) ≤ u(t) ≤ τ (t) for every t ∈ I
and

‖u‖C(I) ≤ M and
∥∥k · u′∥∥

C(I) ≤ L, (53)
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where M, L are as in the statement of Theorem 3.1.

The general boundary conditions considered in problem (51) include, as a particular
case, “weighted” periodic boundary conditions, that is, the problem

⎧
⎨

⎩
(�(k(t)u′(t)))′ = f (t, u(t), u′(t)) a.e. t ∈ I,

u(0) = u(T), k(0)u′(0) = k(T)u′(T).
(54)

As an immediate consequence of Theorem 4.3, the following existence result follows.

Theorem 4.4 Let σ and τ be a well-ordered pair of lower and upper solutions for equation
(49) such that

⎧
⎨

⎩
σ (0) = σ (T),

k(0)σ ′(0) ≥ k(T)σ ′(T)
and

⎧
⎨

⎩
τ (0) = τ (T),

k(0)τ ′(0) ≤ k(T)τ ′(T).

Assume that hypotheses (26), (27) are satisfied. Then problem (54) has a solution u ∈ Wp

such that σ (t) ≤ u(t) ≤ τ (t) for every t ∈ I .

Let us consider now the following boundary value problem:

⎧
⎨

⎩
(�(k(t)u′(t)))′ = f (t, u(t), u′(t)) a.e. t ∈ I,

p(u(0), k(0)u′(0)) = 0, q(u(T), k(T)u′(T)) = 0,
(55)

where p, q : R2 → R are continuous functions. Problem (55) includes, in particular, both
“weighted” Sturm–Liouville and “weighted” Neumann boundary conditions. The follow-
ing existence result can be proved in a quite similar way to [14, Theorem 5].

Theorem 4.5 Let σ and τ be a well-ordered pair of lower and upper solutions for equation
(49) such that

⎧
⎨

⎩
p(σ (0), k(0)σ ′(0)) ≥ 0,

q(σ (T), k(T)σ ′(T)) ≥ 0;
and

⎧
⎨

⎩
p(τ (0), k(0)τ ′(0)) ≤ 0,

q(τ (T), k(T)τ ′(T)) ≤ 0.

Assume that hypotheses (26), (27) are satisfied. Moreover, assume that for every s ∈ R we
have

p(s, ·) is increasing and q(s, ·) is decreasing. (56)

Then problem (55) has a solution u ∈Wp such that σ (t) ≤ u(t) ≤ τ (t) for every t ∈ I .

5 Results and discussion
We have proved existence results for the equation

(
�

(
k(t)u′(t)

))′ = f
(
t, u(t), u′(t)

)
, a.e. on [0, T]
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both for the Dirichlet problem (Theorem 3.1) and for more general boundary conditions
(Theorem 4.3), including Sturm–Liouville-type and Neumann-type problems.

The main novelty consists in the introduction of the function k(t) inside the operator �,
which can vanish in such a way that the equation becomes singular. To handle this kind of
problem, we widen the space of solutions, choosing the more appropriate class of Sobolev
functions. The proof of our results is based on the Schauder fixed point theorem.

6 Conclusions
In this paper we prove existence results for different boundary problems associated with
the strongly nonlinear, possibly singular, differential equation

(
�

(
k(t)u′(t)

))′ = f
(
t, u(t), u′(t)

)
, a.e. on [0, T].

The approach is based on the fixed point technique combined with the upper and lower
solutions method.

7 Methods
Not applicable.
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