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1 Introduction and preliminaries
Geraghty in [10] introduced an interesting class of auxiliary functions to refine the Banach
contraction mapping principle. LetF be the function β : [0,∞) → [0, 1) which satisfies the
condition

lim
n→∞β(tn) = 1 implies lim

n→∞ tn = 0.

By using F , Geraghty [10] proved the following theorem.

Theorem 1.1 ([10]) Let (X, d) be a complete metric space and T : X → X be an operator.
Suppose that there exists β ∈F satisfying the condition

β(tn) → 1 implies tn → 0.

If T satisfies the following inequality

d(Tx, Ty) ≤ β
(
d(x, y)

)
d(x, y) for any x, y ∈ X, (1)

then T has a unique fixed point.

We now present definitions, lemmas, remarks, and examples that we will use.

Definition 1.2 ([4]) Let f : X → X and α : X × X → [0, +∞). We say that f is an α-
admissible mapping if α(x, y) ≥ 1 implies α(fx, fy) ≥ 1 for all x, y ∈ X.
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Definition 1.3 ([12]) Let � denote all functions ψ : [0,∞) → [0,∞) satisfying:
(i) ψ is strictly increasing and continuous,

(ii) ψ(t) = 0 if and only if t = 0.

Definition 1.4 ([5]) An ultra altering distance function is a continuous, nondecreasing
mapping ϕ : [0,∞) → [0,∞) such that ϕ(t) > 0 for t > 0.

Remark 1.5 We let � denote the class of the ultra altering distance functions.

Definition 1.6 ([5]) A mapping F : [0,∞)2 →R is called a C-class function if it is contin-
uous and satisfies the following axioms:

1. F(s, t) ≤ s;
2. F(s, t) = s implies that either s = 0 or t = 0 for all s, t ∈ [0,∞).

We denote the C-class functions by C .

Example 1.7 ([5]) The following functions are elements of C :
1. F(s, t) = s – t.
2. F(s, t) = ms, 0 < m < 1.
3. F(s, t) = s

(1+t)r ; r ∈ (0,∞).
4. F(s, t) = sβ(s), β : [0,∞) → (0, 1) and is continuous.
5. F(s, t) = s – ( 2+t

1+t )t.
6. F(s, t) = n√ln(1 + sn).

Definition 1.8 ([18], [22, Definition 1.1]) A partial metric on a nonempty set X is a func-
tion p : X × X →R

+ such that, for all x, y, z ∈ X:
(p1) p(x, x) = p(y, y) = p(x, y) ⇐⇒ x = y,
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
on X.

For more details and examples see [14–16].

Definition 1.9 ([7]) Let X be a nonempty set. A function μ : X × X → R
+ is called an

m-metric if the following conditions are satisfied:
(m1) μ(x, x) = μ(y, y) = μ(x, y) ⇐⇒ x = y,
(m2) mxy ≤ μ(x, y),
(m3) μ(x, y) = μ(y, x),
(m4) (μ(x, y) – mxy) ≤ (μ(x, z) – mxz) + (μ(z, y) – mzy),

where

mxy := min
{
μ(x, x),μ(y, y)

}
.

Then the pair (X,μ) is called an M-metric space. The following notation is useful in the
sequel:

Mxy := max
{
μ(x, x),μ(y, y)

}
.



Monfared et al. Fixed Point Theory and Applications  (2018) 2018:22 Page 3 of 17

Remark 1.10 ([7]) For every x, y ∈ X,
1. 0 ≤ Mxy + mxy = μ(x, x) + μ(y, y);
2. 0 ≤ Mxy – mxy = |μ(x, x) – μ(y, y)|;
3. Mxy – mxy ≤ (Mxz – mxz) + (Mzy – mzy).

2 Topology on M-metric space
It is clear that each M-metric m on X generates a T0 topology τm on X. The set

{
Bμ(x, ε) : x ∈ X, ε > 0

}
,

where

Bμ(x, ε) =
{

y ∈ X : μ(x, y) < mx,y + ε
}

,

for all x ∈ X and ε > 0, forms the base of τm.

Definition 2.1 ([7]) Let (X,μ) be an M-metric space. Then:
1. A sequence {xn} in an M-metric space (X, m) converges to a point x ∈ X if

lim
n→∞

(
μ(xn, x) – mxn ,x

)
= 0. (2)

2. A sequence {xn} in an M-metric space (X, m) is called an m-Cauchy sequence if

lim
n,m→∞

(
μ(xn, xm) – mxn ,xm

)
and lim

n,m→∞(Mxn ,xm – mxn ,xm ) (3)

exist (and are finite).
3. An M-metric space (X, m) is said to be complete if every m-Cauchy sequence {xn}

in X converges, with respect to τm, to a point x ∈ X such that

(
lim

n→∞
(
μ(xn, x) – mxn ,x

)
= 0 and lim

n→∞(Mxn ,x – mxn ,x) = 0
)

.

Lemma 2.2 ([7]) Assume that xn → x and yn → y as n → ∞ in an M-metric space (X, m).
Then

lim
n→∞

(
μ(xn, yn) – mxn ,yn

)
= μ(x, y) – mxy.

Lemma 2.3 ([7]) Assume that xn → x as n → ∞ in an M-metric space (X, m). Then

lim
n→∞

(
μ(xn, y) – mxn ,y

)
= μ(x, y) – mx,y

for all y ∈ X.

Lemma 2.4 ([7]) Assume that xn → x and xn → y as n → ∞ in an M-metric space (X, m).
Then μ(x, y) = mxy. Further if μ(x, x) = μ(y, y), then x = y.
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3 Methods
Many authors studied the class of α – ψ contractive type mappings and obtained fixed
point results for this new class of mappings in metric spaces. Their results contain several
well-known fixed point theorems including the Banach contraction principle.

The goal of this article is to introduce the class of F(ψ ,ϕ)-contractions and investi-
gate the existence and uniqueness of fixed points for α-admissible mappings on M-metric
spaces.

4 Discussion and main results
We start this section with the following main theorem.

Theorem 4.1 Let (X,μ) be a complete M-metric space and T : X → X be an α-admissible
mapping. Suppose that the following condition is satisfied:

(
ψ

(
μ(Tx, Ty)

)
+ l

)α(x,Tx)α(y,Ty) ≤ F
(
ψ

(
μ(x, y)

)
,ϕ

(
μ(x, y)

))
+ l (4)

for all x, y ∈ X and l ≥ 1, where ψ ∈ � , ϕ ∈ �, and F ∈ C . Suppose that either
(a) T is continuous,

or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.

If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Proof Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in X by xn = Tnx0 =
Txn–1 for all n ∈ N. Since T is an α-admissible mapping and α(x0, Tx0) ≥ 1, we deduce
that α(x1, x2) = α(Tx0, T2x0) ≥ 1. Continuing this process, we get α(xn, Txn) ≥ 1 for all n ∈
N∪ {0}. From inequality (4) we have

ψ
(
μ(Txn–1, Txn)

)
+ l ≤ (

ψ
(
μ(Txn–1, Txn) + l

))α(xn–1,Txn–1)α(xn ,Txn)

≤ F
(
ψ

(
μ(xn–1, xn)

)
,ϕ

(
μ(xn–1, xn)

))
+ l.

Then we have

ψ
(
μ(xn, xn+1)

) ≤ F
(
ψ

(
μ(xn–1, xn)

)
,ϕ

(
μ(xn–1, xn)

)) ≤ ψ
(
μ(xn–1, xn)

)
. (5)

We want to prove that μ(xn, xn+1) → 0, as n → ∞. If μ(xn0 , xn0+1) = 0, for some n0 ∈ N,
then by (5)

0 ≤ μ(xn0+1, xn0+2) ≤ F
(
ψ

(
μ(xn0 , xn0+1)

)
,ϕ

(
μ(xn0 , xn0+1)

)) ≤ ψ
(
μ(xn0 , xn0+1)

)
,

hence from the properties of functions F , ψ , and ϕ we have μ(xn0+1, xn0+2) = 0 which means

μ(xn, xn+1) = 0 for all n ≥ n0, and thus μ(xn, xn+1) → 0 as n → ∞.

Now let

μ(xn, xn+1) > 0 for all n ∈N.
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Inequality (5) implies that μ(xn, xn+1) ≤ μ(xn–1, xn). It follows that the sequence {μ(xn, xn+1)}
is decreasing. Thus, there exists m ∈R+ such that

lim
n→∞μ(xn, xn+1) = m.

We want to prove that m = 0. Let m > 0. From (5) we have

lim sup
n→∞

ψ
(
μ(xn, xn+1)

) ≤ lim sup
n→∞

F
(
ψ

(
μ(xn–1, xn)

)
,ϕ

(
μ(xn–1, xn)

))

≤ lim sup
n→∞

ψ
(
μ(xn–1, xn)

)
.

Hence we get

ψ(m) ≤ F
(
ψ(m),ϕ(m)

) ≤ ψ(m),

so

F
(
ψ(m),ϕ(m)

)
= ψ(m).

Using the properties of functions F , ψ , and ϕ, we obtain that ψ(m) = 0 or ϕ(m) = 0, so
then m = 0, which is a contradiction. Therefore

μ(xn, xn+1) → 0 as n → ∞. (6)

Now we prove that {xn} is an M-Cauchy sequence in (X,μ). We have

lim
n→∞μ(xn, xn+1) = 0,

0 ≤ mxn ,xn+1 ≤ μ(xn, xn+1) ⇒ lim
n→∞ mxn ,xn+1 = 0,

and

mxn ,xn+1 = min
{
μ(xn, xn),μ(xn+1, xn+1)

} ⇒ lim
n→∞μ(xn, xn) = 0.

On the other hand,

mxn ,xm = min
{
μ(xn, xn),μ(xm, xm)

} ⇒ lim
n,m→∞ mxn ,xm = 0,

so

lim
n,m→∞(Mxn ,xm – mxn ,xm ) = 0.

We show

lim
n,m→∞

(
μ(xn, xm) – mxn ,xm

)
= 0.
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Let

M∗(x, y) := μ(x, y) – mx,y, ∀x, y ∈ X.

If limn,m→∞ M∗(xn, xm) = 0, there exist ε > 0 and {lk} ⊂N such that

M∗(xlk , xnk ) ≥ ε.

Suppose that k is the smallest integer which satisfies the above equation such that

M∗(xlk –1, xnk ) < ε.

Now by (m4) we have

ε ≤ M∗(xlk , xnk ) ≤ M∗(xlk , xlk –1) + M∗(xlk –1, xnk ) < M∗(xlk , xlk –1) + ε.

Thus

lim
k→∞

M∗(xlk , xnk ) = ε,

which means

lim
k→∞

(
μ(xlk , xnk ) – mxlk ,xnk

)
= ε.

On the other hand,

lim
k→∞

mxlk ,xnk
= 0,

so we have

lim
k→∞

μ(xlk , xnk ) = ε. (7)

Again by (m4) we have

M∗(xlk , xnk ) ≤ M∗(xlk , xlk +1) + M∗(xlk +1, xnk +1) + M∗(xnk +1, xnk )

and

M∗(xlk +1, xnk +1) ≤ M∗(xlk , xlk +1) + M∗(xlk , xnk ) + M∗(xnk +1, xnk ),

and taking the limit as k → +∞, together with (6) and (7), we have

lim
k→∞

μ(xlk +1, xnk +1) = ε. (8)

Now by (4), (7), and (8) we have

ψ
(
μ(xmk +1, xnk +1)

)
+ l ≤ (

ψ
(
μ(xmk +1, xnk +1)

)
+ l

)α(xmk ,Txmk )α(xnk ,Txnk )

=
(
ψ

(
μ(Txmk , Txnk ) + l

))α(xmk ,Txmk )α(xnk ,Txnk )
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≤ F
(
ψ

(
μ(xmk , xnk )

)
,ϕ

(
μ(xmk , xnk )

))
+ l

≤ ψ
(
μ(xmk , xnk )

)
+ l.

Therefore we get

ψ
(
μ(xmk +1, xnk +1)

) ≤ F
(
ψ

(
μ(xmk , xnk )

)
,ϕ

(
μ(xmk , xnk )

))

≤ ψ
(
μ(xmk , xnk )

)
.

Letting k → ∞ in the above inequality, we get

ψ(ε) ≤ F
(
ψ(ε),ϕ(ε)

) ≤ ψ(ε),

so

F
(
ψ(ε),ϕ(ε)

)
= ψ(ε).

Using the properties of F , ψ , and ϕ, we obtain ψ(ε) = 0 or ϕ(ε) = 0, and then ε = 0, which
is a contradiction. Therefore {xn} is an M-Cauchy sequence. Now, by the completeness of
X, xn → x for some x ∈ X in the τm topology, i.e.,

lim
n→∞

(
μ(xn, x) – mxn ,x

)
= 0

and

lim
n→∞(M(xn ,x) – mxn ,x) = 0.

However, limn→∞ mxn ,x = 0, hence limn→∞ μ(xn, x) = 0, and by Remark 1.10

μ(x, x) = 0.

Now suppose (a) holds. Then T is continuous and we have

lim
n→∞

(
μ(Txn, Tx) – mTxn ,Tx

)
= 0,

i.e.,

lim
n→∞

(
μ(xn+1, Tx) – mxn+1,Tx

)
= 0,

and similar to the above, we have limn→∞ mxn+1,Tx = 0. Hence limn→∞ μ(xn+1, Tx) = 0 and
by Remark 1.10, μ(Tx, Tx) = 0. On the other hand, xn → x as n → ∞ so by Lemma 2.3, we
get

(
μ(xn, Tx) – mxn ,Tx

) → (
μ(x, Tx) – mx,Tx

)
= μ(x, Tx) as n → ∞,

but we have

(
μ(xn, Tx) – mxn ,Tx

) → 0 as n → ∞.
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Thus

μ(x, Tx) = 0,

therefore μ(x, Tx) = μ(Tx, Tx) = μ(x, x) = 0 and by (m1) we get

Tx = x.

Next suppose (b) holds. Then α(x, Tx) ≥ 1. Now by (4) we have

ψ
(
μ(Txn, Tx)

)
+ l ≤ (

ψ
(
μ(Txn, Tx)

)
+ l

)α(xn ,Txn)α(x,Tx)

≤ F
(
ψ

(
μ(xn, x)

)
,ϕ

(
μ(xn, x)

))
+ l,

that is, ψ(μ(Txn, Tx)) ≤ F(ψ(μ(xn, x)),ϕ(μ(xn, x))) ≤ ψ(μ(xn, x)), and so we get

μ(Txn, Tx) → 0 as n → ∞.

On the other hand,

0 ≤ mTxn ,Tx ≤ μ(Txn, Tx) → 0 as n → ∞.

Thus Txn → Tx in the τm topology.
The proof of Tx = x follows as in (a). �

Theorem 4.2 Let (X,μ) be a complete M-metric space and T : X → X be an α-admissible
mapping. Suppose that the following condition is satisfied:

(
α(x, Tx)α(y, Ty) + 1

)ψ(μ(Tx,Ty)) ≤ 2F(ψ(μ(x,y)),ϕ(μ(x,y))) (9)

for all x, y ∈ X, where ψ ∈ � , ϕ ∈ �, and F ∈ C . Suppose that either
(a) T is continuous,

or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.

If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Proof Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in X by xn = Tnx0 =
Txn–1 for all n ∈ N. Since T is an α-admissible mapping and α(x0, Tx0) ≥ 1, we deduce
that α(x1, x2) = α(Tx0, T2x0) ≥ 1. Continuing this process, we get α(xn, Txn) ≥ 1 for all n ∈
N∪ {0}. From inequality (9) we have

2ψ(μ(Txn–1,Txn)) ≤ (
α(xn–1, Txn–1)α(xn, Txn) + 1

)ψ(μ(Txn–1,Txn))

≤ 2F(ψ(μ(xn–1,xn)),ϕ(μ(xn–1,xn))).

Then we have

ψ
(
μ(xn, xn+1)

) ≤ F
(
ψ

(
μ(xn–1, xn)

)
,ϕ

(
μ(xn–1, xn)

)) ≤ ψ
(
μ(xn–1, xn)

)
. (10)
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Now similar to the proof in Theorem 4.1, we get

μ(xn, xn+1) → 0 as n → ∞. (11)

Now we prove that {xn} is an M-Cauchy sequence in (X,μ). We have

lim
n→∞μ(xn, xn+1) = 0,

0 ≤ mxn ,xn+1 ≤ μ(xn, xn+1) ⇒ lim
n→∞ mxn ,xn+1 = 0,

and

mxn ,xn+1 = min
{
μ(xn, xn),μ(xn+1, xn+1)

} ⇒ lim
n→∞μ(xn, xn) = 0.

On the other hand,

mxn ,xm = min
{
μ(xn, xn),μ(xm, xm)

} ⇒ lim
n,m→∞ mxn ,xm = 0,

so

lim
n,m→∞(Mxn ,xm – mxn ,xm ) = 0.

We show

lim
n,m→∞

(
μ(xn, xm) – mxn ,xm

)
= 0.

Let

M∗(x, y) := μ(x, y) – mx,y, ∀x, y ∈ X.

If limn,m→∞ M∗(xn, xm) = 0, there exist ε > 0 and {lk} ⊂N such that

M∗(xlk , xnk ) ≥ ε.

Suppose that k is the smallest integer which satisfies the above equation such that

M∗(xlk –1, xnk ) < ε.

Again as in the proof in Theorem 4.1, we obtain that

lim
k→∞

μ(xmk , xnk ) = ε (12)

and

lim
k→∞

μ(xlk +1, xnk +1) = ε. (13)
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Now by (9), (12), and (13) we have

2ψ(μ(xmk +1,xnk +1)) ≤ (
α(xmk , Txmk )α(xnk , Txnk ) + 1

)ψ(μ(xmk +1,xnk +1))

≤ 2F(ψ(μ(xmk ,xnk )),ϕ(μ(xmk ,xnk ))).

Therefore we get

ψ
(
μ(xmk +1, xnk +1)

) ≤ F
(
ψ

(
μ(xmk , xnk )

)
,ϕ

(
μ(xmk , xnk )

)) ≤ ψ
(
μ(xmk , xnk )

)
.

Letting k → ∞ in the above inequality, we get

ψ(ε) ≤ F
(
ψ(ε),ϕ(ε)

) ≤ ψ(ε),

so

F
(
ψ(ε),ϕ(ε)

)
= ψ(ε).

Using the properties of functions F , ψ , and ϕ, we obtain that ψ(ε) = 0, or ϕ(ε) = 0, and
then ε = 0, which is a contradiction. Therefore {xn} is an M-Cauchy sequence.

Now, by the completeness of X, xn → x for some x ∈ X in the τm topology, i.e.,

lim
n→∞

(
μ(xn, x) – mxn ,x

)
= 0

and

lim
n→∞(M(xn ,x) – mxn ,x) = 0.

However, limn→∞ mxn ,x = 0, hence limn→∞ μ(xn, x) = 0 and by Remark 1.10

μ(x, x) = 0.

Now suppose (a) holds. Then, as in the proof in Theorem 4.1, we have Tx = x. Next suppose
(b) holds. Then α(x, Tx) ≥ 1. From (9) we have

2ψ(μ(Txn ,Tx)) ≤ (
α(xn, Txn)α(x, Tx) + 1

)ψ(μ(Txn ,Tx))

≤ 2F(ψ(μ(xn ,x)),ϕ(μ(xn ,x))),

that is, ψ(μ(Txn, Tx)) ≤ F(ψ(μ(xn, x)),ϕ(μ(xn, x))) ≤ ψ(μ(xn, x)), and so we get

μ(Txn, Tx) → 0 as n → ∞.

On the other hand,

0 ≤ mTxn ,Tx ≤ μ(Txn, Tx) → 0 as n → ∞.

Thus Txn → Tx in the τm topology.
The proof of Tx = x follows as in (a). �
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Theorem 4.3 Let (X,μ) be a complete M-metric space and T : X → X be an α-admissible
mapping. Suppose that the following condition is satisfied:

α(x, Tx)α(y, Ty)ψ
(
μ(Tx, Ty)

) ≤ F
(
ψ

(
μ(x, y)

)
,ϕ

(
μ(x, y)

))
(14)

for all x, y ∈ X, where ψ ∈ � , ϕ ∈ �, and F ∈ C . Suppose that either
(a) T is continuous,

or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.

If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Proof Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in X by xn = Tnx0 =
Txn–1 for all n ∈ N. Since T is an α-admissible mapping and α(x0, Tx0) ≥ 1, we deduce
that α(x1, x2) = α(Tx0, T2x0) ≥ 1. Continuing this process, we get α(xn, Txn) ≥ 1 for all n ∈
N∪ {0}. From inequality (14) we have

ψ
(
μ(Txn–1, Txn)

) ≤ α(xn–1, Txn–1)α(xn, Txn)ψ
(
μ(Txn–1, Txn)

)

≤ F
(
ψ

(
μ(xn–1, xn)

)
,ϕ

(
μ(xn–1, xn)

))
.

Then we have

ψ
(
μ(xn, xn+1)

) ≤ F
(
ψ

(
μ(xn–1, xn)

)
,ϕ

(
μ(xn–1, xn)

)) ≤ ψ
(
μ(xn–1, xn)

)
. (15)

Now, similar to the proof in Theorem 4.1, we get

μ(xn, xn+1) → 0 as n → ∞. (16)

Now we prove that {xn} is an M-Cauchy sequence in (X,μ). We have

lim
n→∞μ(xn, xn+1) = 0,

0 ≤ mxn ,xn+1 ≤ μ(xn, xn+1) ⇒ lim
n→∞ mxn ,xn+1 = 0,

and

mxn ,xn+1 = min
{
μ(xn, xn),μ(xn+1, xn+1)

} ⇒ lim
n→∞μ(xn, xn) = 0.

On the other hand,

mxn ,xm = min
{
μ(xn, xn),μ(xm, xm)

} ⇒ lim
n,m→∞ mxn ,xm = 0,

so

lim
n,m→∞(Mxn ,xm – mxn ,xm ) = 0.

We show

lim
n,m→∞

(
μ(xn, xm) – mxn ,xm

)
= 0.
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Let

M∗(x, y) := μ(x, y) – mx,y, ∀x, y ∈ X.

If limn,m→∞ M∗(xn, xm) = 0, there exist ε > 0 and {lk} ⊂N such that

M∗(xlk , xnk ) ≥ ε.

Suppose that k is the smallest integer which satisfies the above equation such that

M∗(xlk –1, xnk ) < ε.

Again as in the proof in Theorem 4.1, we obtain that

lim
k→∞

μ(xmk , xnk ) = ε (17)

and

lim
k→∞

μ(xlk +1, xnk +1) = ε. (18)

Now by (14), (17), and (18) we have

ψ
(
μ(xmk +1, xnk +1)

) ≤ α(xmk , Txmk )α(xnk , Txnk )ψ
(
μ(xmk +1, xnk +1)

)

≤ F
(
ψ

(
μ(xmk , xnk )

)
,ϕ

(
μ(xmk , xnk )

))
.

Therefore we get

ψ
(
μ(xmk +1, xnk +1)

) ≤ F
(
ψ

(
μ(xmk , xnk )

)
,ϕ

(
μ(xmk , xnk )

)) ≤ ψ
(
μ(xmk , xnk )

)
.

Letting k → ∞ in the above inequality, we get

ψ(ε) ≤ F
(
ψ(ε),ϕ(ε)

) ≤ ψ(ε),

so

F
(
ψ(ε),ϕ(ε)

)
= ψ(ε).

Using the properties of functions F , ψ , and ϕ, we obtain that ψ(ε) = 0, or ϕ(ε) = 0, then
ε = 0, which is a contradiction. Therefore {xn} is an M-Cauchy sequence.

Now, by the completeness of X, xn → x for some x ∈ X in the τm topology, i.e.,

lim
n→∞

(
μ(xn, x) – mxn ,x

)
= 0

and

lim
n→∞(M(xn ,x) – mxn ,x) = 0.
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However, limn→∞ mxn ,x = 0, hence limn→∞ μ(xn, x) = 0 and by Remark 1.10

μ(x, x) = 0.

Now suppose (a) holds. Then, as in the proof in Theorem 4.1, we have Tx = x. Next suppose
(b) holds. Then α(x, Tx) ≥ 1. From (14) we have

ψ
(
μ(Txn, Tx)

) ≤ α(xn, Txn)α(x, Tx)ψ
(
μ(Txn, Tx)

)

≤ F
(
ψ

(
μ(xn, x)

)
,ϕ

(
μ(xn, x)

))
,

that is, ψ(μ(Txn, Tx)) ≤ F(ψ(μ(xn, x)),ϕ(μ(xn, x))) ≤ ψ(μ(xn, x)), and so we get

μ(Txn, Tx) → 0 as n → ∞.

On the other hand,

0 ≤ mTxn ,Tx ≤ μ(Txn, Tx) → 0 as n → ∞.

Thus Txn → Tx in the τm topology.
The proof of Tx = x follows as in (a). �

Theorem 4.4 Assume that all of the hypotheses of Theorems 4.1 or 4.2 or 4.3 hold. In
addition, suppose the following condition is satisfied:

(c) if Tx = x then α(x, Tx) ≥ 1.
Then the fixed point of T is unique.

Proof Suppose that u, v ∈ X are two fixed points of T such that u = v. Then α(u, Tu) ≥ 1
and α(v, Tv) ≥ 1.

For Theorem 4.1, we have

ψ
(
d(Tu, Tv)

)
+ l ≤ (

ψ
(
d(Tu, Tv)

)
+ l

)α(u,Tu)α(v,Tv)

≤ F
(
ψ

(
d(u, v)

)
,ϕ

(
d(u, v)

))
+ l, (19)

ψ
(
d(Tu, Tu)

)
+ l ≤ (

ψ
(
d(Tu, Tu)

)
+ l

)α(u,Tu)α(u,Tu)

≤ F
(
ψ

(
d(u, u)

)
,ϕ

(
d(u, u)

))
+ l. (20)

For Theorem 4.2, we have

2ψ(μ(Tu,Tv)) ≤ (
α(u, Tu)α(v, Tv) + 1

)ψ(μ(Tu,Tv))

≤ 2F(ψ(μ(u,v)),ϕ(μ(u,v))), (21)

2ψ(μ(Tu,Tu)) ≤ (
α(u, Tu)α(u, Tu) + 1

)ψ(μ(Tu,Tu))

≤ 2F(ψ(μ(u,u)),ϕ(μ(u,u))). (22)
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For Theorem 4.3, we have

ψ
(
μ(Tu, Tv)

) ≤ (
α(u, Tu)α(v, Tv) + 1

)
ψ

(
μ(Tu, Tv)

)

≤ F
(
ψ

(
μ(u, v)

)
,ϕ

(
μ(u, v)

))
, (23)

ψ
(
μ(Tu, Tu)

) ≤ (
α(u, Tu)α(u, Tu) + 1

)
ψ

(
μ(Tu, Tu)

)

≤ F
(
ψ

(
μ(u, u)

)
,ϕ

(
μ(u, u)

))
. (24)

Therefore equations (19), (20), (21), (22), (23), and (24) imply that

F
(
ψ

(
μ(u, v)

)
,ϕ

(
μ(u, v)

))
= ψ

(
μ(Tu, Tv)

)
= ψ

(
μ(u, v)

)
,

F
(
ψ

(
μ(u, u)

)
,ϕ

(
μ(u, u)

))
= ψ

(
μ(Tu, Tu)

)
= ψ

(
μ(u, u)

)
,

F
(
ψ

(
μ(v, v)

)
,ϕ

(
μ(v, v)

))
= ψ

(
μ(Tv, Tv)

)
= ψ

(
μ(v, v)

)
,

and so from the properties of functions F , ψ , and ϕ, we have

μ(u, v) = μ(u, u) = μ(v, v) = 0.

Therefore by (m1)

u = v. �

5 Consequences
From Theorems 4.1, 4.2, and 4.3 we obtain the following corollaries as an extension of
several known results in the literature.

If we let ϕ(t) = ψ(t) = t, we get the following three corollaries.

Corollary 5.1 Let (X,μ) be a complete M-metric space and T : X → X be an α-admissible
mapping. Suppose that the following condition is satisfied:

(
μ(Tx, Ty) + l

)
)α(x,Tx)α(y,Ty) ≤ F

(
μ(x, y)

)
,μ(x, y)) + l (25)

for all x, y ∈ X and l ≥ 1, where ψ ∈ � , ϕ ∈ �, and F ∈ C . Suppose that either
(a) T is continuous,

or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.

If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Corollary 5.2 Let (X,μ) be a complete M-metric space and T : X → X be an α-admissible
mapping. Suppose that the following condition is satisfied:

(
α(x, Tx)α(y, Ty) + 1

)μ(Tx,Ty) ≤ 2F(μ(x,y)),μ(x,y)) (26)

for all x, y ∈ X, where ψ ∈ � , ϕ ∈ �, and F ∈ C . Suppose that either
(a) T is continuous,

or
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(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.
If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Corollary 5.3 Let (X,μ) be a complete M-metric space and T : X → X be an α-admissible
mapping. Suppose that the following condition is satisfied:

α(x, Tx)α(y, Ty)μ(Tx, Ty) ≤ F
(
μ(x, y),μ(x, y)

)
(27)

for all x, y ∈ X, where ψ ∈ � , ϕ ∈ �, and F ∈ C . Suppose that either
(a) T is continuous,

or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.

If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Lemma 5.4 ([7]) Every p-metric and metric is an M-metric.

If we let β ∈ F , ϕ(t) = ψ(t) = t and F(s, t) = β(s)s, by Lemma 5.4 we get three results of
Hussein et al. [13] (they are the immediate consequences of our results).

Corollary 5.5 ([13, Theorem 4]) Let (X, d) be a complete metric space and T : X → X be
an α-admissible mapping. Assume that there exists a function β : R+ → [0, 1] such that, for
any bounded sequence {tn} of positive reals, β(tn) → 1 implies tn → 0 and

(
d(Tx, Ty) + l

)α(x,Tx)α(y,Ty) ≤ β
(
d(x, y)

)
d(x, y) + l (28)

for all x, y ∈ X where l ≥ 1. Suppose that either
(a) T is continuous,

or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.

If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Corollary 5.6 ([13, Theorem 6]) Let (X, d) be a complete metric space and T : X → X be
an α-admissible mapping. Assume that there exists a function β : R+ → [0, 1] such that, for
any bounded sequence {tn} of positive reals, β(tn) → 1 implies tn → 0 and

(
α(x, Tx)α(y, Ty) + 1

)d(Tx,Ty) ≤ 2β(d(x,y))d(x,y) (29)

for all x, y ∈ X. Suppose that either
(a) T is continuous,

or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.

If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

Corollary 5.7 ([13, Theorem 8]) Let (X, d) be a complete metric space and T : X → X be
an α-admissible mapping. Assume that there exists a function β : R+ → [0, 1] such that, for
any bounded sequence {tn} of positive reals, β(tn) → 1 implies tn → 0 and

(
α(x, Tx)α(y, Ty)

)
d(Tx, Ty) ≤ β

(
d(x, y)

)
d(x, y) (30)
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for all x, y ∈ X. Suppose that either
(a) T is continuous,

or
(b) if {xn} is a sequence in X such that xn → x, α(xn, xn+1) ≥ 1 for all n, then α(x, Tx) ≥ 1.

If there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, then T has a fixed point.

6 Conclusion
Recently, the authors in [17] introduced the class of α-ψ contractive type mappings and
obtained a fixed point result for this new class of mappings in the set-up of metric spaces.
Their result contains several well-known fixed point theorems including the Banach con-
traction principle. Matthews (1994) in [18] established fixed point theorems in partial met-
ric spaces. The authors in [7] introduced M-metric spaces which extend p-metric spaces
and the authors established some new fixed point theorems.

In this paper, we introduce the class of F(ψ ,ϕ)-contractions and investigate the existence
and uniqueness of fixed points for α-admissible mappings on M-metric spaces. We also
show that the fixed point results in [13] and Geraghty’s theorem [10] (Theorem 1.1) are
immediate consequences of our results. For further results, we refer the reader to [1–4, 6,
8–12, 19–21, 23].
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