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Abstract
In this paper, we begin with some observations on F-contractions. Thereafter, we
introduce the notion of (F,R)g-contractions and utilize the same to prove some
coincidence and common fixed point results in the setting of metric spaces endowed
with binary relations. An example is also given to exhibit the utility of our results. We
also deduce some consequences in the setting of ordered metric spaces. As an
application, we investigate the existence and uniqueness of a solution of integral
equation of Volterra type.
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1 Introduction and preliminaries
The celebrated principle, namely Banach contraction principle, is one of the pivotal re-
sults of nonlinear analysis. It establishes that, given a complete metric space (M, d) and a
self-mapping T on M, if there exists h ∈ (0, 1) such that d(Tx, Ty) ≤ hd(x, y) for all x, y ∈ M,
then T has a unique fixed point z in M. Moreover, limn→∞ Tnx = z for all x ∈ M, where
Tn (n ≥ 1) is the n-times composition of T . This principle is a very popular tool for guar-
anteeing the existence and uniqueness of solutions for considerable problems arising in
several branches of mathematics. Banach contraction has been extended and generalized
in many directions (see [16, 18, 20, 23, 25, 28, 31, 36, 37] and the references therein). In
this respect, Ran and Reurings [31] and Nieto and Rodriguez–Lopez [25, 26] extended
the Banach contraction principle in a very interesting way by showing that if the metric
space is endowed with an ordered binary relation, then it is enough to assume that the
contraction condition holds only for those comparable elements. Recently, this branch of
fixed point theory has been developed through many research works (e.g., Bhaskar and
Lakshmikantham [5], Ben-El-Mechaiekh [4], Samet and Turinici [33], and Imdad et al. [3,
11, 13–15, 19, 24]). Here it can be pointed out that the first result concerning coincidence
point was reported in Machuca [22], which was further improved by Goebel [10], while
Jungck [17] proved the first ever common fixed point theorem in 1976.

On the other hand, several authors, such as Boyd and Wong [6], Browder [7], Wardowski
[37], Jleli and Samet [16], and several others, generalized the Banach contraction principle
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by employing various types of control functions. In this regard, Wardowski [37] in 2012
introduced the notion of F-contractions as follows.

Definition 1.1 ([37]) Let F be a family of all functions F : (0,∞) → R which satisfy the
following conditions:

(F1) F is strictly increasing;
(F2) For every sequence {βn} ⊂ (0,∞),

lim
n→∞βn = 0 if and only if lim

n→∞ F(βn) = –∞;

(F3) There exists k ∈ (0, 1) such that limβ→0+ βkF(β) = 0.
Throughout this work, the family of all continuous functions which satisfy (F2) is denoted
by F .

Example 1.1 (see [15, 27, 37]) The following functions F : (0,∞) →R belong to F :
(i) F(β) = lnβ ;

(ii) F(β) = β – 1
β

;
(iii) F(β) = ln( β

3 + sinβ).

Definition 1.2 ([37]) Let (M, d) be a metric space. A mapping T : M → M is said to be an
F-contraction if there exist τ > 0 and F ∈ F such that

[
d(Tx, Ty) > 0

]
implies

[
τ + F

(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)]
for all x, y ∈ M.

Theorem 1.1 ([37]) Every F-contraction mapping T defined on a complete metric space
(M, d) has a unique fixed point (say z). Moreover, for any x ∈ M, the sequence {Tnx} con-
verges to z.

It was remarked that (see [37]) the monotonicity of F implies that every F-contraction
mapping is contractive and hence continuous. Secelean [35] observed that the continuity
of an F-contraction can be obtained from condition (F2). In view of these observations,
the proof of Theorem 1.1 can be done without condition (F1). Piri and Kumam [27] re-
placed condition (F3) by assuming the continuity of F and proved a theorem, analogous to
Wardowski’s, which can also be proved without condition (F1). Durmaz et al. [9] proved
order-theoretic fixed point results using F-contraction. Sawangsup et al. [34] introduced
the notion of FR-contraction and utilized the same to prove some relation-theoretic fixed
point results. Imdad et al. [15] introduced the notion of (F ,R)-contraction as follows.

Definition 1.3 ([15]) Let (M, d) be a metric space andR be a binary relation on M. A map-
ping T : M → M is said to be an (F ,R)-contraction if there exist τ > 0 and F ∈F such that

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
for all x, y ∈ M with xR�y and TxR�Ty, (1.1)

where xR�y means (x, y) ∈R and x �= y.

Under some suitable assumptions (see [15]) Imdad et al. proved that every (F ,R)-
contraction mapping possesses a unique fixed point.
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On the other hand, Wardowski and Dung [38] used the same class of auxiliary functions
given in Definition 1.1 to introduce the notion of F-weak contractions as follows.

Definition 1.4 ([38]) Let (M, d) be a metric space. A mapping T : M → M is said to be an
F-weak contraction if there exist τ > 0 and F ∈ F such that (for all x, y ∈ M)

d(Tx, Ty) > 0 implies τ + F
(
d(Tx, Ty)

) ≤ F
(
m(x, y)

)
,

where m(x, y) =: max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2 }.

Wardowski and Dung [38] proved the following theorem.

Theorem 1.2 Let (M, d) be a complete metric space and T : M → M be an F-weak con-
traction. If F or T is continuous, then

(a) T has a unique fixed point (say z ∈ M),
(b) limn→∞ Tnx = z for all x ∈ M.

We observe that Theorem 1.2 can survive without assumptions (F1) and (F3) besides
removing one way implication of assumption (F2).

For the sake of completeness, we collect here some basic definitions and fundamental
results needed in our subsequent discussions.

From now on, N is the set of natural numbers and N0 = {0} ∪ N. We write {xn} → x
whenever {xn} converges to x. In the sequel, M stands for a nonempty set and T , g : M →
M. For the sake of brevity, we write Tx instead of T(x).

A point x ∈ M is said to be:
• fixed point of T if Tx = x (Fix(T) denotes the set of all such points);
• coincidence point of (T , g) if Tx = gx (Coin(T , g) stands for the set of all such points);
• common fixed point of (T , g) if x = Tx = gx.
Recall that the pair (T , g) is commuting on M if Tgx = gTx for all x ∈ M and weakly

compatible if Tgx = gTx for all x ∈ Coin(T , g). The pair (T , g) is called compatible if
limn→∞ d(gTxn, Tgxn) = 0, whenever {xn} is a sequence in M such that limn→∞ gxn =
limn→∞ Txn. The mapping T is called g-continuous at a point x ∈ M if for all {xn} ⊆ M,
{gxn} → gx implies {Txn} → Tx.

In this paper, we introduce the notion of (F ,R)g -contractions and utilize the same to
prove some coincidence and common fixed point results in the setting of related metric
spaces. An example is given to exhibit the utility of our results. Some consequences in the
setting of ordered metric spaces are also obtained. Our results extend and generalize many
results of the existing literature (e.g., [1, 10, 17, 31, 37]). As an application, we investigate
the existence and uniqueness of a solution of integral equation of Volterra type. Finally,
we provide two examples to exhibit the utility of our application.

2 Relation theoretic notions and auxiliary results
A nonempty subset R of M × M is said to be a binary relation on M. Trivially, M × M is
a binary relation on M known as the universal relation. For simplicity, we will write xRy
whenever (x, y) ∈ R and write xR�y whenever xRy and x �= y. Observe that R� is also a
binary relation on M and R� ⊆R. The elements x and y of M are said to be R-comparable
if xRy or yRx, this is denoted by [x, y] ∈R.
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A binary relation R on M is said to be:
• reflexive if xRx for all x ∈ M;
• transitive if, for any x, y, z ∈ M, xRy and yRz imply xRz;
• antisymmetric if, for any x, y ∈ M, xRy and yRx imply x = y;
• preorder if it is reflexive and transitive;
• partial order if it is reflexive, transitive, and antisymmetric.
Let M be a nonempty set, R be a binary relation on M, and E ⊆ M. Then the restriction

of R to E is denoted by R|E and is defined by R∩ E2. The inverse of R is denoted by R–1

and is defined by R–1 = {(u, v) ∈ M × M : (v, u) ∈R} and Rs = R∪R–1.

Definition 2.1 ([1]) Let M be a nonempty set andR be a binary relation on M. A sequence
{xn} ⊆ M is said to be an R-preserving sequence if xnRxn+1 for all n ∈N0.

Definition 2.2 ([1]) Let M be a nonempty set and T : M → M. A binary relation R on M
is said to be T-closed if for all x, y ∈ M, xRy implies TxRTy.

Definition 2.3 ([2]) Let M be a nonempty set and T , g : M → M. A binary relation R on
M is said to be (T , g)-closed if for all x, y ∈ M, gxRgy implies TxRTy.

Definition 2.4 ([2]) Let (M, d) be a metric space and R be a binary relation on M. We say
that M is R-complete if every R-preserving Cauchy sequence in M converges to a limit
in M.

Remark 2.1 Every complete metric space is R-complete, whatever the binary relation R.
Particularly, under the universal relation, the notion of R-completeness coincides with
the usual completeness.

Definition 2.5 ([2]) Let (M, d) be a metric space,R be a binary relation on M, T : M → M,
and x ∈ M. We say that T is R-continuous at x if, for any R-preserving sequence {xn} ⊆ M
such that {xn} → x, we have {Txn} → Tx. Moreover, T is called R-continuous if it is R-
continuous at each point of M.

Remark 2.2 Every continuous mapping is R-continuous, whatever the binary relation R.
Particularly, under the universal relation, the notion of R-continuity coincides with the
usual continuity.

Definition 2.6 ([2]) Let (M, d) be a metric space, R be a binary relation on M, T , g : M →
M, and x ∈ M. We say that T is (g,R)-continuous at x if, for any sequence {xn} ⊆ M such
that {gxn} is R-preserving and {gxn} → gx, we have {Txn} → Tx. Moreover, T is called
(g,R)-continuous if it is (g,R)-continuous at each point of M.

Observe that on setting g = I , Definition 2.6 reduces to Definition 2.5.

Remark 2.3 Every g-continuous mapping is (g,R)-continuous, whatever the binary rela-
tion R. Particularly, under the universal relation, the notion of (g,R)-continuity coincides
with the usual g-continuity.
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Definition 2.7 ([2]) Let (M, d) be a metric space, R be a binary relation on M, and T , g :
M → M. We say that the pair (T , g) is R-compatible if for any sequence {xn} ⊆ M such
that {Txn} and {gxn} are R-preserving and limn→∞ gxn = limn→∞ Txn = x ∈ M, we have
limn→∞ d(gTxn, Tgxn) = 0.

Remark 2.4 Every compatible pair is R-compatible, whatever the binary relation R. Par-
ticularly, under the universal relation, the notion of R-compatibility coincides with the
usual compatibility.

Definition 2.8 ([1]) Let (M, d) be a metric space. A binary relation R on M is said to be
d-self-closed if for any R-preserving sequence {xn} ⊆ M such that {xn} → x, there exists a
subsequence {xnk } of {xn} such that [xnk , x] ∈R for all k ∈N0.

Definition 2.9 ([21]) For x, y ∈ X, a path of length p (p ∈ N) in R from x to y is a fi-
nite sequence {u0, u1, . . . , up} ⊆ X such that u0 = x, up = y and (ui, ui+1) ∈ R for each
i ∈ {0, 1, . . . , p – 1}.

Definition 2.10 ([2]) A subset E ⊆ X is said to be R-connected if, for each x, y ∈ E, there
exists a path in R from x to y.

The following lemmas are needed in the sequel.

Lemma 2.1 ([29, 32]) Let (M, d) be a metric space and {xn} be a sequence in M. If {xn}
is not Cauchy in M, then there exist ε > 0 and two subsequences {xn(k)} and {xm(k)} of {xn}
such that

k ≤ n(k) ≤ m(k), d(xn(k), xm(k)–1) ≤ ε < d(xn(k), xm(k)) for all k ∈N0.

Moreover, if {xn} is such that limn→∞ d(xn, xn+1) = 0, then

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)–1, xm(k)–1) = ε.

Lemma 2.2 ([12]) Let M be a nonempty set and g : M → M. Then there exists a subset
E ⊆ M such that g(E) = g(M) and g : E → E is one–one.

3 Main results
We begin this section by introducing the notion of (F ,R)g -contractions as follows.

Definition 3.1 Let (M, d) be a metric space and T , g : M → M. Then T is said to be an
(F ,R)g -contraction if there exists τ > 0 such that

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(gx, gy)

)
for all x, y ∈ M with gxR�gy and TxR�Ty, (3.1)

where F : (0,∞) →R is a continuous mapping satisfying (F2).

The following proposition is immediate due to the symmetricity of the metric d.
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Proposition 3.1 Let (M, d) be a metric space endowed with a binary relation R and T , g :
M → M. Then, for each continuous mapping F : (0,∞) → R satisfying (F2), the following
are equivalent:

(a) for all x, y ∈ M such that (gx, gy) ∈R and (Tx, Ty) ∈R,

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(gx, gy)

)
;

(b) for all x, y ∈ M such that either (gx, gy), (Tx, Ty) ∈R or (gy, gx), (Ty, Tx) ∈R,

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(gx, gy)

)
.

Now, we are equipped to state and prove our main result on the existence of coincidence
points as follows.

Theorem 3.1 Let (M, d) be a metric space endowed with a transitive binary relation R
and T , g : M → M. Assume that the following conditions are fulfilled:

(a) there exists x0 ∈ M such that gx0RTx0;
(b) R is (T , g)-closed;
(c) T is an (F ,R)g -contraction;
(d) (d1) there exists a subset X of M such that T(M) ⊆ X ⊆ g(M) and X is R-complete;

(d2) one of the following conditions is satisfied:
(i) T is (g,R)-continuous; or

(ii) T and g are continuous; or
(iii) R|X is d-self closed provided (3.1) holds for all x, y ∈ M with gxRgy and

TxR�Ty;
or alternatively

(d′) (d′
1) there exists a subset Y of M such that T(M) ⊆ g(M) ⊆ Y and Y is R-complete;

(d′
2) (T , g) is an R-compatible pair;

(d′
3) T and g are R-continuous.

Then the pair (T , g) has a coincidence point.

Proof Observe that in both cases (d) and (d′), we have T(M) ⊆ g(M). In view of assumption
(a), we have gx0RTx0. If Tx0 = gx0, then x0 is a coincidence point of (T , g) and there is
nothing to prove. Assume that Tx0 �= gx0, then from the fact that T(M) ⊆ g(M), one can
find x1 ∈ M such that gx1 = Tx0. Similarly, there is x2 ∈ M such that gx2 = Tx1. Inductively,
one can contract a sequence {xn} ⊆ M such that

gxn+1 = Txn for all n ∈N0. (3.2)

Claim: {gxn} is an R-preserving sequence, that is,

gxnRgxn+1 for all n ∈N0. (3.3)

We prove this claim by induction. Now, using (3.2) with n = 0 and condition (a), we
have gx0Rgx1, which shows that (3.3) is true for n = 0. Assume that (3.3) is true for
n = k ≥ 1, that is, gxkRgxk+1. As R is (T , g)-closed, we have TxkRTxk+1, which yields that
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gxk+1Rgxk+2. Hence, by induction, (3.3) holds for all n ∈ N0. In view of (3.2) and (3.3), we
obtain that the sequence {Txn} is also R-preserving, that is,

TxnRTxn+1 for all n ∈N0. (3.4)

Now, if Txn0 = Txn0+1 for some n0 ∈N0, then xn0 is a coincidence point of (T , g) and we are
done. Assume that Txn �= Txn+1 for all n ∈N0. On using (3.2), (3.3), (3.4), and condition (c),
we have

τ + F
(
d(gxn, gxn+1)

)
= τ + F

(
d(Txn–1, Txn)

) ≤ F
(
d(gxn–1, gxn)

)
for all n ∈ N0. (3.5)

Let βn = d(gxn, gxn+1). Using (3.5) and condition (c), we have (for all n ∈N)

F(βn) ≤ F(βn–1) – τ ≤ F(βn–2) – 2τ ≤ · · · ≤ F(β0) – nτ .

Now, letting n → ∞ in this inequality, we obtain limn→∞ F(βn) = –∞ which together with
(F2) implies that

lim
n→∞βn = 0. (3.6)

Next, we show that {gxn} is a Cauchy sequence via contradiction. To do so, assume
that {gxn} is not Cauchy. Then Lemma 2.1 and equation (3.6) guarantee the existence
of ε > 0 and two subsequences {gxn(k)} and {gxm(k)} of {gxn} such that k ≤ n(k) ≤ m(k),
d(gxn(k), gxm(k)–1) ≤ ε < d(gxn(k), gxm(k)) for all k ∈N0 and

lim
k→∞

d(gxn(k), gxm(k)) = lim
k→∞

d(gxn(k)–1, gxm(k)–1) = ε. (3.7)

This yields that there exists k0 ∈ N0 such that d(gxn(k)–1, gxm(k)–1) > 0 for all k ≥ k0. As R
is transitive, we obtain gxn(k)–1R�gxm(k)–1 and Txn(k)–1R�Txm(k)–1 for all k ≥ k0. Applying
condition (c), we have

τ + F
(
d(Txn(k)–1, Txm(k)–1)

) ≤ F
(
d(gxn(k)–1, gxm(k)–1)

)
for all k ≥ k0. (3.8)

As F is continuous, on letting k → ∞ in (3.8) and using (3.7), we obtain τ + F(ε) ≤ F(ε),
a contradiction. Hence, {gxn} is a Cauchy sequence.

Assume that condition (d) is satisfied. Due to (3.2), we have {gxn} ⊆ T(M). Therefore,
{gxn} is an R-preserving Cauchy sequence in X. Using condition (d1) (R-completeness
of X), there exists y ∈ X such that {gxn} → y. As X ⊆ g(M), there exists u ∈ M such that
y = gu. Hence, on using (3.2), we obtain

lim
n→∞ gxn = lim

n→∞ Txn = gu. (3.9)

Now, we show that u is a coincidence point of (T , g) considering the three alternative cases
using condition (d2). Firstly, assume that T is (g,R)-continuous. Using (3.3) and (3.9), we
obtain

lim
n→∞ Txn = Tu. (3.10)
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On using (3.9) and (3.10), we have

Tu = gu.

Hence, u is a coincidence point of (T , g).
Secondly, assume that both T and g are continuous. Owing to Lemma 2.2, there exists a

subset E ⊆ M such that g(E) = g(M) and g : E → E is one–one. Define f : g(E) → g(M) by

f (ge) = Te for all ge ∈ g(E), where e ∈ E. (3.11)

As g : E → M is one-one and T(M) ⊆ g(M), f is well-defined. Owing to the continuity of T
and g , it follows that f is also continuous. Now, using the fact that g(M) = g(E), condition
(d1) reduces to T(M) ⊆ X ⊆ g(E) so that, without loss of generality, we can choose {xn} ⊆ E
and u ∈ E. Using (3.9), (3.11), and the continuity of f , we obtain

Tu = f (gu) = f
(

lim
n→∞ gxn

)
= lim

n→∞ f (gxn) = lim
n→∞ Txn = gu.

Hence, u is a coincidence point of (T , g).
Thirdly, assume that R|X is d-self-closed and (3.1) holds for all x, y ∈ M with gxRgy and

TxR�Ty. As {gxn} ⊆ X, {gxn} is R|X -preserving (due to (3.3)) and {gxn} → gu (due to (3.9))
so that there exists a subsequence {gxnk } ⊆ {gxn} such that

[gxnk , gu] ∈R|X ⊆R for all k ∈N0. (3.12)

Using (3.12) and condition (b), we have

[Txnk , Tu] ∈R|X ⊆R, for all k ∈ N0. (3.13)

Now, let P = {k ∈ N : Txnk = Tu}. If P is infinite, then {Txnk } has a subsequence {Txnki
} such

that Txnki
= Tu for all i ∈N. This implies that limi→∞ Txnki

= Tu. As limn→∞ Txn = gu (due
to (3.9)), we obtain Tu = gu. Now, if P is finite, then {Txnk } has a subsequence {Txnki

} such
that Txnki

�= Tu for all i ∈N. From (3.12), (3.13) and as Txnki
�= Tu for all i ∈N, we have

[gxnki
, gu] ∈R|X ⊆R for all i ∈N0 (3.14)

and

[Txnki
, Tu] ∈R|X ⊆R and Txnki

�= Tu for all i ∈ N0. (3.15)

Now, using (3.14), (3.15), Proposition 3.1, and the fact that (3.1) holds for all x, y ∈ M with
gxRgy and TxR�Ty, we obtain

F
(
d(Txnki

, Tu)
) ≤ F

(
d(gxnki

, gu)
)

– τ .

Making use of (3.9), (F2) and letting i → ∞, we obtain

lim
k→∞

Txnk = Tu. (3.16)
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Using (3.9) and (3.16), we get

Tu = gu.

Hence, in both cases u is a coincidence point of (T , g).
Alternatively, assume that condition (d′) holds. Then {gxn} ⊆ Y and, hence, {gxn} is an

R-preserving Cauchy sequence in Y . The R-completeness of Y implies that there exists
v ∈ Y such that

lim
n→∞ gxn = v. (3.17)

On using (3.2) and (3.17), we have

lim
n→∞ Txn = v. (3.18)

Now, using (3.3), (3.17), and condition (d′
3), we have

lim
n→∞ g(gxn) = g

(
lim

n→∞ gxn

)
= gv. (3.19)

Again, using (3.4), (3.18), and condition (d′
3), we get

lim
n→∞ g(Txn) = g

(
lim

n→∞ Txn

)
= gv. (3.20)

As {Txn} and {gxn} are R-preserving (due to (3.3) and (3.4)) and limn→∞ Txn =
limn→∞ gxn = v (due to (3.17) and (3.18)), on using condition (d′

2), we obtain

lim
n→∞ d(gTxn, Tgxn) = 0. (3.21)

Now, we will show that v is a coincidence point of (T , g). Using (3.3), (3.17), and the R-
continuity of T , we obtain

lim
n→∞ T(gxn) = T

(
lim

n→∞ gxn

)
= Tv. (3.22)

From (3.20), (3.21), and (3.22), we have

d(gv, Tv) = d
(

lim
n→∞ gTxn, lim

n→∞ Tgxn

)
= lim

n→∞(gTxn, Tgxn) = 0.

Hence, v is a coincidence point of (T , g). This completes the proof. �

Next, we present a corresponding uniqueness result of Theorem 3.1.

Theorem 3.2 If, in addition to hypotheses (a)–(d) of Theorem 3.1, we assume that, for all
distinct coincidence points u, v ∈ Coin(T , g), gu and gv are R-comparable and one of T and
g is one-one, then (T , g) has a unique coincidence point.
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Proof In view of Theorem 3.1, the set Coin(T , g) is nonempty. Let u, v ∈ Coin(T , g), then
[gu, gv] ∈ R. Now, as Tu = gu, Tv = gv, and [gu, gv] ∈ R, we have [Tu, Tv] ∈ R. If gu = gv,
then we have Tu = gu = gv = Tv, and hence u = v as one of T and g is one-one. Otherwise,
using Proposition 3.1 and condition (c), we obtain

τ + F
(
d(Tu, Tv)

) ≤ F
(
d(gu, gv)

)
= F

(
d(Tu, Tv)

)
,

a contradiction. Therefore, (T , g) has a unique coincidence point. �

Now, we present a common fixed point result as follows.

Theorem 3.3 If, in addition to the hypotheses of Theorem 3.2, we assume that (T , g) is a
weakly compatible pair, then the pair (T , g) has a unique common fixed point.

Proof Theorem 3.2 guarantees the existence of a unique coincidence point of the pair
(T , g); let u be such a point, and let z ∈ M be such that z = Tu = gu. As T and g are weakly
compatible, we have Tz = Tgu = gTu = gz. Thus, z is a coincidence point of T and g . As u is
unique, we must have u = z. Therefore, u is a common fixed point of (T , g) which is indeed
unique (in view of the uniqueness of the coincidence point of (T , g)). This completes the
proof. �

The following example shows the utility of our results.

Example 3.1 Let M = (0,∞) be endowed with the usual metric. Consider the sequence
{πn} ⊆ M which is defied by πn = n(n+1)(n+2)

3 for all n ≥ 1. Define a binary relation R on M
by R = {(π1,π1), (πi,πi+1) : i ≥ 1}. Define T , g : M → M as follows:

Tx =

⎧
⎪⎪⎨

⎪⎪⎩

x, if 0 ≤ x ≤ π1;

π1, if π1 ≤ x ≤ π2;

πi + ( πi+1–πi
πi+2–πi+1

)(x – πi+1), if πi+1 ≤ x ≤ πi+2, i = 1, 2, . . . ,

and

gx = πi +
(

πi+1 – πi

πi+2 – πi+1

)
(x – πi), πi ≤ x < πi+1, i = 1, 2, . . . .

Then, for F given in Example 1.1 (ii), T is an (F ,R)g -contraction mapping with τ = 6.
Observe that if gxR�gy and TxR�Ty, then x = πi, y = πi+1 for some i ∈N– {1}. Further, for
all n, m ∈N such that m > n > 1, we have

6 +
∣
∣T(πm) – T(πn)

∣
∣ –

1
|T(πm) – T(πn)| = 6 + |πm–1 – πn–1| –

1
|πm–1 – πn–1|

≤ |πm – πn| –
1

|πm – πn|
= |gπm – gπn| –

1
|gπm – gπn| .

Therefore, 6 + F(d(Tx, Ty)) ≤ F(d(gx, gy)) for all x, y ∈ X such that gxR�gy and TxR�Ty.
Hence, T is an (F ,R)g -contraction. Moreover, by a routine calculation one can show that
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all the hypotheses of Theorem 3.3 are satisfied. Observe that (T , g) has a unique common
fixed point (namely π1).

On setting g = I in Theorem 3.3, we deduce the following corresponding fixed point
result.

Theorem 3.4 Let (M, d) be a metric space endowed with a transitive binary relation R
and T : M → M. Assume that the following conditions are fulfilled:

(a) there exists x0 ∈ M such that x0RTx0;
(b) R is T-closed;
(c) T is (F ,R)-contraction;
(d) (d1) there exists a subset X of M such that T(M) ⊆ X and X is R-complete;

(d2) one of the following holds:
(i) T is R-continuous; or

(ii) R|X is d-self-closed provided (1.1) holds for all x, y ∈ M with xRy and
TxR�Ty.

Then T has a fixed point. Moreover, if
(e) u, v ∈ Fix(T) implies that [u, v] ∈R,

then T has a unique fixed point.

The following result presents a weaker assumption to guarantee the uniqueness of the
fixed point.

Theorem 3.5 If condition (e) of Theorem 3.4 is replaced by the following:
(e′) Fix(T) is Rs-connected,

then the fixed point of T is unique.

Proof On the contrary, let us assume that there exist u, v ∈ Fix(T) such that u �= v. Then
there exists a path in Rs (say {u0, u1, . . . , up} ⊆ Fix(T)) of some finite length p from u to v
(with ui �= ui+1 for each i (0 ≤ i ≤ k – 1), otherwise u = v, a contradiction) so that

u0 = u, up = v and [ui, ui+1] ∈R for each i (0 ≤ i ≤ p – 1).

Since ui ∈ Fix(T), so that Tui = ui for each i ∈ {0, 1, . . . , p}. Using the fact that T is an (F ,R)-
contraction mapping, we obtain τ + F(ui, ui+1) ≤ F(ui, ui+1) for all i (0 ≤ i ≤ k – 1), which
is a contradiction. This finishes the proof. �

4 Some consequences in ordered metric spaces
Recall that a triplet (M, d,) is called an ordered metric space if (M, d) is a metric space
and (M,) is an ordered set. By x ≺ y we mean that x  y and x �= y.

Definition 4.1 ([8]) Let (M,) be an ordered set and T , g : M → M. Then T is said to be
g-increasing if, for any x, y ∈ M, gx  gy implies that Tx  Ty.

Remark 4.1 Observe that the notion T is g-increasing is equivalent to saying that  is
(T , g)-closed.
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On setting R = in Theorems 3.1–3.3 and using Remark 4.1, we deduce the following
result.

Corollary 4.1 Let (M, d,) be an ordered metric space and T , g : M → M. Assume that
the following conditions are fulfilled:

(a) there exists x0 ∈ M such that gx0  Tx0;
(b) T is g-increasing;
(c) there exist τ > 0 and a continuous function F satisfying (F2) such that

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(gx, gy)

)
for all x, y ∈ M with gx ≺ gy and Tx ≺ Ty;

(d) there exists a subset X of M such that T(M) ⊆ X ⊆ g(M) and X is -complete;
(e) either T is (g,)-continuous or T and g are continuous;

then the pair (T , g) has a coincidence point. If, in addition, we assume that
(f ) for all distinct coincidence points u, v ∈ Coin(T , g), Tu and gv are -comparable,

then (T , g) has a unique coincidence point. Furthermore, if T and g are weakly compatible,
then the pair (T , g) has a unique common fixed point.

On setting R = in Theorem 3.4 and using Remark 4.1, we deduce the following result.

Corollary 4.2 Let (M, d,) be an ordered metric space and T : M → M. Assume that the
following conditions are fulfilled:

(a) there exists x0 ∈ M such that x0  Tx0;
(b) T is -increasing;
(c) there exist τ > 0 and a continuous function F satisfying (F2) such that

τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
for all x, y ∈ M with x ≺ y and Tx ≺ Ty;

(d) there exists a subset X of M such that T(M) ⊆ X and X is -complete;
(e) T is -continuous.

Then T has a fixed point. Moreover, if
(f ) u, v ∈ Fix(T) implies that [u, v] ∈,

then T has a unique fixed point.

5 Application to integral equations
In this section, we show the applicability of Theorem 3.5 by investigating the existence
and uniqueness of a solution for the following integral equation of Volterra type:

x(s) =
∫ s

0
K

(
s, v, x(v)

)
dv + f (s), s ∈ [0, 1], (5.1)

where K : [0, 1] × [0, 1] × [0, 1] → [0, 1] and f : [0, 1] → [0, 1].
Consider the Banach space M = C([0, 1], [0, 1]) of all continuous functions x : [0, 1] →

[0, 1] equipped with norm

‖x‖ = max
s∈[0,1]

∣∣x(s)
∣∣.
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Define a metric d on M by d(x, y) = ‖x–y‖ for all x, y ∈ M. Then (M, d) is a complete metric
space.

The following definitions are needed in the sequel.

Definition 5.1 A lower solution for (5.1) is a function α ∈ M such that

α(s) ≤
∫ s

0
K

(
s, v, x(v)

)
dv + f (s), s ∈ [0, 1].

Definition 5.2 An upper solution for (5.1) is a function β ∈ M such that

β(s) ≥
∫ s

0
K

(
s, v, x(v)

)
dv + f (s), s ∈ [0, 1].

Now, we are equipped to state and prove our results in this section which run as follows.

Theorem 5.1 Assume that K is nondecreasing in the third variable and there exists τ > 0
such that

∣∣K(s, v, x) – K(s, v, y)
∣∣ ≤ |x – y|

τ‖x – y‖ + 1
(5.2)

for all s, v ∈ [0, 1] and x, y ∈ M. Then the existence of a lower solution of the integral equation
(5.1) ensures the existence and uniqueness of a solution of (5.1).

Proof Consider the operator T : M → M defined by

T
(
x(s)

)
=

∫ s

0
K

(
s, v, x(v)

)
dv + f (s) for all x ∈ M.

Observe that x is a fixed point of the operator T if and only if it is a solution of the integral
equation (5.1).

Define a binary relation R on M by

R =
{

(x, y) ∈ M × M : x(s) ≤ y(s) for all s ∈ [0, 1]
}

.

For any (x, y) ∈R, we have (for all s ∈ [0, 1])

T
(
x(s)

)
=

∫ s

0
K

(
s, v, x(v)

)
dv + f (s)

≤
∫ s

0
K

(
s, v, y(v)

)
dv + f (s)

= T
(
y(s)

)
,

which shows that (Tx, Ty) ∈R. Therefore, R is T-closed.
Next, let (x, y) ∈R and consider

∣
∣T

(
x(s)

)
– T

(
y(s)

)∣∣ =
∣∣
∣∣

∫ s

0

(
K

(
s, v, x(v)

)
– K

(
s, v, y(v)

))
dv

∣∣
∣∣

≤
∫ s

0

∣
∣K

(
s, v, x(v)

)
– K

(
s, v, y(v)

)∣∣dv
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≤
∫ s

0

|x – y|
τ‖x – y‖ + 1

dv

≤ 1
τ‖x – y‖ + 1

∫ s

0
max
s∈[0,1]

|x – y|dv

=
‖x – y‖

τ‖x – y‖ + 1
s

≤ ‖x – y‖
τ‖x – y‖ + 1

.

This implies that

∣∣T
(
x(s)

)
– T

(
y(s)

)∣∣ ≤ ‖x – y‖
τ‖x – y‖ + 1

for all s ∈ [0, 1],

which on taking supremum (over both the sides) gives rise

∥
∥T(x) – T(y)

∥
∥ ≤ ‖x – y‖

τ‖x – y‖ + 1
,

or

τ +
1

‖x – y‖ ≤ 1
‖T(x) – T(y)‖ ,

that is,

τ –
1

‖T(x) – T(y)‖ ≤ –1
‖x – y‖

or

τ –
1

d(T(x), T(y))
≤ –1

d(x, y)
.

Thus, inequality (3.1) is satisfied with F(α) = –1
α

, α > 0.
Now, choose an R-preserving sequence {xn} in C([0, 1] such that {xn} → x for some

x ∈ C([0, 1]. Then we have (for all s ∈ [0, 1])

x0(s) ≤ x1(s) ≤ x2(s) ≤ · · · ≤ xn(s) ≤ xn+1(s) ≤ · · · ,

which implies that xn(s) ≤ x(s) for all s ∈ [0, 1]. Thus, R is d-self-closed on C([0, 1]. Finally,
if x, y ∈ Fix(T), then z = max{x, y} ∈ C([0, 1]. As x ≤ z and y ≤ z, xRz and yRz so that
condition (e′) of Theorem 3.5 holds. Therefore, all the assumptions of Theorem 3.5 are
satisfied. Hence, the result is established. �

Next, we provide the following theorem in the presence of an upper solution.

Theorem 5.2 Assume that K is nonincreasing in the third variable and there exists τ > 0
such that

∣∣K(s, v, x) – K(s, v, y)
∣∣ ≤ |x – y|

τ‖x – y‖ + 1
(5.3)
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for all s, v ∈ [0, 1] and x, y ∈ M. Then the existence of an upper solution of the integral equa-
tion (5.1) ensures the existence and uniqueness of a solution of (5.1).

Proof
Define a binary relation R on M as follows:

R =
{

(x, y) ∈ M × M : x(s) ≥ y(s) for all s ∈ [0, 1]
}

.

Now, following steps of the proof of Theorem 5.1 with an analogous procedure, one can
check that all the hypotheses of Theorem 3.5 are validated. Therefore, in this analogous
case Theorem 3.5 ensures the existence of a unique solution of the integral equation
(5.1). �

Finally, to exhibit the utility of Theorems 5.2 and 5.1, we adopt the following examples.

Example 5.1 The function x(s) = 1
2 s, s ∈ [0, 1] is a solution in M for the following integral

equation:

x(s) =
3
2

s – (1 + s) ln(1 + s) +
∫ s

0
ln

(
1 + x(v)

)
dv, s ∈ [0, 1]. (5.4)

Proof Define the operator T : M → M as

Tx(s) =
3
2

s – (1 + s) ln(1 + s) +
∫ s

0
ln

(
1 + x(v)

)
dv, s ∈ [0, 1].

Now, set K(s, v, x(v)) = ln(1 + x(v)), f (s) = 3
2 s – (1 + s) ln(1 + s), and τ ≤ 0.01. Observe that

• the function K(s, v, x(v)) = ln(1 + x(v)) is nondecreasing in the third variable.
• s

2 ≤ 3
2 s – (1 + s) ln(1 + s) +

∫ s
0 ln(1 + x(v)) dv, s ∈ [0, 1] so that x(s) = s

2 is a lower solution
for (5.4).

• in view of its graph (see Fig. 1), the following inequality holds true for all x, y ∈ [0, 1]:

∣
∣ln(1 + x) – ln(1 + y)

∣
∣ ≤ |x – y|

1 + 0.01|x – y| . (5.5)

Figure 1 Inequality (5.5)
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Figure 2 Inequality (5.7)

Using the nondecreasing function s �→ s
1+0.01s , we have

∣∣ln(1 + x) – ln(1 + y)
∣∣ ≤ |x – y|

1 + 0.01|x – y| ≤ maxs∈[0,1] |x – y|
1 + 0.01 maxs∈[0,1] |x – y| =

‖x – y‖
1 + 0.01‖x – y‖ .

Hence, all the conditions of Theorem 5.1 are satisfied. Therefore, we conclude that the
integral equation (5.4) has a unique solution (namely x(s) = 1

2 s). �

Example 5.2 The function x(s) = s, s ∈ [0, 1] is a solution in M for the following integral
equation:

x(s) = s + (1 – s) ln(2 – s) – ln(2) +
∫ s

0
ln

(
2 – x(v)

)
dv, s ∈ [0, 1]. (5.6)

Proof In view of its graph (see Fig. 2), the following inequality holds true for all x, y ∈ [0, 1]:

∣
∣ln(2 – x) – ln(2 – y)

∣
∣ ≤ |x – y|

1 + 0.01|x – y| . (5.7)

Using a similar argument as in Example 5.1, one can show that all the hypotheses of The-
orem 5.2 are satisfied. Hence, the integral equation (5.6) has a unique solution (namely
x(s) = s). �
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18. Kadelburg, Z., Radenovič, S.: Notes on some recent papers concerning F-contractions in b-metric spaces. Constr.

Math. Anal. 1(2), 108–112 (2018)
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