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Abstract
In this paper, considering both a modular metric space and a generalized metric
space in the sense of Jleli and Samet (Fixed Point Theory Appl. 2015:61, 2015), we
introduce a new concept of generalized modular metric space. Then we present
some examples showing that the generalized modular metric space includes some
kind of metric structures. Finally, we provide some fixed point results for both
contraction and quasicontraction type mappings on generalized modular metric
spaces.
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1 Introduction
In 1990, the fixed point theory in modular function spaces was initiated by Khamsi, Ko-
zlowski, and Reich [10]. Modular function spaces are a special case of the theory of mod-
ular vector spaces introduced by Nakano [13]. Modular metric spaces were introduced in
[2, 3]. Fixed point theory in modular metric spaces was studied by Abdou and Khamsi [1].
Their approach was fundamentally different from the one studied in [2, 3]. In this paper,
we follow the same approach as the one used in [1].

Generalizations of standard metric spaces are interesting because they allow for some
deep understanding of the classical results obtained in metric spaces. One has always to
be careful when coming up with a new generalization. For example, if we relax the triangle
inequality, some of the classical known facts in metric spaces may become impossible to
obtain. This is the case with the generalized metric distance introduced by Jleli and Samet
in [6]. The authors showed that this generalization encompasses metric spaces, b-metric
spaces, dislocated metric spaces, and modular vector spaces.

In this paper, considering both a modular metric space and a generalized metric space
in the sense of Jleli and Samet [6], we introduce a new concept of generalized modular
metric space. Then we proceed to proving the Banach contraction principle (BCP) and
Ćirić’s fixed point theorem for quasicontraction mappings in this new space. To prove
Ćirić’s fixed point theorem in this new space, we take the contraction constant k < 1

C ,
where C is as given in Definition 1.1. For readers interested in metric fixed point theory,
we recommend the book by Khamsi and Kirk [8], and for more details, see [5, 7, 9, 11, 12].

First, we give the definition of generalized modular metric spaces.
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Definition 1.1 Let X be an abstract set. A function D : (0,∞) × X × X → [0,∞] is said
to be a regular generalized modular metric (GMM) on X if it satisfies the following three
axioms:

(GMM1) If Dλ(x, y) = 0 for some λ > 0, then x = y for all x, y ∈ X ;
(GMM2) Dλ(x, y) = Dλ(y, x) for all λ > 0 and x, y ∈ X ;
(GMM3) There exists C > 0 such that, if (x, y) ∈ X ×X , {xn} ⊂ X with limn→∞ Dλ(xn, x) =

0 for some λ > 0, then

Dλ(x, y) ≤ C lim sup
n→∞

Dλ(xn, y).

The pair (X, D) is said to be a generalized modular metric space (GMMS).

It is easy to check that if there exist x, y ∈ X such that there exists {xn} ⊂ X with
limn→∞ Dλ(xn, x) = 0 for some λ > 0, and Dλ(x, y) < ∞, then we must have C ≥ 1. In fact,
throughout this work, we assume C ≥ 1.

Let D be a GMM on X. Fix x0 ∈ X. The sets
⎧
⎨

⎩

XD = XD(x0) = {x ∈ X : Dλ(x, x0) → 0 as λ → ∞}
X�

D = {x ∈ X : ∃λ = λ(x) > 0 such that Dλ(x, x0) < ∞}

are called generalized modular sets. Next, we give some examples that inspired our defi-
nition of a GMMS.

Example 1.1 (Modular vector spaces (MVS) [13]) Let X be a linear vector space over the
field R. A function ρ : X → [0,∞] is called regular modular if the following hold:

(1) ρ(x) = 0 if and only if x = 0,
(2) ρ(αx) = ρ(x) if |α| = 1,
(3) ρ(αx + (1 – α)y) ≤ ρ(x) + ρ(y) for any α ∈ [0, 1],

for any x, y ∈ X. Let ρ be regular modular defined on a vector space X. The set

Xρ =
{

x ∈ X; lim
α→0

ρ(αx) = 0
}

is called a MVS. Let {xn}n∈N be a sequence in Xρ and x ∈ Xρ . If limn→∞ ρ(xn – x) = 0, then
{xn}n∈N is said to ρ-converge to x. ρ is said to satisfy the �2-condition if there exists K 	= 0
such that

ρ(2x) ≤ Kρ(x)

for any x ∈ Xρ . Moreover, ρ is said to satisfy the Fatou property(FP) if

ρ(x – y) ≤ lim inf
n→∞ ρ(xn – y),

whenever {xn} ρ-converges to x for any x, y, xn ∈ Xρ . Next, we show that a MVS may be
embedded with a GMM structure. Indeed, let (X,ρ) be a MVS. Define D : (0, +∞) × X ×
X → [0, +∞] by

Dλ(x, y) = ρ

(
x – y

λ

)

.
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Then the following hold:
(i) If Dλ(x, y) = 0 for some λ > 0 and any x, y ∈ X , then x = y;

(ii) Dλ(x, y) = Dλ(y, x) for any λ > 0 and x, y ∈ X ;
(iii) If ρ satisfies the FP, then for any λ > 0 and {xn} such that {xn/λ} ρ-converges to x/λ,

we have

ρ

(
x – y

λ

)

≤ lim inf
n→∞ ρ

(
xn – y

λ

)

≤ lim sup
n→∞

ρ

(
xn – y

λ

)

,

which implies

Dλ(x, y) ≤ lim inf
n→∞ Dλ(xn, y) ≤ lim sup

n→∞
Dλ(xn, y)

for any x, y, xn ∈ Xρ .
Therefore, (X, D) satisfies all the properties of Definition 1.1 as claimed. Note that the
constant C which appears in the property (GMM3) is equal to 1 provided the FP is satisfied
by ρ .

In the next example, we discuss the case of modular metric spaces.

Example 1.2 (Modular metric spaces (MMS) [2, 3]) Let X be an abstract set. For a function
ω : (0, +∞) × X × X → [0,∞], we will write

ω(λ, x, y) = ωλ(x, y).

The function ω : (0,∞) × X × X → [0,∞] is said to be a regular modular metric(MM) on
X if it satisfies the following axioms:

(i) x = y if and only if ωλ(x, y) = 0 for some λ > 0;
(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ M;

(iii) ωλ+μ(x, y) ≤ ωλ(x, z) + ωμ(z, y) for all λ,μ > 0 and x, y, z ∈ X .
Let ω be regular modular on X. Fix x0 ∈ X. The two sets

⎧
⎨

⎩

Xω = Xω(x0) = {x ∈ X : ωλ(x, x0) → 0 as λ → ∞}
X∗

ω = X∗
ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) < ∞}

are called modular spaces (around arbitrarily chosen x0). It is clear that Xω ⊂ X∗
ω , but this

inclusion may be proper in general. Let Xω be a MMS. If limn→∞ ωλ(xn, x) = 0 for some λ >
0, then we may not have limn→∞ ωλ(xn, x) = 0 for all λ > 0. Therefore, as it is done in MVS,
we will say that ω satisfies the �2-condition if this is the case, i.e., limn→∞ ωλ(xn, x) = 0 for
some λ > 0 implies limn→∞ ωλ(xn, x) = 0 for all λ > 0. We will say that the sequence {xn}n∈N
in Xω is ω-convergent to x ∈ Xω if limn→∞ ωλ(xn, x) = 0 for some λ > 0. The modular func-
tion ω is said to satisfy the FP if {xn} is such that limn→∞ ωλ(xn, x) = 0 for some λ > 0, we
have

ωλ(x, y) ≤ lim inf
n→∞ ωλ(xn, y)
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for any y ∈ Xω . Let Xω be a MMS, where ω is a regular modular. Define D : (0, +∞) × Xω ×
Xω → [0, +∞] by

Dλ(x, y) = ωλ(x, y).

Then the following hold:
(i) If Dλ(x, y) = 0 for some λ > 0 and x, y ∈ Xω , then x = y;

(ii) Dλ(x, y) = Dλ(y, x) for any λ > 0 and x, y ∈ Xω ;
(iii) If ω satisfies the FP, then for any x ∈ Xω and {xn} ⊂ Xω such that

limn→∞ Dλ(xn, x) = 0 for some λ > 0, we have

ωλ(x, y) ≤ lim inf
n→∞ ωλ(xn, y) ≤ lim sup

n→∞
ωλ(xn, y)

for any y ∈ Xω , which implies

Dλ(x, y) ≤ lim inf
n→∞ Dλ(xn, y) ≤ lim sup

n→∞
Dλ(xn, y).

In other words, (Xω, D) is a GMMS.

Example 1.3 (Generalized metric spaces (GMS) [6]) Throughout the paper X is an ab-
stract set. For a function D : X × X → [0,∞] and x ∈ X, we will introduce the set

C(D, X, x) =
{
{xn} ⊂ X; lim

n→∞D(xn, x) = 0
}

.

According to [6], the function D : X × X → [0,∞] is said to define a generalized metric
(GM) on X if it satisfies the following axioms:

(D1) For every (x, y) ∈ X × X , we have D(x, y) = 0 ⇒ x = y;
(D2) For every (x, y) ∈ X × X , we have D(x, y) = D(y, x),
(D3) There exists C > 0 such that, if (x, y) ∈ X × X, {xn} ∈ C(D, X, x), we have

D(x, y) ≤ C lim sup
n→∞

D(xn, y).

The pair (X,D) is then called a GMS. Let us show that such a structure may be seen as a
GMMS. Indeed, let (X,D) be a GMS. Define D : (0, +∞) × X × X → [0, +∞] by

Dλ(x, y) =
D(x, y)

λ
.

Clearly, if {xn} ∈ C(D, X, x) for some x ∈ X, then we have

lim
n→∞ Dλ(xn, x) = 0

for any λ > 0. Then the following hold:
(i) If Dλ(x, y) = 0 for some λ > 0 and x, y ∈ X , then x = y;

(ii) Dλ(x, y) = Dλ(y, x) for any λ > 0 and x, y ∈ X ;
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(iii) There exists C > 0 such that, if (x, y) ∈ X × X, {xn} ∈ C(Dλ, X, x) for some λ > 0, we
have

Dλ(x, y) ≤ C lim sup
n→∞

Dλ(xn, y).

These properties show that (X, D) is a GMMS.

2 Fixed point theorems (FPT) in GMMS
The following definition is useful to set new fixed point theory on GMMS.

Definition 2.1 Let (XD, D) be a GMMS.
(1) The sequence {xn}n∈N in XD is said to be D-convergent to x ∈ XD if and only if

Dλ(xn, x) → 0, as n → ∞, for some λ > 0.
(2) The sequence {xn}n∈N in XD is said to be D-Cauchy if Dλ(xm, xn) → 0, as m, n → ∞,

for some λ > 0.
(3) A subset C of XD is said to be D-closed if for any {xn} from C which D-converges to

x, x ∈ C.
(4) A subset C of XD is said to be D-complete if for any {xn} D-Cauchy sequence in C

such that limn,m→∞ Dλ(xn, xm) = 0 for some λ, there exists a point x ∈ C such that
limn,m→∞ Dλ(xn, x) = 0.

(5) A subset C of XD is said to be D-bounded if, for some λ > 0, we have

δD,λ(C) = sup
{

Dλ(x, y); x, y ∈ C
}

< ∞.

In general, if limn→∞ Dλ(xn, x) = 0 for some λ > 0, then we may not have
limn→∞ Dλ(xn, x) = 0 for all λ > 0. Therefore, as it is done in modular function spaces,
we will say that D satisfies �2-condition if and only if limn→∞ Dλ(xn, x) = 0 for some λ > 0
implies limn→∞ Dλ(xn, x) = 0 for all λ > 0.

Another question that comes into this setting is the concept of D-limit and its unique-
ness.

Proposition 2.1 Let (XD, D) be a GMMS. Let {xn} be a sequence in XD. Let (x, y) ∈ XD ×XD

such that Dλ(xn, x) → 0 and Dλ(xn, y) → 0 as n → ∞ for some λ > 0. Then x = y.

Proof Using the property (GMM3), we have

Dλ(x, y) ≤ C lim sup
n→∞

Dλ(xn, y) = 0,

which implies from the property (GMM1) that x = y. �

3 The main results
3.1 The Banach contraction principle (BCP) in GMMS
Now, we show an extension of the BCP to the setting of GMMS presented formerly. From
now on, we mean 1 instead of λ for the same reason Abdou and Khmasi used in their
work [1].
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Definition 3.1 Let (XD, D) be a GMMS and f : XD → XD be a mapping. f is called a D-
contraction mapping if there exists k ∈ (0, 1) such that

D1
(
f (x), f (y)

) ≤ kD1(x, y) for any (x, y) ∈ XD × XD.

x is said to be a fixed point of f if f (x) = x.

Proposition 3.1 Let (XD, D) be a GMMS. Let f : XD → XD be a D-contraction mapping. If
ω1 and ω2 are fixed points of f and D1(ω1,ω2) < ∞, then we have ω1 = ω2.

Proof Let ω1,ω2 ∈ XD be two fixed points of f such that D1(ω1,ω2) < ∞. As f is a D-
contraction, there exists k ∈ (0, 1) such that

D1(ω1,ω2) = D1
(
f (ω1), f (ω2)

) ≤ kD1(ω1,ω2).

Since D1(ω1,ω2) < ∞, we conclude that D1(ω1,ω2) = 0, which implies ω1 = ω2 from
(GMM1). �

Let (XD, D) be a GMMS and f : XD → XD be a mapping. For any x ∈ M, define the orbit
of x by

O(x) =
{

x, f (x), f 2(x), . . .
}

.

Set δD,λ(x) = sup{Dλ(f n(x), f t(x)); n, t ∈ N}, where λ > 0. The following result may be seen
as an extension of the BCP in GMMS.

Theorem 3.1 Let (XD, D) be a GMMS. Assume that XD is D-complete. Let f : XD → XD

be a D-contraction mapping. Assume that δD,1(x0) is finite for some x0 ∈ XD. Then {f n(x0)}
D-converges to a fixed point ω of f . Moreover, if D1(x,ω) < ∞ for x ∈ XD, then {f n(x)} D-
converges to ω.

Proof Let x0 ∈ XD be such that δD,1(x0) < ∞. Then

D1
(
f n+p(x0), f n(x0)

) ≤ knD1
(
f p(x0), x0

) ≤ knδD,1(x0)

for any n, p ∈ N. Since k < 1, {f n(x0)} is D-Cauchy. As XD is D-complete, then there exists
ω ∈ XD such that limn→∞ D1(f n(x0),ω) = 0. Since

D1
(
f n(x0), f (ω)

) ≤ kD1
(
f n–1(x0),ω

)
; n = 1, 2, . . . ,

we have limn→∞ D1(f n(x0), f (ω)) = 0. Proposition 2.1 implies that f (ω) = ω, i.e., ω is a fixed
point of f . Let x ∈ XD be such that D1(x,ω) < ∞. Then

D1
(
f n(x),ω

)
= D1

(
f n(x), f n(ω)

) ≤ knD1(x,ω)

for any n ≥ 1. Since k < 1, we get limn→∞ D1(f n(x),ω) = 0, i.e., {f n(x)} D-converges
to ω. �
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If D1(x, y) < ∞ for any x, y ∈ XD, then f has at most one fixed point. Moreover, if XD is
D-complete and δD,1(x) < ∞ for any x ∈ XD, then all orbits D-converge to the unique fixed
point of f . In metric spaces, d(x, y) is always finite. Because of this reason, any contraction
will have at most one fixed point. Moreover, the orbits of the contraction are all bounded.
Indeed, let f : M → M be a contraction, where M is a metric space endowed with a metric
distance d. We have

d
(
f n+1(x), f n(x)

) ≤ knd
(
f (x), x

)

for any n ∈ N and x ∈ M, which implies by using the triangle inequality

d
(
f n+p(x), f n(x)

) ≤
p–1∑

k=0

d
(
f n+k+1(x), f n+k(x)

) ≤
p–1∑

k=0

kn+kd
(
f (x), x

) ≤ 1
1 – k

d
(
f (x), x

)
,

since k < 1. Hence

sup
{

d
(
f n(x), f t(x)

)
; n, t ∈N

} ≤ 1
1 – k

d
(
f (x), x

)
< ∞

for any x ∈ M.
Next, we investigate the extension of Ćirić’s FPT [4] for quasicontraction type mappings

in GMMS and give a correct version of Theorem 4.3 in [6] since its proof is wrong [7].

3.2 Ćirić quasicontraction in generalized modular metric spaces
First, let us introduce the concept of quasicontraction mappings in the setting of GMMS.

Definition 3.2 Let (XD, D) be a GMMS. The mapping f : XD → XD is said to be a D-
quasicontraction if there exists k ∈ (0, 1) such that

D1
(
f (x), f (y)

) ≤ k max
{

D1(x, y), D1
(
x, f (x)

)
, D1

(
y, f (y)

)
, D1

(
x, f (y)

)
, D1

(
y, f (x)

)}

for any (x, y) ∈ XD × XD.

Proposition 3.2 Let (XD, D) be a GMMS. Let f : XD → XD be a D-quasicontraction map-
ping. If ω is a fixed point of f such that D1(ω,ω) < ∞, then we have D1(ω,ω) = 0. More-
over, if ω1 and ω2 are two fixed points of f such that D1(ω1,ω2) < ∞, D1(ω1,ω1) < ∞, and
D1(ω2,ω2) < ∞, then we have ω1 = ω2.

Proof Let ω be a fixed point of f , then

D1(ω,ω) = D1
(
f (ω), f (ω)

)

≤ k max
{

D1(ω,ω), D1
(
ω, f (ω)

)
, D1

(
ω, f (ω)

)
, D1

(
ω, f (ω)

)
, D1

(
ω, f (ω)

)}

= kD1(ω,ω).

Since k < 1 and D1(ω,ω) < ∞, then D1(ω,ω) = 0. Let ω1,ω2 ∈ XD be two fixed points
of f such that D1(ω1,ω2) < ∞, D1(ω1,ω1) < ∞, and D1(ω2,ω2) < ∞. Since f is a D-
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quasicontraction, there exists k < 1 such that

D1(ω1,ω2) = D1
(
f (ω1), f (ω2)

)

≤ k max
{

D1(ω1,ω2), D1
(
ω1, f (ω1)

)
, D1

(
ω2, f (ω2)

)
,

D1
(
ω1, f (ω2)

)
, D1

(
ω2, f (ω1)

)}
.

= k max
{

D1(ω1,ω2), D1(ω1,ω1), D1(ω2,ω2)
}

.

Since D1(ω1,ω1) < ∞ and D1(ω2,ω2) < ∞, then D1(ω1,ω1) = D1(ω2,ω2) = 0. Now we have

D1(ω1,ω2) ≤ kD1(ω1,ω2).

Since D1(ω1,ω2) < ∞ and k < 1, then D1(ω1,ω2) = 0. �

The following result may be seen as an extension of Ćirić’s FPT [4] for quasicontraction
type mappings in GMMS.

Theorem 3.2 Let (XD, D) be a D-complete GMMS. Let f : XD → XD be a D-quasi-
contraction mapping. Assume that k < 1

C , where C is the constant from (GMM3), and
there exists x0 ∈ XD such that δD,1(x0) < ∞. Then {f n(x0)} D-converges to some ω ∈ XD.
If D1(x0, f (ω)) < ∞ and D1(ω, f (ω)) < ∞, then ω is a fixed point of f .

Proof Let f be a D-quasicontraction, then there exists k ∈ (0, 1) such that, for all p, r, n ∈N

and x ∈ XD, we have

D1
(
f n+p+1(x), f n+r+1(x)

) ≤ k max
{

D1
(
f n+p(x), f n+r(x)

)
,

D1
(
f n+p(x), f n+p+1(x)

)
, D1

(
f n+r(x), f n+r+1(x)

)
,

D1
(
f n+p(x), f n+r+1(x)

)
, D1

(
f n+r(x), f n+p+1(x)

)}
.

Hence δD,1(f (x)) ≤ kδD,1(x) for any x ∈ XD. Consequently, we have

δD,1
(
f n(x0)

) ≤ knδD,1(x0) (1)

for any n ≥ 1. Using the above inequality, we get

D1
(
f n(x0), f n+t(x0)

) ≤ δD,1
(
f n(x0)

) ≤ knδD,1(x0) (2)

for every n, m ∈N. Since δD,1(x0) < ∞ and k < 1/C ≤ 1, we have

lim
n,t→∞ D1

(
f n(x0), f n+t(x0)

)
= 0,

which implies that {f n(x0)} is a D-Cauchy sequence. Since XD is D-complete, there exists
ω ∈ XD such that limn→∞ D1(f n(x0),ω) = 0, i.e., {f n(x0)} D-converges to ω. Next, we assume
D1(x0, f (ω)) < ∞ and D1(ω, f (ω)) < ∞. Using inequality (2) and the property (GMM3), we
get

D1
(
ω, f n(x0)

) ≤ C lim sup
t→∞

D1
(
f n(x0), f n+t(x0)

) ≤ CknδD,1(x0) (3)

for every n, m ∈N.
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Hence,

D1
(
f (x0), f (ω)

) ≤ k max
{

D1(x0,ω), D1
(
x0, f (x0)

)
, D1

(
ω, f (ω)

)

D1
(
f (x0),ω

)
, D1

(
x0, f (ω)

)}

and, using (1), (2), (3), and k < 1/C ≤ 1, we have

D1
(
f 2(x0), f (ω)

) ≤ max
{

k2CδD,1(x0), kD1
(
ω, f (ω)

)
, k2D1

(
ω, f (x0)

)}
.

Progressively, by induction, we can get

D1
(
f n(x0), f (ω)

) ≤ max
{

knCδD,1(x0), kD1
(
ω, f (ω)

)
, knD1

(
ω, f (x0)

)}

for every n ≥ 1. Moreover, we have

lim sup
n→∞

D1
(
f n(x0), f (ω)

) ≤ kD1
(
ω, f (ω)

)
,

when D1(x0, f (ω)) < ∞ and δD,1(x0) < ∞. Again the property (GMM3) implies

D1
(
ω, f (ω)

) ≤ C lim sup
n→∞

D1
(
f n(x0), f (ω)

) ≤ kCD1
(
ω, f (ω)

)
.

Since kC < 1 and D1(ω, f (ω)) < ∞, then D1(ω, f (ω)) = 0, i.e., f (ω) = ω. �
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