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Abstract
In this paper we obtain a solution to the second-order boundary value problem of
the form d

dtΦ
′(u̇) = f (t,u, u̇), t ∈ [0, 1], u : R → R with Sturm–Liouville boundary

conditions, where Φ : R →R is a strictly convex, differentiable function and
f : [0, 1]×R×R →R is continuous and satisfies a suitable growth condition. Our
result is based on a priori bounds for the solution and homotopical invariance of the
Leray–Schauder degree.
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1 Introduction
In this paper we study the existence of solutions to the boundary value problems (BVPs)

d
dt

Φ ′(u̇) = f (t, u, u̇), t ∈ [0, 1] (P)

–αu(0) + βu̇(0) = A, au(1) + bu̇(1) = B, (BC)

where Φ ′ is an increasing homeomorphism, the scalar function f is continuous, α, a > 0
and β , b ≥ 0.

The solvability of various second-order two-point BVPs with p- or Φ-Laplacian has been
discussed extensively in the literature, see the recent works [1–9] for results, methods, and
references.

In 1912, Bernstein [10] proved that the BVP

u′′ = f
(
t, u, u′) (1)

u(0) = A, u(1) = B, (2)

has a unique C2-solution if f (t, u, v) is continuous, has continuous partial derivatives fu

and fv on [0, 1] ×R
2, there is a constant K > 0 such that

fu(t, u, v) ≥ K on [0, 1] ×R
2 (3)

and
∣
∣f (t, u, v)

∣
∣ ≤ A(t, u)v2 + B(t, u) on [0, 1] ×R

2,

where A, B are functions bounded on each compact subset of [0, 1] ×R.
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In 1978, Granas et al. [11] proved similar results for (1) with either Dirichlet, Neumann,
or periodic boundary conditions. The authors have established the existence of solutions
to the considered problems by replacing (3) with the following assumption: There is a
constant M > 0 such that

uf (t, u, 0) > 0 for t ∈ [0, 1] and |u| > M.

The uniqueness of the solution to (1.4), (BC) follows from the assumption that the partial
derivatives fu and fv exist, are bounded, and fu ≥ 0 on [0, 1] ×R

2.
In 1983, Baxley [12] proved Bernstein-type theorems for boundary value problems for

(1) with nonlinear boundary conditions. In 1988, Frigon and O’Regan [13] established
existence results of this type for (1), (2) and (1), (BC).

The aim of this paper is to give Bernstein-type existence theorems for BVPs with Φ-
Laplacian. Throughout this paper we assume that Φ : R → R satisfies the following con-
ditions:

(Φ1) Φ is strictly convex, differentiable and Φ(x)/|x| → ∞ as |x| → ∞;
(Φ2) Φ(0) = Φ ′(0) = 0;
(Φ3) (Φ ′)–1 is continuously differentiable;
(Φ4) there exists a constant KΦ > 1 such that

KΦΦ(x) ≤ Φ ′(x)x for all x ∈R.

Assumption (Φ1) guarantees that Φ ′ is an increasing homeomorphism and so (Φ ′)–1 ex-
ists. Note that Φ(x) = 1

p1
|x|p1 + · · · 1

pn
|x|pn , 1 < pi ≤ 2, is in the considered class of func-

tions, and if n = 1, then the differential operator on the left-hand side of the equation is
a p-Laplacian. A more general form of Φ is provided by an N-function satisfying the ∇2-
condition (see [14]).

We assume also that f : [0, 1] ×R×R →R is continuous and satisfies the following:
(f1) There exists a constant M > 0 such that

xf (t, x, 0) > 0 for |x| > M,

(f2) There exist positive functions S, T bounded on bounded sets such that

∣∣f (t, x, v)
∣∣ ≤ S(t, x)

(
Φ ′(v) · v – Φ(v)

)
+ T(t, x).

Now, we can state our main result.

Main Theorem Suppose that Φ and f satisfy (Φ1)–(Φ4) and (f1), (f2), respectively. Then
problem (P), (BC) has at least one solution in C2([0, 1],R).

To establish the validity of the above result, we apply the Leray–Schauder degree theory
on a suitable constructed map. To define its domain, we use a priori bounds.

To prove the existence, we use topological methods. This approach has already been
used by many authors. In [11] and [13] the authors considered the case of a Laplace op-
erator with various boundary conditions. Generalizations to the p-Laplacian and to the
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operator defined by an arbitrary increasing homeomorphism were developed in [3] and
[5], respectively. The main idea in the paper [11] was to use the topological transversality
theorem. This is a fixed point type theorem (see [15]). We decided to use an approach
via Leray–Schauder degree theory instead, since it is essentially equivalent but the degree
theory is familiar to a broader audience.

However, in [3] and [5] authors subject the equation to very specific boundary con-
ditions, namely u(0) = A, u̇(1) = B. In order to show the existence for general Sturm–
Liouville conditions, more effort has to be put in as can be seen below.

2 Auxiliary results
Lemma 2.1 Let X be a metric space, and let G : X ×R→R be continuous. Suppose that

(1) for every v ∈ X , function gv : R →R, defined by gv(c) = G(v, c), is an increasing
homeomorphism;

(2) if {vn} is bounded and bn → ±∞, then G(vn, bn) → ±∞.
Then, for each fixed constant C ∈ R, the function c : X → R defined by G(v, c(v)) = C is
continuous.

Proof Suppose that function c is not continuous, i.e., there exist ε > 0 and a sequence vn

converging to some v0 such that |c(vn) – c(v0)| > ε. By the definition of c, G(vn, c(vn)) = C. In
particular, both vn and G(vn, c(vn)) are bounded. This, together with (2), implies that c(vn)
is bounded. Take a subsequence c(vnk ) which converges to some c′. Note that c′ 	= c(v0)
because |c(vn) – c(v0)| > ε. By the continuity of G, we have G(vnk , c(vnk )) → G(v0, c′). But
G(vnk , c(vnk )) = C and G(v0, c′) 	= G(v0, c(v0)) = C by (1). A contradiction. �

If gv is differentiable and g ′
v is positive, then the conclusion follows from implicit function

theorem. However, in the problem that we consider, g ′
v is only non-negative.

Remark 2.2 Note that this trivializes in [3, 5]. For boundary conditions considered therein
c1 and c2 are constants independent of v. We cannot proceed in such a way here.

Now introduce the map K̂ : C0([0, 1]) ×R×R → C1([0, 1]) defined by

K̂(v, c1, c2)(t) = c1 +
∫ t

0

(
Φ ′)–1

(∫ τ

0
v(s) ds + c2

)
dτ ,

and by C1
BC([0, 1]) denote the set of the functions in C1([0, 1]) which satisfies (BC).

For every v, we would like to choose c1 and c2 in such a way that u = K̂ (v, c1, c2) is an
element of C1

BC. Moreover, we need that c1 and c2 depend continuously on v.

Lemma 2.3 Let (Φ1) and (Φ3) hold. Then, for every fixed v ∈ C0([0, 1]), there exists a
unique pair of constants c1(v), c2(v) such that K̂(v, c1(v), c2(v)) ∈ C1

BC([0, 1]). Moreover, the
functions c1, c2 : C0([0, 1]) →R are continuous.

Proof Put u = K(v, c1, c2). Then

u(0) = c1, u(1) = c1 +
∫ 1

0

(
Φ ′)–1

(∫ τ

0
v(s) ds + c2

)
dτ
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and

u̇(0) =
(
Φ ′)–1(c2), u̇(1) =

(
Φ ′)–1

(∫ 1

0
v(s) ds + c2

)
.

Clearly, u will satisfy the boundary conditions (BC) if c1 and c2 are such that –αc1 +
β(Φ ′)–1(c2) = A and

a
[

c1 +
∫ t

0

(
Φ ′)–1

(∫ τ

0
v(s) ds + c2

)
dτ

]
+ b

(
Φ ′)–1

(∫ 1

0
v(s) ds + c2

)
= B,

from where we get

a
[

–
A
α

+
β

α

(
Φ ′)–1(c2) +

∫ 1

0

(
Φ ′)–1

(∫ τ

0
v(s) ds + c2

)
dτ

]

+ b
(
Φ ′)–1

(∫ 1

0
v(s) ds + c2

)
= B. (4)

Since (Φ ′)–1 is increasing, the function

G(v, c) = a
[

–
A
α

+
β

α

(
Φ ′)–1(c) +

∫ 1

0

(
Φ ′)–1

(∫ τ

0
v(s) ds + c

)
dτ

]
+

+ b
(
Φ ′)–1

(∫ 1

0
v(s) ds + c

)

is increasing with respect to c. We can apply Lemma 2.1 for C = B to conclude that (4)
defines a unique constant c2 depending continuously on v, and so c1 is also unique and
depends continuously on v. �

Now, for λ ∈ [0, 1], consider the family of differential equations

d
dt

Φ ′(u̇) = λf (t, u, u̇), t ∈ [0, 1]. (Pλ)

Note that if u is a C1 solution to problem (Pλ), then u ∈ C2. Indeed, u̇ reads

u̇(t) =
(
Φ ′)–1

(∫ t

0
λf (τ , u, u̇) dτ + c

)
,

and by assumption (Φ3) and the continuity of f , it is continuously differentiable.
The next lemma is a variant of [13, Theorem 3.3].

Lemma 2.4 Assume that (Φ1)–(Φ3) and (f1) hold. Let u ∈ C1([0, 1]) be a solution to (Pλ),
(BC) for λ ∈ [0, 1]. If |u| achieves its maximum at t0 ∈ (0, 1), then

∣
∣u(t)

∣
∣ ≤ M for t ∈ [0, 1].

Proof Suppose on the contrary that |u| achieves its maximum at t0 ∈ (0, 1). We can assume
that u(t0) > M. In the case u(t0) ≤ –M the proof is similar. It is clear that u̇(t0) = 0. For
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t ∈ [0, 1] we have
∫ t

t0

(t – σ )u(σ )
d

dτ
Φ ′(u̇)(τ )

∣∣
∣∣
τ=σ

dσ = t
∫ t

t0

u
d

dτ
Φ ′(u̇) dσ –

∫ t

t0

σu
d

dτ
Φ ′(u̇) dσ .

Since Φ ′(u̇(t0)) = Φ ′(0) = 0,
∫ t

t0

u
d

dτ
Φ ′(u̇) dσ = uΦ ′(u̇)

∣∣
∣∣

t

t0

–
∫ t

t0

u̇Φ ′(u̇) dσ = u(t)Φ ′(u̇(t)
)

–
∫ t

t0

u̇Φ ′(u̇) dσ

and
∫ t

t0

σu
d

dτ
Φ ′(u̇) dσ = σuΦ ′(u̇)

∣∣t
t0

–
∫ t

t0

(u + σ u̇)Φ ′(u̇) dσ

= tu(t)Φ ′(u̇(t)
)

–
∫ t

t0

uΦ ′(u̇) dσ –
∫ t

t0

σ u̇Φ ′(u̇) dσ .

Combining the above, we get
∫ t

t0

(t – σ )u(σ )
d

dτ
Φ ′(u̇)(τ )

∣
∣∣
∣
τ=σ

dσ =
∫ t

t0

uΦ ′(u̇) dσ +
∫ t

t0

(σ – t)u̇Φ ′(u̇) dσ .

Hence, using (Pλ), we have
∫ t

t0

(t – σ )
(
λu(σ )f

(
σ , u(σ ), u̇(σ )

)
+ u̇(σ )Φ ′(u̇(σ )

))
dσ =

∫ t

t0

u(σ )Φ ′(u̇(σ )
)

dσ .

Note that, for 0 < λ ≤ 1, xf (t, x, 0) > 0, |x| > M implies λxf (t, x, 0) > 0, |x| > M. Thus, by
assumption (f1), λu(t0)f (t0, u(t0), 0) > 0. The continuity of f , u, and u̇ implies that there
exists a neighborhood N ⊂ (0, 1) of t0 such that

λu(t)f
(
t, u(t), u̇(t)

)
> 0 for t ∈ N .

Since u ∈ C1 and achieves its maximum at t0, there exist t–
0 and t+

0 such that
• u(t) > M for t ∈ (t–

0 , t+
0 ),

• u̇(t) ≥ 0 on (t–
0 , t0],

• u̇(t) ≤ 0 on [t0, t+
0 ).

Hence Φ ′(u̇(t)) ≥ 0 for t ∈ (t–
0 , t0] and Φ ′(u̇(t)) ≤ 0 for t ∈ [t0, t+

0 ), since Φ ′ is increasing.
This implies that

∫ t

t0

(t – σ )u̇(σ )Φ ′(u̇(σ )
)

dσ ≥ 0 for t ∈ (
t–
0 , t+

0
)

and
∫ t

t0

u(σ )Φ ′(u̇(σ )
)

dσ ≤ 0 for t ∈ (
t–
0 , t+

0
)
.

It follows that for t close to t0

0 <
∫ t

t0

(t – σ )
(
λu(σ )f

(
σ , u(σ ), u̇(σ )

)
+ u̇(σ )Φ ′(u̇(σ )

))
dσ =

∫ t

t0

u(σ )Φ ′(u̇(σ )
)

dσ ≤ 0,

a contradiction. Thus u(t0) ≤ M. �
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Lemma 2.5 Assume that (Φ1)–(Φ3) and (f1) hold. Let u ∈ C1([0, 1]) be a solution to (Pλ),
(BC) for λ ∈ [0, 1]. There exists a constant M0 > 0 independent of λ and u such that

∣
∣u(t)

∣
∣ ≤ M0 for t ∈ [0, 1].

Proof For λ = 0, problem (Pλ) has a unique linear solution, so there is a constant C > 0
such that |u(t)| ≤ C for t ∈ [0, 1]. Let 0 < λ ≤ 1. If |u| achieves its maximum at t = 0, then
u(0)u̇(0) ≤ 0. The boundary conditions give

u(0)
(
A + αu(0)

)
= βu(0)u̇(0) ≤ 0,

and consequently |u(0)| ≤ |A/α|. Similarly, |u(1)| ≤ |B/a|. If the maximum is at any t0 ∈
(0, 1), then by Lemma 2.4 we get |u(t)| ≤ M. As a result, for λ ∈ [0, 1], we have

∣∣u(t)
∣∣ ≤ M0 = max

{
M, |A/α|, |B/a|} for t ∈ [0, 1]. �

Now we provide bounds for u̇. The proof of the following theorem is based on [13].

Lemma 2.6 Assume that (Φ1)–(Φ4), (f1), and (f2) hold. Let u ∈ C1([0, 1]) be a solution to
(Pλ), (BC) for λ ∈ [0, 1]. There exists a constant M1 > 0, independent of λ and u, such that

∣
∣u̇(t)

∣
∣ ≤ M1 for t ∈ [0, 1].

Proof Since we have obtained a priori bounds |u(t)| ≤ M0, it is easy to observe that there
exists a constant C ≥ 0 independent of λ and u such that

∣∣u̇(t0)
∣∣ ≤ C

for some t0 ∈ [0, 1]. The point t0 belongs to an interval [μ,ν] ⊂ [0, 1] such that the sign of
u̇(t) does not change in [μ,ν] and u̇(μ) = u̇(t0) and/or u̇(ν) = u̇(t0).

Assume that u̇(μ) = u̇(t0) and u̇(t) ≥ 0 for every t ∈ [μ,ν]. The other cases are treated
similarly and the same bound is obtained.

Denote by S0, T0 the upper bounds of S and T , respectively, on [0, 1] × [–M0, M0]. Since

∣
∣λf (t, u, u̇)

∣
∣ ≤ S0

(
Φ ′(u̇)u̇ – Φ(u̇)

)
+ T0,

we have

∫ t

μ

S0u̇| d
dt Φ

′(u̇)|
S0(Φ ′(u̇)u̇ – Φ(u̇)) + T0

dτ ≤ S0

∫ t

μ

u̇ dτ ≤ 2S0M0.

For μ ≤ τ ≤ t, we have

(
Φ ′(u̇(τ )

)
u̇(τ ) – Φ

(
u̇(τ )

))
–

(
Φ ′(u̇(μ)

)
u̇(μ) – Φ

(
u̇(μ)

))

=
∫ t

μ

d
dt

(
Φ ′(u̇(τ )

)
u̇(τ ) – Φ

(
u̇(τ )

))
∣∣
∣∣
t=σ

dt =
∫ τ

μ

u̇
d
dt

Φ ′(u̇) dσ .
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Note that since Φ is a convex differentiable function and Φ(0) = 0, we have Φ(x) ≤ Φ ′(x)x
for every x ∈ R. Thus, 0 ≤ S0(Φ ′(u̇(μ))u̇(μ) – Φ(u̇(μ))). On the other hand, there exists
C0 ≥ 0 such that S0(Φ ′(u̇(μ))u̇(μ) – Φ(u̇(μ))) + T0 ≤ C0. Hence,

0 ≤ S0
(
Φ ′(u̇(τ )

)
u̇(τ ) – Φ

(
u̇(τ )

))
+ T0 ≤ S0

∫ τ

μ

u̇
∣∣
∣∣

d
dt

Φ ′(u̇)
∣∣
∣∣dσ + C0 + T0.

Set g(τ ) = S0
∫ τ

μ
u̇| d

dt Φ
′(u̇)|dσ + C0, then integration by substitution yields

log

(
g(t) + T0

C0 + T0

)
=

∫ g(t)

C0

1
x + T0

dx =
∫ t

μ

S0u̇ d
dt Φ

′(u̇)
g(τ ) + T0

dτ ≤ 2S0M0.

Thus

g(t) ≤ (T0 + C0)e2S0M0 – T0

and by (Φ4)

(kΦ – 1)Φ
(
u̇(t)

) ≤ Φ ′(u̇(t)
)
u̇(t) – Φ

(
u̇(t)

) ≤ 1
S0

(
(T0 + C0)e2S0M0 – T0

)
.

The last inequality gives |u̇(t)| ≤ M1 for all t ∈ [0, 1]. �

3 Proof of the main theorem
Introduce the map N : C1

BC([0, 1]) → C0([0, 1]) defined by

N(u)(t) = f (t, u, u̇),

and for λ ∈ [0, 1] consider the composition K̂ ◦ λN , where the map K̂ : C([0, 1]) →
C1([0, 1]) is well defined by Lemma 2.3. Moreover, by the Arzela–Ascoli theorem, K̂ is
compact. Since N is continuous, the composition K̂ ◦ λN is also compact.

The fixed points of K̂ ◦ λN are of interest to us. Instead of looking for fixed points of
K ◦ N , one can look for zeros of Id – K ◦ N . For this we will use the Leray–Schauder
degree and its homotopical invariance. Consider the homotopy H : [0, 1] × C1

BC([0, 1]) →
C1

BC([0, 1]) given by

H(λ, u) =
(
Id – K̂(λN)

)
(u).

Observe first that H(0, l) = 0, where l = K̂ (0) is unique. Thus, if Br(0) is a closed ball with
center 0 and radius r with the property l ∈ Br(0), then

deg
(
H(0, u), Br(0)

)
= 1.

It is well known that if r is such that

H(λ, u) 	= 0 for λ ∈ [0, 1] and u ∈ ∂Br(0), (5)
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then also

deg
(
H(1, u), Br(0)

)
= 1.

It is not hard to check that u ∈ C1
BC([0, 1]) is a zero of Id – K̂ ◦λN if and only if u is a solution

to BVP (Pλ), (BC). Thus, each zero u ∈ C1
BC([0, 1]) of Id – K̂ ◦ λN satisfies the bound

‖u‖C1([0,1]) < K ,

where K = max{M0, M1}+1, where M0 and M1 are the constants from Lemmas 2.5 and 2.6.
Clearly, (5) holds for r = K and so, since in particular l ∈ BK (0), we have

deg
(
H(1, u), BK (0)

)
= 1.

This means that Id – K̂ ◦λN has at least one zero u0 ∈ BK (0), which is a C1([0, 1])-solution
to BVP of family (Pλ) arisen when λ = 1, that is, u0 is a C1([0, 1])-solution to (P), (BC).
However, as a solution of (P), u0 is such that, for some constant c, we have

u′
0(t) =

(
Φ ′)–1

(∫ t

0
f
(
τ , u0(τ ), u′

0(τ ) dτ
)

+ c
)

,

from where, keeping in mind (Φ3) and the continuity of f , we get u0 ∈ C2([0, 1]).

4 Examples
Example 4.1 Let Φ : R → R, Φ(x) = 1

p |x|p, 1 < p ≤ 2. It is easy to see that the function Φ

satisfies assumptions (Φ1)–(Φ3). Moreover, since 1
p |x|p ≤ x2|x|p–2, one can take KΦ = p in

(Φ4).
Define the function f : R×R×R →R by the formula

f (t, x, v) =
(x3 – x)(1 + |v| p+1

2 )
1 + t2 .

One can easily check that

xf (t, x, 0) =
x4 – x2

1 + t2 > 0

for |x| > 1. Since Φ ′(v)v – Φ(v) = 1–p
p |v|p and

∣∣f (t, x, v)
∣∣ ≤ p|x3 – x|

(p – 1)(1 + t2)
· 1 – p

p
|v|p +

|x3 – x|
1 + t2 ,

assumption (f2) is satisfied with S(t, x) = p|x3–x
(p–1)(1+t2) and T(t, x) = |x3–x|

1+t2 .

Assume that Φ satisfies assumptions (Φ1)–(Φ4) and that the functions S, T : R × R →
(0,∞) are continuous and such that xT(t, x) > 0 for |x| > M. Then the function

f (t, x, v) = S(t, x)
(
Φ ′(v)v – Φ(v)

)
+ T(t, x)

satisfies our assumptions.
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Example 4.2 Let Φ(x) =
∑n

i=1
1
pi

|x|pi , 1 < pi ≤ 2, for i = 1, 2, . . . , n. Then Φ satisfies assump-
tions (Φ1)–(Φ3). Assumption (Φ4) is satisfied with KΦ = min{p1, . . . , pn}.

Example 4.3 Let Φ(x) = 1
p |x|p log(1 + x2). The function Φ satisfies all assumptions. In par-

ticular, as Φ ′(x) = x|x|p–2 log(1 + x2) + 1
p |x|p 2x

1+x2 and

p
1
p
|x|p log

(
1 + x2) ≤ x2|x|p–2 log

(
1 + x2) +

1
p

2x
1 + x2 ,

we can take KΦ = p. One can also consider functions of the form Φ(x) = 1
p |x|p logr(1 + |x|s)

for suitable choice of p, r, s.
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