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Abstract
We study a semilinear fractional order differential inclusion in a separable Banach
space E of the form

CDqx(t) ∈ Ax(t) + F(t, x(t)), t ∈ [0, T ],

where CDq is the Caputo fractional derivative of order 0 < q < 1, A : D(A) ⊂ E → E is a
generator of a C0-semigroup, and F : [0, T ]× E � E is a nonlinear multivalued map. By
using the method of the generalized translation multivalued operator and a fixed
point theorem for condensing multivalued maps, we prove the existence of a mild
solution to this inclusion satisfying the nonlocal boundary value condition:

x(0) ∈ �(x),

where� : C([0, T ]; E) � E is a given multivalued map. The semidiscretization scheme
is developed and applied to the approximation of solutions to the considered
nonlocal boundary value problem.
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1 Introduction
In the last years, the theory of differential equations and inclusions of fractional order at-
tracted the attention of a large number of researchers. To a large extent, this is caused by
its interesting applications in physics, enginery, biology, economics, and other sciences
(see, e.g., monographs [1, 4, 9, 13, 22, 26, 28, 29, 31, 35], and the references therein). It is
worth noting, in this connection, that one of the most important advantages of fractional
order models in comparison with those of integer order is that a fractional order deriva-
tive of a function depends on its past values and hence becomes a powerful tool for the
description of memory and hereditary properties of some media. A particular advantage
of such an approach appears in the investigation of nonlocal boundary value problems,
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that is, in the association with the differential equation or inclusion of that type an initial
condition depending on the behavior of the whole solution.

In the present paper, for a semilinear fractional order differential inclusion in a separable
Banach space E of the form

CDqx(t) ∈ Ax(t) + F
(
t, x(t)

)
, t ∈ [0, T], (1.1)

we consider the problem of existence and approximation of mild solutions to this inclusion
satisfying the following nonlocal boundary value condition:

x(0) ∈ �(x). (1.2)

Here CDq means the Caputo fractional derivative of order 0 < q < 1, A : D(A) ⊂ E → E is
a generator of a C0-semigroup, F : [0, T] × E � E is a nonlinear multivalued map, and
� : C([0, T]; E) � E is a given multivalued map.

The above boundary condition is fairly general and includes, besides obvious cases of the
Cauchy problem (�(x) ≡ x0 ∈ E), periodic (�(x) = x(T)), and antiperiodic (�(x) = –x(T))
problems, also the following particular cases:

(i) �(x) = 1
T

∫ T
0 x(t) dt (mean value condition);

(ii) �(x) =
∑n

i=1 αix(ti) + ξ , with ξ ∈ E, αi �= 0, ti ∈ [0, T], i = 1, . . . , n (multipoint discrete
mean condition);

(iii) �(x) ≡M, with M⊂ E being a prescribed set (the generalized Cauchy problem).
Among a large amount of papers dedicated to fractional-order equations and inclusions

in Banach spaces, let us mention [3, 5, 15–17, 20, 21, 23, 24, 27, 33, 34, 36], where vari-
ous existence results were obtained. In particular, in [5] a technique based on the weak
topology methods was used to study a semilinear fractional differential inclusion sub-
jected to a nonlocal initial condition. Notice that the results on the existence of solutions
to the Cauchy and the periodic problems for semilinear differential inclusions in a Banach
space were obtained in the authors’ papers [15, 17] by applying the methods of the the-
ory of condensing multivalued maps. In [16] and [25] the authors justified the scheme of
semidiscretization of the Cauchy problem for differential equations of the same type and
presented results on the approximation of solutions to this problem. Notice also that the
semidiscretization method for initial and periodic problems of ODEs in a Banach space
was studied in [6, 11, 12, 30, 32], among other works. In the present work, we develop and
extend the investigations in the same direction.

The structure of the paper is as follows. In the next section, we recall necessary no-
tions and facts from the theory of differential equations of fractional order, measures of
noncompactness and condensing maps. In the third section, we introduce the translation
multivalued operator along the trajectories of the problem under consideration and prove
that it is condensing with respect of the Hausdorff measure of noncompactness (Theo-
rem 3). Based on this result, we show that this multivalued operator has a fixed point
and therefore our problem has a solution (Theorem 4). In the last section, we develop the
semidiscretization scheme and apply it to justify the approximation of solutions to the
considered nonlocal boundary value problem (Theorem 6).



Kamenskii et al. Fixed Point Theory and Applications          (2019) 2019:2 Page 3 of 21

2 Preliminaries
2.1 Differential equations of fractional order
Recall some notions and definitions, which we will need in the sequel (details can be found,
e.g., in [22, 28, 29, 35]).

Let E be a real Banach space.

Definition 1 The Riemann–Liouville fractional derivative of order q ∈ (0, 1) of a contin-
uous function g : [0, a] → E is the function Dqg given by

Dqg(t) =
1

Γ (1 – q)
d
dt

∫ t

0
(t – s)–qg(s) ds,

provided the right-hand side of this equality is well defined.

Here Γ is the Euler gamma-function defined by

Γ (r) =
∫ ∞

0
sr–1e–s ds.

Definition 2 The Caputo fractional derivative of order q ∈ (0, 1) of a continuous function
g : [0, a] → E is the function CDqg defined by

CDqg(t) =
(
Dq(g(·) – g(0)

))
(t),

provided the right-hand side of this equality is well defined.

Definition 3 A function of the form

Eα,β (z) =
∞∑

n=0

zn

Γ (αn + β)
, α,β > 0, z ∈C,

is called the Mittag-Leffler function.

Denote Eq,1 by Eq. Notice that from the relations (see, e.g., [33])

Eq(–z) =
∫ ∞

0
ξq(θ )e–zθ dθ

and

Eq,q(–z) =
∫ ∞

0
qθξq(θ )e–zθ dθ ,

where

ξq(θ ) =
1
q
θ

–1– 1
q Ψq

(
θ–1/q), (2.1)

Ψq(θ ) =
1
π

∞∑

n=1

(–1)n–1θ–qn–1 Γ (nq + 1)
n!

sin(nπq), θ ∈ R+, (2.2)
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it follows that

Eq(τ ) > 0, Eq,q(τ ) > 0 for τ < 0. (2.3)

Consider a scalar Cauchy problem, i.e., an equation of the form

CDqx(t) = λx(t) + f (t), t ∈ [0, T], (2.4)

with the initial condition

x(0) = x0, (2.5)

where λ ∈R, f : [0, T] →R is a continuous function. By a solution of this problem we mean
a continuous function x : [0, T] →R satisfying condition (2.5) whose fractional derivative
CDqx is also continuous and satisfies equation (2.4). It is known (see [22], Example 4.9)
that the unique solution of this equation has the form

x(t) = Eq
(
λtq)x0 +

∫ t

0
(t – s)q–1Eq,q

(
λ(t – s)q)f (s) ds. (2.6)

2.2 Measures of noncompactness and condensing maps
Let E be a Banach space. Introduce the following notation:

• Pb(E) = {A ⊆ E : A �= ∅ is bounded};
• Pv(E) = {A ∈ Pb(E) : A is convex};
• K(E) = {A ∈ Pb(E) : A is compact};
• Kv(E) = Pv(E) ∩ K(E).

Definition 4 (see, e.g., [2, 18]) Let (A,≥) be a partially ordered set. A function β : Pb(E) →
A is called the measure of noncompactness (MNC) in E if for each Ω ∈ Pb(E) we have

β(coΩ) = β(Ω),

where coΩ denotes the closure of the convex hull of Ω .

A measure of noncompactness β is called:
(1) monotone if for each Ω0,Ω1 ∈ Pb(E), Ω0 ⊆ Ω1 implies β(Ω0) ≤ β(Ω1);
(2) nonsingular if for each a ∈ E and each Ω ∈ Pb(E), we have β({a} ∪ Ω) = β(Ω);

If A is a cone in a Banach space generating a partial order ≥, then the MNC β is called:
(3) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω ∈ Pb(E);
(4) real if A is the set of all real numbers R with the natural ordering;
(5) algebraically semiadditive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for every Ω0,Ω1 ∈ Pb(E).
As the example of a real MNC obeying all above properties, we can consider the Haus-

dorff MNC χ (Ω):

χ (Ω) = inf{ε > 0, for which Ω has a finite ε-net in E}.
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Notice that the Hausdorff MNC satisfies the semi-homogeneity condition, i.e.,

χ (λΩ) = |λ|χ (Ω),

for every λ ∈ R and Ω ∈ P(E). More generally, if L : E → E is a bounded linear operator
then

χ
(
L(Ω)

)
= ‖L‖χ (Ω)

for every Ω ∈ P(E) (see, e.g., [2]).
Recall that the norm of a set M ∈ Pb(E) is defined by the formula:

‖M‖ = sup
x∈M

‖x‖E .

Definition 5 (see, e.g., [7, 10, 18]) Let X be a metric space. A multivalued map F : X →
P(E) is called upper semicontinuous (u.s.c.) if

F–1(V ) =
{

x ∈ X : F (x) ⊂ V
}

is an open subset of X for each open set V ⊂ E ;

Definition 6 (see, e.g., [10, 18]) A multivalued map F : X → P(E) is said to be a Vietoris
multivalued map, provided there exists a metric space X ′ and a pair of continuous maps
t : X ′ → X and r : X ′ → E such that:

(i) t is proper, i.e., t–1(K) is compact for every compact K ⊂ X ;
(ii) for each x ∈ X the set t–1(x) is acyclic, i.e., it has the same homologies as a

one-point space;
(iii) F (x) = r(t–1(x)), ∀x ∈ X .

The class of Vietoris multivalued maps is sufficiently broad. To demonstrate this, recall
the following notions.

Definition 7 A metric space X is called contractible if there exist a point x0 ∈ X and a
continuous map (homotopy) h : [0, 1] × X → X such that h(0, x) = x and h(1, x) = x0 for all
x ∈ X.

It is obvious that convex and, more generally, star-shaped sets are contractible.

Definition 8 (see [14]) A compact metric space A is called an Rδ-set if there exists a de-
creasing sequence {An} of compact contractible sets such that

A =
⋂

n≥1

An.

Notice that an Rδ-set is acyclic, but need not be contractible (see an example in [10]).

Definition 9 Let X be a metric space, E a Banach space. A u.s.c. multivalued map F :
X → K(E) is called an Rδ-multivalued map if for every x ∈ X the set F (x) is Rδ .
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It is easy to see that an Rδ-multivalued map is a Vietoris map. In fact, as t and r we may
take natural projections from the graph ΓF ⊂ X × E

t : ΓF → X, r : ΓF → E .

Definition 10 A multivalued map F : X → K(E) is called an Rc
δ-multivalued map if

there exists metric spaces X0 = X, X1, . . . , Xk , Xk+1 = E and Rδ-multivalued maps Fi : Xi →
K(Xi+1), i = 0, . . . , k such that F may be represented as the composition:

F = Fk ◦ Fk–1 ◦ · · · ◦F0.

From Proposition 3.4.1(a) of [18] it follows that every Rc
δ-multivalued map is a Vietoris

map.
Then, by applying Corollary 3.4.3 in [18], we get the following fixed point theorem,

which we will need in the sequel.

Theorem 1 Let M be a convex, closed and bounded subset of a Banach space E , and
F : M → K(M) an Rc

δ-multivalued map which is (k,χ )-condensing for some 0 ≤ k < 1,
i.e.,

χ
(
F (Ω)

) ≤ kχ (Ω)

for every Ω ⊂M. Then there exists a point x∗ ∈M such that x∗ ∈F (x∗).

Recall some notions (see, e.g., [7, 18]). Let E be a Banach space.

Definition 11 For a given 1 ≤ p ≤ ∞, a multivalued function G : [0, τ ] → K(E) is called:
• Lp-integrable if it admits an Lp-Bochner integrable selection, i.e., there exists a function

g ∈ Lp((0, τ ); E) such that g(t) ∈ G(t) for a.e. t ∈ [0, τ ];
• Lp-integrably bounded if there exists a function ξ ∈ Lp((0, τ )) such that

∥∥G(t)
∥∥ ≤ ξ (t)

for a.e. t ∈ [0, τ ].

The set of all Lp-integrable selections of a multivalued function G : [0, τ ] → K(E) is de-
noted by Sp

G[0, τ ].

Definition 12 The integral of an Lp-integrable multivalued function G : [0, τ ] → K(E) is
defined by

∫ τ

0
G(s) ds =

{∫ τ

0
f (s) ds : f ∈ Sp

G[0, τ ]
}

.

In the sequel we will need the following important property on the χ -estimation of the
integral of a multivalued function.
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Lemma 1 (see Theorem 4.2.3 in [18]) Let E be a separable Banach space and G : [0, τ ] →
K(E) an integrable, integrably-bounded multivalued function such that

χ
(
G(t)

) ≤ v(t) for a.e. t ∈ [0, τ ],

where χ is the Hausdorff MNC in E and v(·) ∈ L1
+(0, τ ). Then

χ

(∫ τ

0
G(s) ds

)
≤

∫ τ

0
v(s) ds.

We will need the following auxiliary assertion which is an analogue of the known Gron-
wall lemma on integral inequalities.

Lemma 2 ([17], Lemma 13) Let a bounded measurable function ω : [0, T] →R satisfy the
integral inequality

ω(t) ≤ Eq
(
–ηtq)ω(0) +

∫ t

0
(t – s)q–1Eq,q

(
–η(t – s)q)(K + kω(s)

)
ds (2.7)

where K ≥ 0, 0 < k < η. Then

ω(t) ≤ Eq
(
(–η + k)tq)ω(0) + K

∫ t

0
(t – s)qEq,q

(
(–η + k)(t – s)q)ds.

3 Existence result
For a semilinear fractional order differential inclusion in a separable Banach space E of the
form

CDqx(t) ∈ Ax(t) + F
(
t, x(t)

)
, t ∈ [0, T], (3.1)

consider the problem of existence of mild solutions to this inclusion satisfying the follow-
ing boundary value condition:

x(0) ∈ �(x) (3.2)

under the following basic assumptions.
As earlier, the symbol CDqx denotes the Caputo fractional derivative of order q ∈ (0, 1).

Everywhere in the sequel we suppose that the linear operator A satisfies condition
(A) A : D(A) ⊆ E → E is a linear closed (not necessarily bounded) operator generating a

bounded C0-semigroup {U(t)}t≥0 of linear operators in E.
We will assume that a nonlinear multivalued map F : [0, T] × E → Kv(E) obeys the fol-

lowing conditions:
(F1) for each x ∈ E the multivalued function F(·, x) : [0, T] → Kv(E) admits a measurable

selection;
(F2) for a.e. t ∈ [0, T] the multivalued map F(t, ·) : E → Kv(E) is u.s.c.;
(F3) there exists a function α ∈ L∞

+ ([0, T]) such that

∥
∥F(t, x)

∥
∥

E ≤ α(t)
(
1 +

∥
∥x(t)

∥
∥

E

)
for a.e. t ∈ [0, T],
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(F4) there exists a function μ ∈ L∞([0, T]) such that for each bounded set Ω ⊂ E we
have

χ
(
F(t,Ω)

) ≤ μ(t)χ (Ω),

for a.e. t ∈ [0, T], where χ is the Hausdorff MNC in E.
We will assume that an Rc

δ-multivalued map � : C([0, T]; E) → K(E) obeys the following
conditions:

(�1) there exists a functional f : C([0, T];R) →R+ and a constant C ≥ 0 which is:
(i) sublinear in the sense that f(λ0ψ0 + λ1ψ1) ≤ λ0f(ψ0) + λ1f(ψ1), ∀λ0 ≥ 0,

λ1 ≥ 0, ψ0,ψ1 ∈ C([0, T];R);
(ii) monotone nondecreasing in the sense that ψ0,ψ1 ∈ C([0, T];R),

ψ0(t) ≤ ψ1(t), ∀t ∈ [0, T] implies f(ψ0) ≤ f(ψ1)
such that for all x ∈ C([0, T]; E)

∥∥�(x)
∥∥

E ≤ f
(∥∥x(·)∥∥E

)
+ C.

(�2) Let Ω ⊂ C([0, T]; E) be a nonempty bounded set and x a solution of scalar problem
(2.4)–(2.5) with λ = –η, η > 0 and x0 = χ (Ω(0)) such that

χ
(
Ω(t)

) ≤ x(t), ∀t ∈ [0, T].

Then

χ
(
�(Ω)

) ≤ f(x).

Remark 1 For the particular cases of the boundary conditions (i)–(iii) from the introduc-
tion section, the functional f has the form

(i) f(ϕ) = 1
T

∫ T
0 |ϕ(s)|ds;

(ii) f(ϕ) =
∑n

i=1 |αi||ϕ(ti)|, αi �= 0, ti ∈ [0, T], i = 1, . . . , n;
(iii) f(ϕ) = 0.

For a given x ∈ C([0, T]; E), consider the multivalued function

Φx : [0, T] → Kv(E), Φx(t) = F
(
t, x(t)

)
.

From the above conditions (F1)–(F3) it follows (see, e.g., [18], Theorem 1.3.5) that the
multivalued function Φx is Lp-integrable for each p ≥ 1.

To solve our problem, we will use the superposition multivalued operator P∞
F :

C([0, T]; E) � L∞([0, T]; E) defined by

P∞
F (x) = S∞

Φx .

Definition 13 (see, e.g., [15]) A mild solution to the Cauchy problem for inclusion (3.1)
with initial condition

x(0) = x0 ∈ E (3.3)
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on an interval [0, T] is a function x ∈ C([0, T]; E) which can be represented as

x(t) = G(t)x0 +
∫ t

0
(t – s)q–1T (t – s)φ(s) ds, t ∈ [0, T], (3.4)

where φ ∈P∞
F (x),

G(t) =
∫ ∞

0
ξq(θ )U

(
tqθ

)
dθ ,

T (t) = q
∫ ∞

0
θξq(θ )U

(
tqθ

)
dθ ,

and the function ξq(θ ) is defined by (2.1)–(2.2).

Remark 2 (see, e.g. [34, 35]) ξq(θ ) ≥ 0,
∫ ∞

0 ξq(θ ) dθ = 1,
∫ ∞

0 θξq(θ ) dθ = 1
Γ (q+1) .

Lemma 3 (see [34, 35]) The operator functions G and T possess the following properties:
(1) for each t ∈ [0, T], G(t) and T (t) are linear bounded operators, more precisely, for

each x ∈ E we have

∥
∥G(t)x

∥
∥

E ≤ M‖x‖E , (3.5)
∥∥T (t)x

∥∥
E ≤ qM

Γ (1 + q)
‖x‖E , (3.6)

where

M = sup
t≥0

∥∥U(t)
∥∥.

(2) the operator functions G(·) and T (·) are strongly continuous, i.e., functions
t ∈ [0, T] → G(t)x and t ∈ [0, T] → T (t)x are continuous for each x ∈ E.

Remark 3 Comparing formula (3.4) of a mild solution with (2.6), we get in a scalar case
with η > 0:

Eq
(
–ηtq) = G(t), Eq,q

(
–ηtq) = T (t), t ∈ [0, T].

Then, taking into account that in this case U(t) = e–ηt , from (3.5) and (3.6) we have the
following estimates:

Eq
(
–ηtq) ≤ 1, t ∈ [0, T], (3.7)

Eq,q
(
–ηtq) ≤ q

Γ (1 + q)
, t ∈ [0, T]. (3.8)

By the symbol ΣF
x0 we will denote the set of all mild solutions to the Cauchy problem

(3.1), (3.3) on the interval [0, T].
From the results of [15, 17] about the existence and topological structure of solutions to

the Cauchy problem (3.1) and (3.3), the next assertion follows.
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Theorem 2 Under conditions (A), (F1)–(F4), the solution set ΣF
x0 is an Rδ-set and, more-

over, the multivalued map Σ : E → C([0, T]; E), defined as

Σ(x) = ΣF
x ,

is u.s.c. and hence an Rδ-multivalued map.

Now we will consider the translation multivalued operator Θ : D ⊆ E � E along the
trajectories of problem (3.1)–(3.2) defined as Θ = � ◦ Σ , where D ⊂ E is an open subset.
It is clear that Θ is an Rc

δ-multivalued map.

Theorem 3 Under assumptions (A), (F1)–(F4), suppose additionally that
(A1) the semigroup U is exponentially decreasing in the sense that

∥∥U(t)
∥∥ ≤ e–ηt , t ≥ 0

for some η > ‖μ‖∞, where μ(·) is the function from condition (F4).
If

k := f(ξ ) < 1,

where ξ (t) = Eq((–η + ‖μ‖∞)tq), then the translation multivalued operator Θ is (k,χ )-
condensing with respect to the Hausdorff MNC χ in E.

Proof Let Ω ⊂ D is a nonempty bounded set. For 0 ≤ t ≤ T consider the set

Σ(Ω)(t) =
{

v(t) : v ∈ ΣF
x [0, T], x ∈ Ω

}
.

It is clear that Σ(Ω)(0) = Ω and

Σ(Ω)(t) ⊆ G(t)Ω +
∫ t

0
(t – s)q–1T (t – s)F

(
s,Σ(Ω)(s)

)
ds, 0 ≤ t ≤ T ,

from where, by using property (F3), we get for 0 ≤ t ≤ T :

∥∥�(�)(t)
∥∥ ≤ ∥∥G(t)

∥∥‖�‖ +
∫ t

0
(ts)q–1∥∥T (t – s)

∥∥∥∥F
(
s,�(�)(s)

)∥∥ds

≤ ∥
∥G(t)

∥
∥‖�‖ +

∫ t

0
α(s)(t – s)q–1∥∥T (t – s)

∥
∥(

1 +
∥
∥�

(
�)(s)

)∥∥ds.

By using the estimates (see [3])

∥
∥G(t)

∥
∥ ≤ Eq

(
–ηtq), (3.9)

∥
∥T (t)

∥
∥ ≤ Eq.q

(
–ηtq), (3.10)

we have
∥
∥Σ(Ω)(t)

∥
∥ ≤ Eq

(
–ηtq)‖Ω‖

+
∫ t

0
α(s)(t – s)q–1Eq,q

(
–η(t – s)q)(1 +

∥
∥Σ(Ω)(s)

∥
∥)

ds. (3.11)
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Applying estimates (3.7)–(3.8), we get

∥∥Σ(Ω)(t)
∥∥ ≤ ‖Ω‖ +

q
Γ (1 + q)

∫ t

0
α(s)(t – s)q–1(1 +

∥∥Σ(Ω)(s)
∥∥)

ds,

from where, by using Gronwall inequality, we conclude that the set Σ(Ω) is bounded.
Then by Theorem 4.2.4 of [18] the function

t ∈ [0, T] → χ
(
Σ(Ω)(t)

)

is measurable.
Applying the properties of the MNC χ (see Sect. 2.2), we get the following estimates:

χ
(
Σ(Ω)(t)

) ≤ χ

(
G(t)Ω +

∫ t

0
(t – s)q–1T (t – s)F

(
s,Σ(Ω)(s)

)
ds

)

≤ ∥
∥G(t)

∥
∥χ (Ω) +

∫ t

0
(t – s)q–1∥∥T (t – s)

∥
∥‖μ‖∞χ

(
Σ(Ω)(s)

)
ds.

By using estimates (3.9)–(3.10), we obtain

χ
(
Σ(Ω)(t)

) ≤ Eq
(
–ηtq)χ

(
Σ(Ω)(0)

)

+
∫ t

0
(t – s)q–1Eq,q

(
–η(t – s)q)‖μ‖∞χ

(
Σ(Ω)(s)

)
ds.

Applying Lemma 2 with K = 0, we get

χ
(
Σ(Ω)(t)

) ≤ Eq
((

–η + ‖μ‖∞
)
tq)χ (Ω).

Now by using condition (�2) and denoting ξ (t) = Eq((–η + ‖μ‖∞)tq), we obtain

χ
(
� ◦ �(�)

) ≤ f
(
ξχ (�)

) ≤ f(ξ )χ (�) = kχ (�)

giving the claim. �

Now we are in position to prove the main result of this section.

Theorem 4 Under conditions (A), (A1), and (F1)–(F4), let

η > λ,

where η is the constant from condition (A1) and λ = max{‖μ‖∞,‖α‖∞} with functions α(·)
and μ(·) from conditions (F3) and (F4), respectively. If

k := f(ξ ) < 1, (3.12)

where ξ (t) = Eq((–η + λ)tq), then problem (3.1)–(3.2) has a solution.
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Proof For an arbitrary x0 ∈ E, take a function x ∈ ΣF
x0 . Then for every t ∈ [0, T] we have

x(t) ∈ G(t)x0 +
∫ t

0
(t – s)q–1T (t – s)F

(
s,ΣF

x0 (s)
)

ds.

Consider a continuous function ρ : [0, T] →R given as

ρ(t) =
∥∥ΣF

x0 (t)
∥∥

E .

Then we have the following estimates:

ρ(t) ≤
∥∥
∥∥G(t)x0 +

∫ t

0
(t – s)q–1T (t – s)F

(
s,ΣF

x0 (s)
)

ds
∥∥
∥∥

E

≤ ∥∥G(t)
∥∥‖x0‖E +

∫ t

0
(t – s)q–1∥∥T (t – s)

∥∥‖α‖∞
(
1 + ρ(s)

)
ds.

Applying estimates (3.9)–(3.10), we get

ρ(t) ≤ Eq
(
–ηtq)ρ(0) +

∫ t

0
(t – s)q–1Eq,q

(
–η(t – s)q)‖α‖∞

(
1 + ρ(s)

)
ds.

By using Lemma 2, we obtain

ρ(t) ≤ Eq
(
(–η + λ)tq)ρ(0) + ‖α‖∞

∫ t

0
(t – s)q–1Eq,q

(
(–η + λ)(t – s)q)ds

= ‖x0‖EEq
(
(–η + λ)tq) + C,

where

C = ‖α‖∞
∫ t

0
(t – s)q–1Eq,q

(
(–η + λ)(t – s)q)ds

is a constant.
Let b(t) = ‖x0‖EEq((–η + λ)tq) + C .
Now, by using condition (�1), we have

∥∥�(x)
∥∥

E ≤ f
(∥∥x(·)∥∥E

)
+ C ≤ f(ρ) + C ≤ f

(
b(·)) + C ≤ ‖x0‖Ef(ξ ) + f(C) + C.

So, if we take

R ≥ f(C) + C
1 – f(ξ )

, (3.13)

then ‖x0‖E ≤ R obviously implies �(x) ≤ R.
This means that the translation multivalued operator Θ transforms the ball BR(0) ⊂ E

into itself, and hence, by Theorem 1, it has a fixed point x∗ ∈ BR(0). Therefore there exists
a function x̃(·) ∈ ΣF

x∗ such that

x̃(0) ∈ �(̃x). �
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4 Approximation of solutions
In this section we will apply a semidiscretization scheme for the approximation of solu-
tions to problem (3.1)–(3.2).

Along with inclusion (3.1), for a given sequence of positive numbers {hn} converging to
zero, consider the inclusions

Dqxh(t) ∈ Ahxh(t) + Fh
(
t, xh(t)

)
, t ∈ [0, T], (4.1)

where h ∈ H = {hn} is the semidiscretization parameter, Ah : D(Ah) ⊂ Eh → Eh are closed
linear operators in Banach spaces Eh generating bounded C0-semigroups {Uh(t)}t≥0. We
assume E0 = E, A0 = A, F0 = F and suppose that multivalued maps Fh : [0, T]×Eh → Kv(Eh)
satisfy conditions of type (F1)–(F4) for each h ∈ H with the functions α and μ not depend-
ing on h.

We suppose that for each h ∈ H there exist linear operators Qh : Eh → E, Q0 = I , and
Ph : E → Eh, P0 = I such that

PhQh = Ih, (4.2)

where Ih is the identity on Eh and

QhPhx → x (4.3)

as h → 0 for each x ∈ E. We suppose that the operators Ph and Qh are uniformly bounded

‖Ph‖ ≤ 1, ‖Qh‖ ≤ 1 (4.4)

for all h ∈ H .
The nonlocal boundary value condition for inclusion (4.1) will be considered of the fol-

lowing form:

xh(0) ∈ Ph�
(
Qhxh(·)). (4.5)

For inclusion (4.1), besides condition (4.5), we will need the initial condition of the form

xh(0) = yh
0, (4.6)

where yh
0 ∈ Eh. The set of mild solutions to problem (4.1), (4.6) in the space C([0, T]; Eh)

will be denoted as Σ
Fh
yh

0
.

Consider the integral equation

xh(t) = Gh(t)xh(0) +
∫ t

0
(t – s)q–1Th(t – s)fh(s) ds, t ∈ [0, T], (4.7)

where fh ∈ P∞
Fh

(xh) and the operator functions Gh and Th are defined similarly as in Defi-
nition 13:

Gh(t) =
∫ ∞

0
ξq(θ )Uh

(
tqθ

)
dθ , Th(t) = q

∫ ∞

0
θξq(θ )Uh

(
tqθ

)
dθ .
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Notice that a function xh ∈ C([0, T]; Eh) is a solution of Eq. (4.7) if and only if it is a mild
solution of problem (4.1), (4.6) with yh

0 = xh(0).
We will assume that
(H1) for each x ∈ E,

QhUh(t)Phx → U(t)x

as h → 0 uniformly in t ∈ [0, T];
(H2) there exists k > 0 such that

χE

(⋃

h∈H

QhFh
(
t, Ph(Ω)

)
)

≤ kχE(Ω)

for each t ∈ [0, T] and bounded Ω ⊂ E.
We suppose also that
(H3) the multivalued map (h, x) � QhFh(t, Phx) is u.s.c. for a.e. t ∈ [0, T].

Remark 4 Hypothesis (H1) may be equivalently formulated in terms of the strong conver-
gence of the resolvents in the following way:

Qh(Ah + λI)–1Phx → (A + λI)–1x, ∀x ∈ E.

This is an analogue of the Trotter–Kato theorem (see, e.g., [19], Chap. IX, Theorem 2.16
or [25], Theorem 2.6).

In the sequel we will need the following assertion.

Lemma 4 ([16], Lemma 2) For each x ∈ E, we have the following relations:

QhGh(t)Phx → G(t)x, (4.8)

QhTh(t)Phx → T (t)x, (4.9)

as h → 0 uniformly in t ∈ [0, T].

Consider the multivalued map G : H ×C([0, T]; E) � C([0, T]; E) defined by the equality

G(h, x)(t) =
{

y : y(t) = QhGh(t)Phx(0) +
∫ t

0
(t – s)q–1QhTh(t – s)fh(s) ds

}
, (4.10)

with fh ∈P∞
Fh

(Phx).
Notice that solutions xh of inclusion (4.1) and fixed points of G(h, ·) are connected in

the following way: if x ∈ C([0, T]; E) is a fixed point of the multivalued map G(h, ·) then
the function xh ∈ C([0, T]; Eh) defined by the formula

xh = Phx

is the solution of equation (4.7) and, hence of problem (4.1), (4.6) with y0 = Phx(0). Con-
versely, if xh is a solution of equation (4.7) and hence of problem (4.1), (4.6) with yh

0 = xh(0)
then Qhxh is a fixed point of the multivalued map G(h, ·).
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Under above conditions, for each h ∈ H , there exists the translation multivalued opera-
tor Θh : Dh ⊂ Eh � Eh along the trajectories of (4.1)–(4.5) defined as

Θh(x) =
{

z ∈ Ph�
(
Qhxh(·)) : xh ∈ Σ

Fh
Phx

}
,

where Dh ⊂ Eh is an open subset.
Consider the family of multivalued maps Γ : H × E → E

Γ (h, x) = QhΘ
hPhx, x ∈ E.

Theorem 5 Under the above conditions, suppose additionally that
(A1h) the semigroups Uh are exponentially decreasing in the sense that

∥
∥Uh(t)

∥
∥ ≤ e–ηt , t ≥ 0

for some η > k, where k is the constant from condition (H2).
If

m := f(ζ ) < 1,

where ζ (t) = Eq((–η + k)tq), then the family Γ is (m,χE)-condensing in the sense that for
every nonempty bounded set Ω ⊂ E we have

χE
(
Γ (H × Ω)

) ≤ mχE(Ω). (4.11)

Proof Let Ω ⊂ E be a nonempty bounded set.
For h ∈ H and 0 ≤ t ≤ T consider the set

Σh(Ω)(t) =
{

y(t) : y ∈ Σ
Fh
xh , xh = Phx, x ∈ Ω

}
.

It is clear that QhΣh(Ω)(0) = QhPh(Ω) and for each 0 ≤ t ≤ T we have

⋃

h∈H

QhΣh(Ω)(t) ⊆
⋃

h∈H

(
QhGh(t)PhΩ +

∫ t

0
(t – s)q–1QhTh(t – s)Fh

(
s, Ph(Ω)(s)

)
ds

)
.

Similarly to what was done while proving Theorem 3, one can show that the set
⋃

h∈H QhΣh(Ω)[0, T] ⊂ C([0, T]; E) is bounded and then, by virtue of Theorem 4.2.4 of
[18], the function

t ∈ [0, T] → χ

(⋃

h∈H

QhΣh(Ω)(t)
)

is measurable and evidently bounded.
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Applying the properties of the MNC χ (see Sect. 2) and (H2), (4.4) we get the following
estimates:

χ

(⋃

h∈H

QhΣh(Ω)(t)
)

≤ χ

(⋃

h∈H

(
QhGh(t)PhΩ +

∫ t

0
(t – s)q–1QhTh(t – s)PhQhFh

(
s, PhQhΣh(Ω)(s)

)
ds

))

≤ sup
h∈H

(

‖Qh‖
∥
∥Gh(t)

∥
∥‖Ph‖χ (�)

+
∫ t

0
(t – s)q–1‖Qh‖

∥∥Th(t – s)
∥∥‖Ph‖χ

(
⋃

h∈H

QhFh
(
s, PhQh�h(�)(s)

)
)

ds

)

≤ sup
h∈H

(∥
∥Gh(t)

∥
∥χ (Ω) +

∫ t

0
(t – s)q–1∥∥Th(t – s)

∥
∥kχ

(⋃

h∈H

QhΣh(Ω)(s)
)

ds
)

.

Applying estimates (3.9)–(3.10), we have

χ

(⋃

h∈H

QhΣh(Ω)(t)
)

≤ Eq
(
–ηtq)χ

(⋃

h∈H

QhPhΣh(Ω)(0)
)

+
∫ t

0
(t – s)q–1Eq,q

(
–η(t – s)q)kχ

(⋃

h∈H

QhΣh(Ω)(s)
)

ds.

By using Lemma 2 with K = 0, we get

χ

(⋃

h∈H

QhΣh(Ω)(t)
)

≤ Eq
(
(–η + m)tq)χ (Ω).

Applying condition (�2), we have

χ
(
Γ (H × Ω)

)
= χ

(⋃

h∈H

�QhΣh(Ω)
)

≤ f(ζ )χ (Ω) = mχ (Ω). �

Consider now fixed points

xh ∈ Γ
(
h, xh)

of the multivalued map Γ (h, x) in the ball BR(0), where R satisfies inequality (3.13). Notice
that then the points Phxh will be initial values for solutions of the approximate problems
(4.1), (4.6) (with yh

0 = Phxh). Consider a sequence {xhn} with hn → 0.

Theorem 6 Under condition (3.12), the sequence {xhn} is relatively compact and its limit
points are initial values of solutions to inclusion (3.1) satisfying boundary value condition
(3.2).
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Proof Notice that by Theorem 5 we have

¯χ
({

xhn
}) ≤ mχ

({
xhn

})
,

implying, since m < 1, that χ ({xhn}) = 0, and hence the sequence {xhn} is relatively compact.
Consider solutions κhn of inclusion (4.1) satisfying the boundary value condition

κhn (0) = Phn xhn .

Then the functions νhn = Qhnκ
hn are fixed points of the multivalued map G(hn, ·), where

G : H × C([0, T]; E) � C([0, T]; E) is defined as

G(h,ν) =
{

y : y(t) = QhGh(t)κhn (0) +
∫ t

0
(t – s)q–1QhTh(t – s)fh(s) ds

}
,

where fh ∈P∞
QhFhPh

(νh) and, moreover,

νhn (0) ∈ �
(
νhn

)
, (4.12)

which is equivalent to

κhn (0) ∈ Phn�
(
Qhnκ

hn
)
.

From the properties of the MNC χ , estimates (3.12), (4.4) and (3.9)–(3.10), which are valid
for Gh and Th for all h ∈ H , the next estimate follows:

χ
({

νhn (t)
}) ≤

∫ t

0
(t – s)q–1Eq,q

(
–η(t – s)q)‖μ‖∞χ

(
νhn (s)

)
ds.

Applying Lemma 2, we get

χ
({

νhn (t)
}) ≡ 0, t ∈ [0, T]. (4.13)

Let us show now that the functions {νhn} are equicontinuous on the interval [0, T]. By (2)
of Lemma 3 the functions {G(·)xhn} are equicontinuous. Applying property (4.8) and the
compactness of the sequence {xhn}, we conclude that the functions {QhnGhn(·)Phn xhn} are
equicontinuous.

It means that now it is sufficient to show the equicontinuity of the functions {vhn} given
by the equalities

vhn (t) =
∫ t

0
(t – s)q–1QhnThn (t – s)Phn fhn (s) ds, (4.14)

where fhn ∈P∞
Qhn Fhn Phn

(νhn ).
By (4.13) we have

χ
({

fhn (s)
})

= 0 a.e. s ∈ [0, T]. (4.15)
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From condition (F3) applied to Fhn , we get the uniform boundedness estimate

‖fhn‖L∞ ≤ C,

where C > 0 is a certain constant.
Now, for a given ε > 0 choose d > 0 such that

Cdq

Γ (1 + q)
< ε.

Then
∥
∥∥
∥

∫ t

t–d
(t – s)q–1QhnThn (t – s)Phn fhn (s) ds

∥
∥∥
∥ < ε.

It remains to demonstrate only the equicontinuity of the functions {whn} defined for t > d
as

whn (t) =
∫ t–d

0
(t – s)q–1QhnThn (t – s)Phn fhn (s) ds.

By Theorem 4.2.5 of [18], for a given 0 < δ < T there exist a measurable subset mδ ⊂ [0, T –
δ], meas(mδ) < δ, and a compact set Kδ ⊂ E such that

fhn (s) ∈ Wδ(Kδ) a.e. s ∈ [0, T – δ] \ mδ ,

where Wδ denotes the δ-neighborhood of the set Kδ . But then

whn (t) =
∫

[0,t–d]∩mδ

(t – s)q–1QhnThn (t – s)Phn fhn (s) ds

+
∫

[0,t–d]\mδ

(t – s)q–1QhnThn (t – s)Phn fhn (s) ds.

Notice that the first term in this sum may be estimated in norm by the value

dq–1C
Γ (1 + q)

δ,

which can be made less than ε under an appropriate choice of δ.
To demonstrate the equicontinuity of the second term with respect to hn notice that, by

(4.9), for any t1, t2 ∈ [0, T], t1 < t2, t2 – t1 < γ we will have

∥
∥(t2 – s)q–1QhnThn (t2 – s)Phn fhn (s) – (t1 – s)q–1QhnThn (t1 – s)Phn fhn (s)

∥
∥ < ε,

provided γ is sufficiently small. Therefore

∫

[0,t1–d]\mδ

∥
∥(t2 – s)q–1QhnThn (t2 – s)Phn fhn (s) – (t1 – s)q–1QhnThn (t1 – s)Phn fhn (s)

∥
∥ds

< ε(t1 – d) < εT .
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At last,

∫ t2–d

t1–d

∥
∥(t2 – s)q–1QhnThn (t2 – s)Phn fhn (s)

∥
∥ds ≤ C

q
(
dq – (d – γ )q) < ε,

provided γ > 0 is taken sufficiently small.
So, the sequence {νhn} is relatively compact in C([0, T]; E). We will assume, w.l.o.g., that

νhn → ν0.
Now, let a subsequence of {xhn}, denoted as the whole sequence, converge to x0. We will

show that ν0 is a solution of inclusion (3.1) with the initial condition

ν0(0) = x0. (4.16)

In fact, from assumption (H2) it follows that for selectors fhn of the superposition multival-
ued opeator P∞

Qhn Fhn Phn
(νhn ) relation (4.15) is true. This means that the sequence {fhn} sat-

isfies the Diestel condition (see [8]) and hence it is weakly compact in L1((0, T); E). With-
out loss of generality, we assume that fhn ⇀ f0. Then, applying standard reasonings based
on the Mazur lemma (see, e.g., [18]), one can come to the conclusion that there exists a
sequence of convex combinations of functions fhn ,

f̃i =
∞∑

n=i

εinfhn ,

which converges a.e. on (0, T) to a function f̃0 such that

f̃0(t) ∈ F
(
ν0(t)

)
a.e. t ∈ [0, T].

Applying the Lebesgue convergence theorem and properties (4.8)–(4.9), we can pass to
the limit as n → ∞ in the equality

νhn (t) = QhnGhn (t)Phn xhn +
∫ t

0
(t – s)q–1QhnThn (t – s)Phn fhn (s) ds

and obtain

ν0(t) = G(t)x0 +
∫ t

0
(t – s)q–1T (t – s)̃f0(s) ds,

proving that the function ν0 is a solution of (3.1) with the initial condition (4.16). Passing
to the limit in inclusion (4.12), we get

ν0(0) = x0 ∈ �
(
ν0),

which concludes the proof. �
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