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that is, in the association with the di�erential equation or inclusion of that type an initial

condition depending on the behavior of the whole solution.

In the present paper, for a semilinear fractional order di�erential inclusion in a separable

Banach spaceE of the form

CDqx(t) � Ax(t) + F
(
t,x(t)

)
, t � [0,T ], (1.1)

we consider the problem of existence and approximation of mild solutions to this inclusion

satisfying the following nonlocal boundary value condition:

x(0) � � (x). (1.2)

Here CDq means the Caputo fractional derivative of order 0 <q < 1, A : D(A) � E � E is

a generator of aC0-semigroup,F : [0,T ] × E � E is a nonlinear multivalued map, and

� : C([0,T ]; E) � E is a given multivalued map.

The above boundary condition is fairly general and includes, besides obvious cases of the

Cauchy problem (� (x) � x0 � E), periodic (� (x) = x(T)), and antiperiodic (� (x) = …x(T))

problems, also the following particular cases:

(i) � (x) = 1
T

∫ T
0 x(t) dt (mean value condition);

(ii) � (x) =
∑n

i=1 � ix(ti) + � , with � � E, � i �= 0, ti � [0,T ], i = 1, . . . ,n (multipoint discrete
mean condition);

(iii) � (x) � M, with M � E being a prescribed set (the generalized Cauchy problem).
Among a large amount of papers dedicated to fractional-order equations and inclusions

in Banach spaces, let us mention [3, 5, 15…17, 20, 21, 23, 24, 27, 33, 34, 36], where vari-

ous existence results were obtained. In particular, in [5] a technique based on the weak

topology methods was used to study a semilinear fractional di�erential inclusion sub-

jected to a nonlocal initial condition. Notice that the results on the existence of solutions

to the Cauchy and the periodic problems for semilinear di�erential inclusions in a Banach

space were obtained in the authors• papers [15, 17] by applying the methods of the the-

ory of condensing multivalued maps. In [16] and [25] the authors justi“ed the scheme of

semidiscretization of the Cauchy problem for di�erential equations of the same type and

presented results on the approximation of solutions to this problem. Notice also that the

semidiscretization method for initial and periodic problems of ODEs in a Banach space

was studied in [6, 11, 12, 30, 32], among other works. In the present work, we develop and

extend the investigations in the same direction.

The structure of the paper is as follows. In the next section, we recall necessary no-

tions and facts from the theory of di�erential equations of fractional order, measures of

noncompactness and condensing maps. In the third section, we introduce the translation

multivalued operator along the trajectories of the problem under consideration and prove

that it is condensing with respect of the Hausdor� measure of noncompactness (Theo-

rem 3). Based on this result, we show that this multivalued operator has a “xed point

and therefore our problem has a solution (Theorem4). In the last section, we develop the

semidiscretization scheme and apply it to justify the approximation of solutions to the

considered nonlocal boundary value problem (Theorem6).
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2 Preliminaries
2.1 Differential equations of fractional order
Recall some notions and de“nitions, which we will need in the sequel (details can be found,

e.g., in [22, 28, 29, 35]).

Let E be a real Banach space.

Definition 1 The Riemann…Liouville fractional derivative of orderq � (0, 1) of a contin-

uous functiong : [0,a] � E is the function Dqg given by

Dqg(t) =
1

� (1 …q)
d
dt

∫ t

0
(t …s)…qg(s) ds,

provided the right-hand side of this equality is well de“ned.

Here � is the Euler gamma-function de“ned by

� (r) =
∫ �

0
sr…1e…s ds.

Definition 2 The Caputo fractional derivative of orderq � (0, 1) of a continuous function

g : [0,a] � E is the function CDqg de“ned by

CDqg(t) =
(
Dq(g(·) …g(0)

))
(t),

provided the right-hand side of this equality is well de“ned.

Definition 3 A function of the form

E� ,� (z) =
�∑

n=0

zn

� (� n + � )
, � , � > 0,z � C,

is called the Mittag-Le�er function.

DenoteEq,1 by Eq. Notice that from the relations (see, e.g., [33])

Eq(…z) =
∫ �

0
� q(� )e…z� d�

and

Eq,q(…z) =
∫ �

0
q� � q(� )e…z� d� ,

where

� q(� ) =
1
q

� …1…1q � q
(
� …1/q), (2.1)

� q(� ) =
1
	

�∑

n=1

(…1)n…1� …qn…1� (nq + 1)
n!

sin(n	 q), � � R+, (2.2)
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it follows that

Eq(
 ) > 0, Eq,q(
 ) > 0 for 
 < 0. (2.3)

Consider a scalar Cauchy problem, i.e., an equation of the form

CDqx(t) = � x(t) + f (t), t � [0,T ], (2.4)

with the initial condition

x(0) = x0, (2.5)

where� � R, f : [0,T ] � R is a continuous function. By a solution of this problem we mean

a continuous functionx : [0,T ] � R satisfying condition (2.5) whose fractional derivative
CDqx is also continuous and satis“es equation (2.4). It is known (see [22], Example 4.9)

that the unique solution of this equation has the form

x(t) = Eq
(
� tq)x0 +

∫ t

0
(t …s)q…1Eq,q

(
� (t …s)q)f (s) ds. (2.6)

2.2 Measures of noncompactness and condensing maps
Let E be a Banach space. Introduce the following notation:

• Pb(E) = {A � E : A �= 	 is bounded};
• Pv(E) = {A � Pb(E) : A is convex};
• K(E) = {A � Pb(E) : A is compact};
• Kv(E) = Pv(E) 
 K(E).

Definition 4 (see, e.g., [2,18]) Let (A, � ) be a partially ordered set. A function � : Pb(E) �

A is called the measure of noncompactness (MNC) in E if for each � � Pb(E) we have

� (co � ) = � (� ),

where co � denotes the closure of the convex hull of � .

A measure of noncompactness� is called:

(1) monotone if for each � 0, � 1 � Pb(E), � 0 � � 1 implies � (� 0) � � (� 1);
(2) nonsingular if for each a � E and each � � Pb(E), we have � ({a} 
 � ) = � (� );

If A is a cone in a Banach space generating a partial order� , then the MNC � is called:

(3) regular if � (� ) = 0 is equivalent to the relative compactness of � � Pb(E);
(4) real if A is the set of all real numbers R with the natural ordering;
(5) algebraically semiadditive if � (� 0 + � 1) � � (� 0) + � (� 1) for every � 0, � 1 � Pb(E).
As the example of a real MNC obeying all above properties, we can consider the Haus-

dor� MNC 
 (� ):


 (� ) = inf{� > 0, for which� has a “nite � -net in E}.
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Notice that the Hausdor� MNC satis“es the semi-homogeneity condition, i.e.,


 (�� ) = |� |
 (� ),

for every� � R and � � P(E). More generally, ifL : E � E is a bounded linear operator
then



(
L(� )

)
= � L� 
 (� )

for every� � P(E) (see, e.g., [2]).
Recall that the norm of a setM � Pb(E) is de“ned by the formula:

� M� = sup
x� M

� x� E .

Definition 5 (see, e.g., [7, 10, 18]) Let X be a metric space. A multivalued mapF : X �
P(E) is called upper semicontinuous (u.s.c.)if

F…1(V ) =
{

x � X :F (x) � V
}

is an open subset of X for each open set V � E ;

Definition 6 (see, e.g., [10, 18]) A multivalued mapF : X � P(E) is said to be a Vietoris
multivalued map, provided there exists a metric spaceX � and a pair of continuous maps
t : X � � X and r : X � � E such that:

(i) t is proper, i.e., t…1(K) is compact for every compact K � X ;
(ii) for each x � X the set t…1(x) is acyclic, i.e., it has the same homologies as a

one-point space;
(iii) F (x) = r(t…1(x)), � x � X .

The class of Vietoris multivalued maps is su�ciently broad. To demonstrate this, recall
the following notions.

Definition 7 A metric spaceX is called contractible if there exist a pointx0 � X and a
continuous map (homotopy)h : [0, 1]× X � X such thath(0,x) = x andh(1,x) = x0 for all
x � X.

It is obvious that convex and, more generally, star-shaped sets are contractible.

Definition 8 (see [14]) A compact metric spaceA is called anR� -set if there exists a de-
creasing sequence{An} of compact contractible sets such that

A =
⋂

n� 1

An.

Notice that anR� -set is acyclic, but need not be contractible (see an example in [10]).

Definition 9 Let X be a metric space,E a Banach space. A u.s.c. multivalued mapF :
X � K(E) is called anR� -multivalued map if for everyx � X the setF (x) is R� .
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It is easy to see that anR� -multivalued map is a Vietoris map. In fact, ast and r we may

take natural projections from the graph� F � X × E

t : � F � X, r : � F � E .

Definition 10 A multivalued map F : X � K(E) is called anRc
� -multivalued map if

there exists metric spacesX0 = X,X1, . . . ,Xk,Xk+1 = E and R� -multivalued mapsFi : Xi �

K(Xi+1), i = 0, . . . ,k such thatF may be represented as the composition:

F = Fk � Fk…1� · · · � F0.

From Proposition 3.4.1(a) of [18] it follows that everyRc
� -multivalued map is a Vietoris

map.

Then, by applying Corollary 3.4.3 in [18], we get the following “xed point theorem,

which we will need in the sequel.

Theorem 1 Let M be a convex, closed and bounded subset of a Banach space E , and
F : M � K(M) an Rc

� -multivalued map which is (k, 
 )-condensing for some 0 � k < 1,

i.e.,



(
F (� )

)
� k
 (� )

for every � � M. Then there exists a point x� � M such that x� � F (x� ).

Recall some notions (see, e.g., [7, 18]). Let E be a Banach space.

Definition 11 For a given 1 � p � � , a multivalued function G : [0,
 ] � K(E) is called:
• Lp-integrable if it admits an Lp-Bochner integrable selection, i.e., there exists a function

g � Lp((0,
 );E) such that g(t) � G(t) for a.e. t � [0,
 ];
• Lp-integrably bounded if there exists a function � � Lp((0,
 )) such that

∥∥G(t)
∥∥ � � (t)

for a.e. t � [0,
 ].

The set of allLp-integrable selections of a multivalued functionG : [0,
 ] � K(E) is de-

noted bySp
G[0,
 ].

Definition 12 The integral of anLp-integrable multivalued functionG : [0,
 ] � K(E) is

de“ned by

∫ 


0
G(s) ds =

{∫ 


0
f (s) ds : f � Sp

G[0,
 ]
}

.

In the sequel we will need the following important property on the
 -estimation of the

integral of a multivalued function.
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Lemma 1 (see Theorem 4.2.3 in [18]) Let E be a separable Banach space and G : [0,
 ] �
K(E) an integrable, integrably-bounded multivalued function such that



(
G(t)

)
� v(t) for a.e. t � [0,
 ],

where 
 is the Hausdorff MNC in E and v(·) � L1
+(0,
 ). Then



(∫ 


0
G(s) ds

)
�

∫ 


0
v(s) ds.

We will need the following auxiliary assertion which is an analogue of the known Gron-
wall lemma on integral inequalities.

Lemma 2 ([17], Lemma 13) Let a bounded measurable function � : [0,T ] � R satisfy the
integral inequality

� (t) � Eq
(
…� tq)� (0) +

∫ t

0
(t …s)q…1Eq,q

(
…� (t …s)q)(K + k� (s)

)
ds (2.7)

where K � 0, 0 <k < � . Then

� (t) � Eq
(
(…� + k)tq)� (0) + K

∫ t

0
(t …s)qEq,q

(
(…� + k)(t …s)q)ds.

3 Existence result
For a semilinear fractional order di�erential inclusion in a separable Banach spaceE of the
form

CDqx(t) � Ax(t) + F
(
t,x(t)

)
, t � [0,T ], (3.1)

consider the problem of existence of mild solutions to this inclusion satisfying the follow-
ing boundary value condition:

x(0) � � (x) (3.2)

under the following basic assumptions.
As earlier, the symbolCDqx denotes the Caputo fractional derivative of orderq � (0, 1).

Everywhere in the sequel we suppose that the linear operatorA satis“es condition
(A) A : D(A) � E � E is a linear closed (not necessarily bounded) operator generating a

bounded C0-semigroup {U(t)}t� 0 of linear operators in E.
We will assume that a nonlinear multivalued mapF : [0,T ] × E � Kv(E) obeys the fol-

lowing conditions:
(F1) for each x � E the multivalued function F(·,x) : [0,T ] � Kv(E) admits a measurable

selection;
(F2) for a.e. t � [0,T ] the multivalued map F(t, ·) : E � Kv(E) is u.s.c.;
(F3) there exists a function � � L�

+ ([0,T ]) such that

∥
∥F(t,x)

∥
∥

E � � (t)
(
1 +

∥
∥x(t)

∥
∥

E

)
for a.e. t � [0,T ],
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(F4) there exists a function µ � L� ([0,T ]) such that for each bounded set � � E we
have



(
F(t, � )

)
� µ (t)
 (� ),

for a.e. t � [0,T ], where 
 is the Hausdorff MNC in E.
We will assume that anRc

� -multivalued map� : C([0,T ]; E) � K(E) obeys the following
conditions:

(� 1) there exists a functional f : C([0,T ];R) � R+ and a constant C � 0 which is:
(i) sublinear in the sense that f(� 0� 0 + � 1� 1) � � 0f(� 0) + � 1f(� 1), � � 0 � 0,

� 1 � 0, � 0, � 1 � C([0,T ];R);
(ii) monotone nondecreasing in the sense that � 0, � 1 � C([0,T ];R),

� 0(t) � � 1(t), � t � [0,T ] implies f(� 0) � f(� 1)
such that for all x � C([0,T ]; E)

∥∥� (x)
∥∥

E � f
(∥∥x(·)

∥∥
E

)
+ C.

(� 2) Let � � C([0,T ]; E) be a nonempty bounded set and x a solution of scalar problem
(2.4)–(2.5) with � = …� , � > 0 and x0 = 
 (� (0)) such that



(
� (t)

)
� x(t), � t � [0,T ].

Then



(
� (� )

)
� f(x).

Remark 1 For the particular cases of the boundary conditions (i)…(iii) from the introduc-
tion section, the functionalf has the form

(i) f(� ) = 1
T

∫ T
0 |� (s)| ds;

(ii) f(� ) =
∑n

i=1 |� i||� (ti)|, � i �= 0, ti � [0,T ], i = 1, . . . ,n;
(iii) f(� ) = 0.

For a givenx � C([0,T ]; E), consider the multivalued function

� x : [0,T ] � Kv(E), � x(t) = F
(
t,x(t)

)
.

From the above conditions (F1)…(F3) it follows (see, e.g., [18], Theorem 1.3.5) that the
multivalued function � x is Lp-integrable for eachp � 1.

To solve our problem, we will use the superposition multivalued operatorP �
F :

C([0,T ]; E) � L� ([0,T ]; E) de“ned by

P �
F (x) = S �

� x .

Definition 13 (see, e.g., [15]) A mild solution to the Cauchy problem for inclusion (3.1)
with initial condition

x(0) = x0 � E (3.3)
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on an interval [0,T ] is a function x � C([0,T ]; E) which can be represented as

x(t) = G(t)x0 +
∫ t

0
(t …s)q…1T (t …s)� (s) ds, t � [0,T ], (3.4)

where� � P �
F (x),

G(t) =
∫ �

0
� q(� )U

(
tq�

)
d� ,

T (t) = q
∫ �

0
� � q(� )U

(
tq�

)
d� ,

and the function� q(� ) is de“ned by (2.1)…(2.2).

Remark 2 (see, e.g. [34, 35]) � q(� ) � 0,
∫ �

0 � q(� ) d� = 1,
∫ �

0 � � q(� ) d� = 1
� (q+1) .

Lemma 3 (see [34, 35]) The operator functions G and T possess the following properties:
(1) for each t � [0,T ], G(t) and T (t) are linear bounded operators, more precisely, for

each x � E we have

∥
∥G(t)x

∥
∥

E � M� x� E, (3.5)

∥∥T (t)x
∥∥

E �
qM

� (1 + q)
� x� E, (3.6)

where

M = sup
t� 0

∥∥U(t)
∥∥.

(2) the operator functions G(·) and T (·) are strongly continuous, i.e., functions
t � [0,T ] � G(t)x and t � [0,T ] � T (t)x are continuous for each x � E.

Remark 3 Comparing formula (3.4) of a mild solution with (2.6), we get in a scalar case

with � > 0:

Eq
(
…� tq) = G(t), Eq,q

(
…� tq) = T (t), t � [0,T ].

Then, taking into account that in this caseU(t) = e…� t , from (3.5) and (3.6) we have the

following estimates:

Eq
(
…� tq) � 1, t � [0,T ], (3.7)

Eq,q
(
…� tq) �

q
� (1 + q)

, t � [0,T ]. (3.8)

By the symbol� F
x0

we will denote the set of all mild solutions to the Cauchy problem

(3.1), (3.3) on the interval [0,T ].

From the results of [15, 17] about the existence and topological structure of solutions to

the Cauchy problem (3.1) and (3.3), the next assertion follows.
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Theorem 2 Under conditions (A), (F1)–(F4), the solution set � F
x0

is an R� -set and, more-
over, the multivalued map � : E � C([0,T ]; E), defined as

� (x) = � F
x ,

is u.s.c. and hence an R� -multivalued map.

Now we will consider the translation multivalued operator� : D � E � E along the
trajectories of problem (3.1)…(3.2) de“ned as� = � � � , whereD � E is an open subset.
It is clear that � is anRc

� -multivalued map.

Theorem 3 Under assumptions (A), (F1)–(F4), suppose additionally that
(A1) the semigroup U is exponentially decreasing in the sense that

∥∥U(t)
∥∥ � e…� t, t � 0

for some � > � µ � � , where µ(·) is the function from condition (F4).
If

k := f(� ) < 1,

where � (t) = Eq((…� + � µ � � )tq), then the translation multivalued operator � is (k, 
 )-
condensing with respect to the Hausdorff MNC 
 in E.

Proof Let � � D is a nonempty bounded set. For 0� t � T consider the set

� (� )(t) =
{

v(t) : v � � F
x [0,T ], x � �

}
.

It is clear that � (� )(0) = � and

� (� )(t) � G(t)� +
∫ t

0
(t …s)q…1T (t …s)F

(
s, � (� )(s)

)
ds, 0 � t � T ,

from where, by using property (F3), we get for 0� t � T :

∥∥� (� )(t)
∥∥ �

∥∥G(t)
∥∥� � � +

∫ t

0
(ts)q…1

∥∥T (t …s)
∥∥∥∥F

(
s, � (� )(s)

)∥∥ds

�
∥
∥G(t)

∥
∥� � � +

∫ t

0
� (s)(t …s)q…1

∥
∥T (t …s)

∥
∥(

1 +
∥
∥�

(
� )(s)

)∥∥ds.

By using the estimates (see [3])

∥
∥G(t)

∥
∥ � Eq

(
…� tq), (3.9)

∥
∥T (t)

∥
∥ � Eq.q

(
…� tq), (3.10)

we have

∥
∥� (� )(t)

∥
∥ � Eq

(
…� tq)� � �

+
∫ t

0
� (s)(t …s)q…1Eq,q

(
…� (t …s)q)(1 +

∥
∥� (� )(s)

∥
∥)

ds. (3.11)
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Applying estimates (3.7)…(3.8), we get

∥∥� (� )(t)
∥∥ � � � � +

q
� (1 + q)

∫ t

0
� (s)(t …s)q…1(1 +

∥∥� (� )(s)
∥∥)

ds,

from where, by using Gronwall inequality, we conclude that the set� (� ) is bounded.

Then by Theorem 4.2.4 of [18] the function

t � [0,T ] � 

(
� (� )(t)

)

is measurable.

Applying the properties of the MNC
 (see Sect.2.2), we get the following estimates:



(
� (� )(t)

)
� 


(
G(t)� +

∫ t

0
(t …s)q…1T (t …s)F

(
s, � (� )(s)

)
ds

)

�
∥
∥G(t)

∥
∥
 (� ) +

∫ t

0
(t …s)q…1

∥
∥T (t …s)

∥
∥� µ � � 


(
� (� )(s)

)
ds.

By using estimates (3.9)…(3.10), we obtain



(
� (� )(t)

)
� Eq

(
…� tq)


(
� (� )(0)

)

+
∫ t

0
(t …s)q…1Eq,q

(
…� (t …s)q)� µ � � 


(
� (� )(s)

)
ds.

Applying Lemma2 with K = 0, we get



(
� (� )(t)

)
� Eq

((
…� + � µ � �

)
tq)
 (� ).

Now by using condition (� 2) and denoting� (t) = Eq((…� + � µ � � )tq), we obtain



(
� � � (� )

)
� f

(
� 
 (� )

)
� f(� )
 (� ) = k
 (� )

giving the claim. �

Now we are in position to prove the main result of this section.

Theorem 4 Under conditions (A), (A1),and (F1)–(F4), let

� > � ,

where � is the constant from condition (A1) and � = max{� µ � � , � � � � } with functions � (·)

and µ(·) from conditions (F3) and (F4), respectively. If

k := f(� ) < 1, (3.12)

where � (t) = Eq((…� + � )tq), then problem (3.1)–(3.2) has a solution.
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Proof For an arbitraryx0 � E, take a functionx � � F
x0

. Then for everyt � [0,T ] we have

x(t) � G(t)x0 +
∫ t

0
(t …s)q…1T (t …s)F

(
s, � F

x0
(s)

)
ds.

Consider a continuous function� : [0,T ] � R given as

� (t) =
∥∥� F

x0
(t)

∥∥
E.

Then we have the following estimates:

� (t) �

∥∥
∥∥G(t)x0 +

∫ t

0
(t …s)q…1T (t …s)F

(
s, � F

x0
(s)

)
ds

∥∥
∥∥

E

�
∥∥G(t)

∥∥� x0� E +
∫ t

0
(t …s)q…1

∥∥T (t …s)
∥∥� � � �

(
1 + � (s)

)
ds.

Applying estimates (3.9)…(3.10), we get

� (t) � Eq
(
…� tq)� (0) +

∫ t

0
(t …s)q…1Eq,q

(
…� (t …s)q)� � � �

(
1 + � (s)

)
ds.

By using Lemma2, we obtain

� (t) � Eq
(
(…� + � )tq)� (0) + � � � �

∫ t

0
(t …s)q…1Eq,q

(
(…� + � )(t …s)q)ds

= � x0� EEq
(
(…� + � )tq) + C,

where

C = � � � �

∫ t

0
(t …s)q…1Eq,q

(
(…� + � )(t …s)q)ds

is a constant.

Let b(t) = � x0� EEq((…� + � )tq) + C.

Now, by using condition (� 1), we have

∥∥� (x)
∥∥

E � f
(∥∥x(·)

∥∥
E

)
+ C � f(� ) + C � f

(
b(·)

)
+ C � � x0� Ef(� ) + f(C) + C.

So, if we take

R �
f(C) + C
1 …f(� )

, (3.13)

then � x0� E � R obviously implies� (x) � R.

This means that the translation multivalued operator� transforms the ballBR(0) � E
into itself, and hence, by Theorem1, it has a “xed pointx� � BR(0). Therefore there exists

a function x̃(·) � � F
x�

such that

x̃(0) � � (̃x). �
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4 Approximation of solutions
In this section we will apply a semidiscretization scheme for the approximation of solu-
tions to problem (3.1)…(3.2).

Along with inclusion (3.1), for a given sequence of positive numbers{hn} converging to
zero, consider the inclusions

Dqxh(t) � Ahxh(t) + Fh
(
t,xh(t)

)
, t � [0,T ], (4.1)

whereh � H = {hn} is the semidiscretization parameter,Ah : D(Ah) � Eh � Eh are closed
linear operators in Banach spacesEh generating boundedC0-semigroups{Uh(t)}t� 0. We
assumeE0 = E,A0 = A,F0 = F and suppose that multivalued mapsFh : [0,T ] × Eh � Kv(Eh)
satisfy conditions of type (F1)…(F4) for eachh � H with the functions � andµ not depend-
ing on h.

We suppose that for eachh � H there exist linear operatorsQh : Eh � E, Q0 = I, and
Ph : E � Eh, P0 = I such that

PhQh = Ih, (4.2)

whereIh is the identity on Eh and

QhPhx � x (4.3)

ash � 0 for eachx � E. We suppose that the operatorsPh andQh are uniformly bounded

� Ph� � 1, � Qh� � 1 (4.4)

for all h � H.
The nonlocal boundary value condition for inclusion (4.1) will be considered of the fol-

lowing form:

xh(0) � Ph�
(
Qhxh(·)

)
. (4.5)

For inclusion (4.1), besides condition (4.5), we will need the initial condition of the form

xh(0) = yh
0, (4.6)

whereyh
0 � Eh. The set of mild solutions to problem (4.1), (4.6) in the spaceC([0,T ]; Eh)

will be denoted as� Fh
yh
0

.

Consider the integral equation

xh(t) = Gh(t)xh(0) +
∫ t

0
(t …s)q…1Th(t …s)fh(s) ds, t � [0,T ], (4.7)

where fh � P �
Fh

(xh) and the operator functionsGh andTh are de“ned similarly as in De“-
nition 13:

Gh(t) =
∫ �

0
� q(� )Uh

(
tq�

)
d� , Th(t) = q

∫ �

0
� � q(� )Uh

(
tq�

)
d� .
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Notice that a function xh � C([0,T ]; Eh) is a solution of Eq. (4.7) if and only if it is a mild
solution of problem (4.1), (4.6) with yh

0 = xh(0).
We will assume that
(H1) for each x � E,

QhUh(t)Phx � U(t)x

as h � 0 uniformly in t � [0,T ];
(H2) there exists k > 0 such that


 E

(⋃

h� H

QhFh
(
t,Ph(� )

)
)

� k
 E(� )

for each t � [0,T ] and bounded � � E.
We suppose also that
(H3) the multivalued map (h,x) � QhFh(t,Phx) is u.s.c. for a.e. t � [0,T ].

Remark 4 Hypothesis (H1) may be equivalently formulated in terms of the strong conver-
gence of the resolvents in the following way:

Qh(Ah + � I)…1Phx � (A + � I)…1x, � x � E.

This is an analogue of the Trotter…Kato theorem (see, e.g., [19], Chap. IX, Theorem 2.16
or [25], Theorem 2.6).

In the sequel we will need the following assertion.

Lemma 4 ([16], Lemma 2) For each x � E, we have the following relations:

QhGh(t)Phx � G(t)x, (4.8)

QhTh(t)Phx � T (t)x, (4.9)

as h � 0 uniformly in t � [0,T ].

Consider the multivalued mapG : H × C([0,T ]; E) � C([0,T ]; E) de“ned by the equality

G(h,x)(t) =
{

y : y(t) = QhGh(t)Phx(0) +
∫ t

0
(t …s)q…1QhTh(t …s)fh(s) ds

}
, (4.10)

with fh � P �
Fh

(Phx).
Notice that solutionsxh of inclusion (4.1) and “xed points of G(h, ·) are connected in

the following way: ifx � C([0,T ]; E) is a “xed point of the multivalued mapG(h, ·) then
the function xh � C([0,T ]; Eh) de“ned by the formula

xh = Phx

is the solution of equation (4.7) and, hence of problem (4.1), (4.6) with y0 = Phx(0). Con-
versely, ifxh is a solution of equation (4.7) and hence of problem (4.1), (4.6) with yh

0 = xh(0)
then Qhxh is a “xed point of the multivalued mapG(h, ·).
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Under above conditions, for eachh � H, there exists the translation multivalued opera-

tor � h : Dh � Eh � Eh along the trajectories of (4.1)…(4.5) de“ned as

� h(x) =
{

z � Ph�
(
Qhxh(·)

)
: xh � � Fh

Phx
}
,

whereDh � Eh is an open subset.

Consider the family of multivalued maps� : H × E � E

� (h,x) = Qh� hPhx, x � E.

Theorem 5 Under the above conditions, suppose additionally that
(A1h) the semigroups Uh are exponentially decreasing in the sense that

∥
∥Uh(t)

∥
∥ � e…� t, t � 0

for some � > k, where k is the constant from condition (H2).
If

m := f(� ) < 1,

where � (t) = Eq((…� + k)tq), then the family � is (m, 
 E)-condensing in the sense that for
every nonempty bounded set � � E we have


 E
(
� (H × � )

)
� m
 E(� ). (4.11)

Proof Let � � E be a nonempty bounded set.

For h � H and 0� t � T consider the set

� h(� )(t) =
{

y(t) : y � � Fh
xh ,xh = Phx,x � �

}
.

It is clear that Qh� h(� )(0) = QhPh(� ) and for each 0� t � T we have

⋃

h� H

Qh� h(� )(t) �
⋃

h� H

(
QhGh(t)Ph� +

∫ t

0
(t …s)q…1QhTh(t …s)Fh

(
s,Ph(� )(s)

)
ds

)
.

Similarly to what was done while proving Theorem3, one can show that the set
⋃

h� H Qh� h(� )[0,T ] � C([0,T ]; E) is bounded and then, by virtue of Theorem 4.2.4 of

[18], the function

t � [0,T ] � 

(⋃

h� H

Qh� h(� )(t)
)

is measurable and evidently bounded.
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Applying the properties of the MNC
 (see Sect.2) and (H2), (4.4) we get the following

estimates:



(⋃

h� H

Qh� h(� )(t)
)

� 

(⋃

h� H

(
QhGh(t)Ph� +

∫ t

0
(t …s)q…1QhTh(t …s)PhQhFh

(
s,PhQh� h(� )(s)

)
ds

))

� sup
h� H

(

� Qh�
∥
∥Gh(t)

∥
∥� Ph� 
 (� )

+
∫ t

0
(t …s)q…1� Qh�

∥∥Th(t …s)
∥∥� Ph� 


(
⋃

h� H

QhFh
(
s,PhQh� h(� )(s)

)
)

ds

)

� sup
h� H

(∥
∥Gh(t)

∥
∥
 (� ) +

∫ t

0
(t …s)q…1

∥
∥Th(t …s)

∥
∥k


(⋃

h� H

Qh� h(� )(s)
)

ds
)

.

Applying estimates (3.9)…(3.10), we have



(⋃

h� H

Qh� h(� )(t)
)

� Eq
(
…� tq)


(⋃

h� H

QhPh� h(� )(0)
)

+
∫ t

0
(t …s)q…1Eq,q

(
…� (t …s)q)k


(⋃

h� H

Qh� h(� )(s)
)

ds.

By using Lemma2 with K = 0, we get



(⋃

h� H

Qh� h(� )(t)
)

� Eq
(
(…� + m)tq)
 (� ).

Applying condition (� 2), we have



(
� (H × � )

)
= 


(⋃

h� H

� Qh� h(� )
)

� f(� )
 (� ) = m
 (� ).
�

Consider now “xed points

xh � �
(
h,xh)

of the multivalued map� (h,x) in the ball BR(0), whereR satis“es inequality (3.13). Notice

that then the pointsPhxh will be initial values for solutions of the approximate problems

(4.1), (4.6) (with yh
0 = Phxh). Consider a sequence{xhn } with hn � 0.

Theorem 6 Under condition (3.12), the sequence {xhn } is relatively compact and its limit
points are initial values of solutions to inclusion (3.1) satisfying boundary value condition
(3.2).
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Proof Notice that by Theorem5 we have

¯

({

xhn
})

� m

({

xhn
})

,

implying, sincem < 1, that
 ({xhn }) = 0, and hence the sequence{xhn} is relatively compact.

Consider solutions� hn of inclusion (4.1) satisfying the boundary value condition

� hn (0) = Phn xhn .

Then the functions� hn = Qhn � hn are “xed points of the multivalued mapG(hn, ·), where

G : H × C([0,T ]; E) � C([0,T ]; E) is de“ned as

G(h, � ) =
{

y : y(t) = QhGh(t)� hn (0) +
∫ t

0
(t …s)q…1QhTh(t …s)fh(s) ds

}
,

wherefh � P �
QhFhPh

(� h) and, moreover,

� hn (0) � �
(
� hn

)
, (4.12)

which is equivalent to

� hn (0) � Phn �
(
Qhn � hn

)
.

From the properties of the MNC
 , estimates (3.12), (4.4) and (3.9)…(3.10), which are valid

for Gh andTh for all h � H, the next estimate follows:



({

� hn (t)
})

�
∫ t

0
(t …s)q…1Eq,q

(
…� (t …s)q)� µ � � 


(
� hn (s)

)
ds.

Applying Lemma2, we get



({

� hn (t)
})

� 0, t � [0,T ]. (4.13)

Let us show now that the functions{� hn } are equicontinuous on the interval [0,T ]. By (2)

of Lemma3 the functions {G(·)xhn} are equicontinuous. Applying property (4.8) and the

compactness of the sequence{xhn}, we conclude that the functions{QhnGhn(·)Phn xhn } are

equicontinuous.

It means that now it is su�cient to show the equicontinuity of the functions{vhn} given

by the equalities

vhn (t) =
∫ t

0
(t …s)q…1QhnThn (t …s)Phn fhn (s) ds, (4.14)

wherefhn � P �
Qhn Fhn Phn

(� hn ).

By (4.13) we have



({

fhn (s)
})

= 0 a.e.s � [0,T ]. (4.15)
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From condition (F3) applied toFhn , we get the uniform boundedness estimate

� fhn � L� � C,

whereC > 0 is a certain constant.

Now, for a given� > 0 choosed > 0 such that

Cdq

� (1 + q)
< � .

Then

∥
∥∥
∥

∫ t

t…d
(t …s)q…1QhnThn (t …s)Phn fhn (s) ds

∥
∥∥
∥ < � .

It remains to demonstrate only the equicontinuity of the functions{whn } de“ned for t > d
as

whn (t) =
∫ t…d

0
(t …s)q…1QhnThn (t …s)Phn fhn (s) ds.

By Theorem 4.2.5 of [18], for a given 0 <� < T there exist a measurable subsetm� � [0,T …

� ], meas(m� ) < � , and a compact setK� � E such that

fhn (s) � W� (K� ) a.e.s � [0,T …� ] \ m� ,

whereW� denotes the� -neighborhood of the setK� . But then

whn (t) =
∫

[0,t…d]
 m�

(t …s)q…1QhnThn (t …s)Phn fhn (s) ds

+
∫

[0,t…d]\ m�

(t …s)q…1QhnThn (t …s)Phn fhn (s) ds.

Notice that the “rst term in this sum may be estimated in norm by the value

dq…1C
� (1 + q)

� ,

which can be made less than� under an appropriate choice of� .

To demonstrate the equicontinuity of the second term with respect tohn notice that, by

(4.9), for anyt1,t2 � [0,T ], t1 < t2, t2 …t1 < � we will have

∥
∥(t2 …s)q…1QhnThn (t2 …s)Phn fhn (s) … (t1 …s)q…1QhnThn (t1 …s)Phn fhn (s)

∥
∥ < � ,

provided � is su�ciently small. Therefore

∫

[0,t1…d]\ m�

∥
∥(t2 …s)q…1QhnThn (t2 …s)Phn fhn (s) … (t1 …s)q…1QhnThn (t1 …s)Phn fhn (s)

∥
∥ds

< � (t1 …d) < � T .
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At last,

∫ t2…d

t1…d

∥
∥(t2 …s)q…1QhnThn (t2 …s)Phn fhn (s)

∥
∥ds �

C
q

(
dq … (d …� )q) < � ,

provided � > 0 is taken su�ciently small.
So, the sequence{� hn } is relatively compact inC([0,T ]; E). We will assume, w.l.o.g., that

� hn � � 0.
Now, let a subsequence of{xhn }, denoted as the whole sequence, converge tox0. We will

show that� 0 is a solution of inclusion (3.1) with the initial condition

� 0(0) = x0. (4.16)

In fact, from assumption (H2) it follows that for selectorsfhn of the superposition multival-
ued opeatorP �

Qhn Fhn Phn
(� hn ) relation (4.15) is true. This means that the sequence{fhn } sat-

is“es the Diestel condition (see [8]) and hence it is weakly compact inL1((0,T);E). With-
out loss of generality, we assume thatfhn � f0. Then, applying standard reasonings based
on the Mazur lemma (see, e.g., [18]), one can come to the conclusion that there exists a
sequence of convex combinations of functionsfhn ,

f̃i =
�∑

n=i

 infhn ,

which converges a.e. on (0,T) to a function f̃0 such that

f̃0(t) � F
(
� 0(t)

)
a.e.t � [0,T ].

Applying the Lebesgue convergence theorem and properties (4.8)…(4.9), we can pass to
the limit as n � � in the equality

� hn (t) = QhnGhn (t)Phn xhn +
∫ t

0
(t …s)q…1QhnThn (t …s)Phn fhn (s) ds

and obtain

� 0(t) = G(t)x0 +
∫ t

0
(t …s)q…1T (t …s)̃f0(s) ds,

proving that the function � 0 is a solution of (3.1) with the initial condition ( 4.16). Passing
to the limit in inclusion (4.12), we get

� 0(0) = x0 � �
(
� 0),

which concludes the proof. �
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