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Abstract
This paper is devoted to investigating a vector inverse mixed quasi-variational
inequality (VIMQVI). Our aim is to obtain error bounds for VIMQVI in terms of different
gap functions, i.e., the residual gap function, the regularized gap function, and the
D-gap function. These bounds provide effective estimated distances between an
arbitrary feasible point and the solution set of VIMQVI. The approach exploited in this
paper is based on the generalized f -projection operator due to Wu and Huang. Our
results cover and extend similar results for these problems.
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1 Introduction
Variational inequalities (VI) and quasi-variational inequalities (QVI) have many applica-
tions in different fields such as economics, management, and engineering. An important
and useful generalization of VI is called the mixed variational inequality (MVI). Some re-
sults and applications related to MVI have been studied by many authors (see, for example,
[1–3]).

Recently, He et al. [4, 5] introduced inverse variational inequalities (IVI). As pointed in
[6], many applications of IVI can be founded in various areas such as market equilibrium
problems in economics and telecommunication networks. Li et al. [7] introduced a new
inverse mixed variational inequality (IMVI) in the setting of Hilbert spaces, which includes
IVI as a special case. An example concerned with a simple traffic network equilibrium
control problem was given to illustrate the applicability of IMVI.

In 1980, vector variational inequalities (VVI) were initiated in the setting of the finite-
dimensional Euclidean space, see [8]. This is a generalization of scalar variational inequal-
ities to the vector case by virtue of multi-criterion consideration. So far, vector variational
inequalities has been applied to optimization, optimal control, operations research, eco-
nomics equilibrium, and free boundary value problems. In the past decades, existence, sta-
bility, sensitivity, optimality conditions, and differentiability for solutions of VVI and their
various extensions have been extensively studied, see [8–19] and the references therein.
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The concept of gap function was first introduced for the study of optimization prob-
lems and subsequently applied to VI, QVI, and VVI. Gap functions play an important part
in developing iterative algorithms but more importantly for analyzing their convergence
properties and obtaining useful stopping rules for iterative algorithms. We refer readers
to [15, 20–29] for surveys. Error bounds are very important and useful as they provide
a measure of the distance between a solution set and an arbitrary feasible point. A com-
prehensive survey of theory and rich applications about error bounds can be found in
[30]. Solodov [26] constructed some merit functions associated with a generalized MVI
(which was defined on the whole space) and used those functions to obtain error bounds
for MVI. Recently, Aussel et al. [31] introduced a new inverse quasi-variational inequal-
ity (IQVI), obtained local (global) error bounds for IQVI in terms of some gap functions
to illustrate the applicability of IQVI, and gave an example about road pricing problems.
Sun and Chai [32] introduced the regularized gap functions for the generalized vector
variational inequalities (GVVI) and obtained the error bounds for GVVI in terms of the
regularized gap functions. Charitha et al. [33] studied several gap functions for Stampac-
chia and Minty-type VVI and developed error bounds for the VVI with strongly monotone
data in terms of the several gap functions. The generalized f -projection operators intro-
duced by Wu and Huang [34] was exploited to deal with MVI, see, for example, [7, 34–37].
Very recently, by using the generalized f -projection operator, Li and Li [37] investigated
a constrained mixed set-valued variational inequality (MSVI) in Hilbert spaces, and pro-
posed four merit functions for the constrained MSVI and obtained error bounds by these
functions. A natural question is whether one can give some model to unify IVI, IMVI,
IQVI, VVI, and GVVI, and furthermore study their gap functions and the corresponding
error bounds or not.

In this paper, we introduce a vector inverse mixed quasi-variational inequality
(VIMQVI), which includes IVI, IMVI, IQVI, VVI, and GVVI as special cases. We also
propose three gap functions for the VIMQVI, i.e., the residual gap function, the regular-
ized gap function, and the D-gap function, and obtain error bounds for VIMQVI under
strong monotonicity and Lipschitz continuity of underlying mappings by using these gap
functions. Our basic tool is the generalized f -projection operator due to Wu and Huang,
which is more general than the well-known proximal mapping exploited in [26].

2 Preliminaries
Throughout this paper, let the set of nonnegative real numbers be denoted by R+, the ori-
gins of all finite dimensional spaces be denoted by 0, and the norms and the inner products
of all finite dimensional spaces be denoted by ‖ · ‖ and 〈·, ·〉, respectively. Furthermore, let
K : Rn → 2Rn be a set-valued mapping with nonempty closed convex values, Fi : Rn → Rn

(i = 1, 2, . . . , m) be single-valued mappings, h : Rn → Rn be a single-valued mapping, and
fi : Rn → R (i = 1, 2, . . . , m) be real-valued convex functions. For abbreviation, we put

T := (f1, f2, . . . , fm), F := (F1, F2, . . . , Fm),

and for any x, v ∈ Rn,

〈
F(x), v

〉
:=

(〈
F1(x), v

〉
,
〈
F2(x), v

〉
, . . . ,

〈
Fn(x), v

〉)
.
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In this paper, we consider the following vector inverse mixed quasi-variational inequality
(in short, VIMQVI): find x̄ ∈ K(x̄) such that

〈
F(x̄), y – h(x̄)

〉
+ T(y) – T

(
h(x̄)

)
/∈ – int Rm

+ , ∀y ∈ K(x̄).

The solution set of VIMQVI is denoted by sol(VIMQVI).
If C ⊂ Rn is a nonempty closed and convex subset, h(x) = x and K(x) = C for all x ∈ Rn,

then VIMQVI collapses to the following GVVI: find x̄ ∈ C such that

〈
F(x̄), y – x

〉
+ T(y) – T(x) /∈ – int Rm

+ , ∀y ∈ C,

which is considered and studied by [32].
If T(x) = 0 for all x ∈ Rn, then GVVI reduces to VVI introduced and studied by [11, 12,

33].
Obviously, for m = 1, VIMQVI collapses to the following inverse mixed quasi-variational

inequality (IMQVI): find x̄ ∈ K(x̄) such that

〈
F1(x̄), y – h(x̄)

〉
+ f1(y) – f1

(
h(x̄)

) ≥ 0, ∀y ∈ K(x̄),

which was introduced and studied by [36].
If f1(x) = 0 for all x ∈ Rn, then IMQVI collapses to the following IQVI:

〈
F1(x̄), y – h(x̄)

〉 ≥ 0, ∀y ∈ K(x̄).

This problem was considered and studied by Aussel et al. [31], who pointed out that the
discipline of IQVI is still not fully explored and much is desired to be done. Clearly, IQVI
includes the classes of general quasi-variational inequalities and variational inequalities
as special cases.

If C ⊂ Rn is a nonempty closed and convex subset and K(x) = C for all x ∈ Rn, then
IMQVI collapses to the following MVI: find x̄ ∈ C such that

〈
F1(x̄), y – h(x̄)

〉
+ f1(y) – f1

(
h(x̄)

) ≥ 0, ∀y ∈ C.

When C = Rn, MVI was investigated by Solodov [26]; when F1(x) = x, ∀x ∈ Rn, MVI be-
comes IMVI which was introduced and studied by [7].

For i = 1, 2, . . . , m, we denote the inverse mixed quasi-variational inequality associated
with Fi, h, K , and fi as (IMQVI)i. The solution sets of (IMQVI)i are denoted by sol
(IMQVI)i.

In this paper, we intend to investigate several scalar-valued gap functions and error
bounds for VIMQVI. In order to do so, we shall recall some notations and definitions,
which will be used in the sequel.

Definition 2.1 [31] Let G : Rn → Rn and g : Rn → Rn be two maps.
(i) (G, g) is said to be a strongly monotone couple with modulus μ if there exists a

constant μ > 0 such that

〈
G(y) – G(x), g(y) – g(x)

〉 ≥ μ‖y – x‖2, ∀x, y ∈ Rn;
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(ii) g is said to be L-Lipschitz continuous on Rn if there exists a constant L > 0 such that

∥∥g(x) – g(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ Rn.

For any fixed ρ > 0, let G : Rn × K̃ → (–∞, +∞] be a function defined as follows:

G(ϕ, x) = ‖x‖2 – 2〈ϕ, x〉 + ‖ϕ‖2 + 2ρf (x), ∀ϕ ∈ Rn,∀x ∈ K̃ , (1)

where K̃ ⊂ Rn is a nonempty closed and convex subset, and f : Rn → R is convex.

Definition 2.2 ([34]) We say that Π
f
K̃ : Rn → 2K̃ is a generalized f -projection operator if

Π
f
K̃ϕ =

{
u ∈ K̃ : G(ϕ, u) = inf

y∈K̃
G(ϕ, y)

}
, ∀ϕ ∈ Rn.

If f (x) = 0 for all x ∈ K̃ , then the generalized f -projection operator Π
f
K̃ is equivalent to

the following metric projection operator:

PK̃ (ϕ) =
{

u ∈ K̃ : ‖u – ϕ‖ = inf
y∈K̃

‖y – ϕ‖
}

, ∀ϕ ∈ Rn.

Lemma 2.1 ([7, 34]) The following statements hold:
(i) For any given ϕ ∈ Rn, Π f

K̃ϕ is nonempty and single-valued;
(ii) For any given ϕ ∈ Rn, x = Π

f
K̃ϕ if and only if

〈x – ϕ, y – x〉 + ρf (y) – ρf (x) ≥ 0, ∀y ∈ K̃ ;

(iii) Π
f
K̃ : Rn → K is nonexpansive, that is, ‖Π f

K̃ x – Π
f
K̃ y‖ ≤ ‖x – y‖ for all x, y ∈ Rn.

Lemma 2.2 ([36]) Let m be a positive number, B ⊂ Rn be a nonempty subset such that
‖v‖ ≤ m for all v ∈ B. Let K : Rn → 2Rn be a set-valued mapping such that, for each x ∈ Rn,
K(x) is a closed convex set, and let f : Rn → R be a convex function on Rn. Assume that

(i) there exists a constant γ > 0 such that H(K(x), K(y)) ≤ γ ‖x – y‖, x, y ∈ Rn;
(ii) 0 ∈ ⋂

u∈Rn K(u);
(iii) f is l-Lipschitz continuous on Rn. Then there exists a constant k =

√
6γ (m + ρl) such

that

∥∥Π
f
K (x)z – Π

f
K (x)z

∥∥ ≤ k‖x – y‖, ∀x, y ∈ Rn, z ∈ B.

Definition 2.3 A function r : Rn → R is said to be a gap function for a VIMQVI on a set
S̃ ⊂ Rn if it satisfies the following properties:

(i) r(x) ≥ 0 for any x ∈ S̃;
(ii) r(x̄) = 0, x̄ ∈ S̃ if and only if x̄ is a solution of VIMQVI.

The gap functions play an important part in developing iterative algorithms for solving
VIMQVI but more importantly for analyzing their convergence properties and obtain-
ing useful stopping rules for iterative algorithms. This motivates us to study and analyze
different gap functions for VIMQVI.
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3 Residual gap functions
In this section, we shall give the residual gap function for VIMQVI and prove error bounds
related to the residual gap function. We define the residual gap function for VIMQVI as
follows:

rρ(x) := min
1≤i≤m

{∥∥h(x) – Π
fi
K (x)

[
h(x) – ρFi(x)

]∥∥}
, x ∈ Rn,ρ > 0. (2)

Theorem 3.1 Suppose that Fi : Rn → Rn (i = 1, 2, . . . , m) are single-valued mappings, then
for any ρ > 0, rρ(x) is a gap function for VIMQVI on Rn.

Proof It is clear that rρ(x) ≥ 0 for any x ∈ Rn. On the other hand, if rρ(x̄) = 0, then there
exists 0 ≤ i0 ≤ m such that

h(x̄) = Π
fi0
K (x̄)

[
h(x̄) – ρFi0 (x̄)

]
.

Lemma 2.1 implies that

〈
h(x̄) –

[
h(x̄) – ρFi0 (x̄)

]
, y – h(x̄)

〉
+ ρf (y) – ρf

(
h(x̄)

) ≥ 0, ∀y ∈ K(x̄),

and so

〈
Fi0 (x̄), y – h(x̄)

〉
+ f (y) – f

(
h(x̄)

) ≥ 0, ∀y ∈ K(x̄).

This means that

〈
F(x̄), y – h(x̄)

〉
+ f (y) – f

(
h(x̄)

)
/∈ – int Rm

+ , ∀y ∈ K(x̄).

Thus, x̄ is a solution of VIMQVI.
Conversely, if x̄ is a solution of VIMQVI, there exists 1 ≤ i0 ≤ m such that

〈
Fi0 (x̄), y – h(x̄)

〉
+ fi0 (y) – fi0

(
h(x̄)

) ≥ 0, ∀y ∈ K(x̄).

By Lemma 2.1, we have

h(x̄) = Π
fi0
K (x̄)

[
h(x̄) – ρFi0 (x̄)

]
.

This means that

rρ(x̄) = min
1≤i≤m

{∥∥h(x̄) – Π
fi
K (x̄)

[
h(x̄) – ρFi(x̄)

]∥∥}
= 0.

This completes the proof. �

Next we will give the error bound for VIMQVI in terms of the residual gap function rρ .

Theorem 3.2 Let Fi : Rn → Rn (i = 1, 2, . . . , m) be Li-Lipschitz continuous, h : Rn → Rn

be l-Lipschitz continuous, and for i = 1, 2, . . . , m, (Fi, h) be strongly monotone couples with
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modulus μi. Let
⋂m

i=1 sol(IMQVI)i �= ∅. Assume that there exists ki ∈ (0, μi
Li

) such that

∥∥Π
fi
K (x)z – Π

fi
K (y)z

∥∥ ≤ ki‖x – y‖, ∀x, y ∈ Rn, z ∈ {
v|v = h(x) – ρFi(x)

}
. (3)

Then, for any x ∈ Rn and ρ > kil
μi–kiLi

,

d
(
x, Sol(VIMQVI)

) ≤ ρLi + l
ρμi – ρkiLi – kil

rρ(x),

where d(x, Sol(VIMQVI)) = infx̄∈Sol(VIMQVI) ‖x – x̄‖ denotes the distance between the point
x and the set Sol(VIMQVI).

Proof Because
⋂m

i=1 sol(IMQVI)i �= ∅, we assume that x̄ ∈ K(x̄) is a common solution of
(IMQVI)i, i = 1, . . . , m, and thus for any i ∈ {1, . . . , m}, we have

〈
Fi(x̄), y – h(x̄)

〉
+ fi(y) – fi

(
h(x̄)

) ≥ 0, ∀y ∈ K(x̄). (4)

By definition of Π
fi
K (x̄)[h(x) – ρFi(x)], Lemma 2.1 implies that

〈
Π

fi
K (x̄)

[
h(x) – ρFi(x)

]
–

(
h(x) – ρFi(x)

)
, y – Π

fi
K (x̄)

[
h(x) – ρFi(x)

]〉

+ ρfi(y) – ρfi
(
Π

fi
K (x̄)

[
h(x) – ρFi(x)

]) ≥ 0, ∀y ∈ K(x̄). (5)

Since x̄ ∈ ⋂m
i=1 sol(IMQVI)i, h(x̄) ∈ K(x̄). Replacing y by h(x̄) in (5), we get

〈
Π

fi
K (x̄)

[
h(x) – ρFi(x)

]
–

(
h(x) – ρFi(x)

)
, h(x̄) – Π

fi
K (x̄)

[
h(x) – ρFi(x)

]〉

+ ρfi
(
h(x̄)

)
– ρfi

(
Π

fi
K (x̄)

[
h(x) – ρFi(x)

]) ≥ 0. (6)

From Π
fi
K (x̄)[h(x) – ρFi(x)] ∈ K(x̄), by (4), it follows that

〈
ρFi(x̄),Π fi

K (x̄)
[
h(x) – ρFi(x)

]
– h(x̄)

〉

+ ρfi
(
Π

fi
K (x̄)

[
h(x) – ρFi(x)

])
– ρfi

(
h(x̄)

) ≥ 0. (7)

By (6) and (7), we have

〈
ρFi(x̄) – ρFi(x) – Π

fi
K (x̄)

[
h(x) – ρFi(x)

]
+ h(x),Π fi

K (x̄)
[
h(x) – ρFi(x)

]
– h(x̄)

〉 ≥ 0,

which also implies

〈
ρFi(x̄) – ρFi(x),Π fi

K (x̄)
[
h(x) – ρFi(x)

]
– h(x)

〉

–
〈
ρFi(x̄) – ρFi(x), h(x̄) – h(x)

〉

+
〈
h(x) – Π

fi
K (x̄)

[
h(x) – ρFi(x)

]
,Π fi

K (x̄)
[
h(x) – ρFi(x)

]
– h(x)

〉

+
〈
h(x) – Π

fi
K (x̄)

[
h(x) – ρFi(x)

]
, h(x) – h(x̄)

〉 ≥ 0.
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Since, for i = 1, 2, . . . , m, (Fi, h) are strongly monotone couples with modulus μi, we have

〈
ρFi(x̄) – ρFi(x),Π fi

K (x̄)
[
h(x) – ρFi(x)

]
– h(x)

〉

–
∥∥h(x) – Π

fi
K (x̄)

[
h(x) – ρFi(x)

]∥∥2

+
〈
h(x) – Π

fi
K (x̄)

[
h(x) – ρFi(x)

]
, h(x) – h(x̄)

〉 ≥ ρμi‖x – x̄‖2.

By inserting Π
fi
K (x)[h(x) – ρFi(x)] and using the Cauchy–Schwarz inequality along with the

triangular inequality, we have

∥∥ρFi(x̄) – ρFi(x)
∥∥ · {∥∥Π

fi
K (x̄)

[
h(x) – ρFi(x)

]
– Π

fi
K (x)

[
h(x) – ρFi(x)

]∥∥

+
∥∥Π

fi
K (x)

[
h(x) – ρFi(x)

]
– h(x)

∥∥}
+

∥∥h(x) – h(x̄)
∥∥

· {∥∥h(x) – Π
fi
K (x)

[
h(x) – ρFi(x)

]∥∥

+
∥∥Π

fi
K (x)

[
h(x) – ρFi(x)

]
– Π

fi
K (x̄)

[
h(x) – ρFi(x)

]∥∥} ≥ ρμi‖x – x̄‖2.

Using the Lipschitz continuity of Fi, h and condition (3), we have

Liρ‖x̄ – x‖ · (ki‖x̄ – x‖ +
∥∥Π

fi
K (x)

[
h(x) – ρFi(x)

]
– h(x)

∥∥)

+ l‖x – x̄‖ · (∥∥h(x) – Π
fi
K (x)

[
h(x) – ρFi(x)

]∥∥ + ki‖x – x̄‖) ≥ ρμi‖x – x̄‖2.

Hence, for any x ∈ Rn and i ∈ {1, 2, . . . , m}, ρ > kil
μi–kiLi

and μi > kiLi, we have

‖x – x̄‖ ≤ ρLi + l
ρμi – ρkiLi – kil

∥∥h(x) – Π
fi
K (x)

[
h(x) – ρFi(x)

]∥∥.

This implies

‖x – x̄‖ ≤ ρLi + l
ρμi – ρkiLi – kil

min
1≤i≤m

{∥∥h(x) – Π
fi
K (x)

[
h(x) – ρFi(x)

]∥∥}
,

which means that

d
(
x, Sol(VIMQVI)

) ≤ ‖x – x̄‖ ≤ ρLi + l
ρμi – ρkiLi – kil

rρ(x).

This completes the proof. �

Remark 3.1 Lemma 2.2 implies that condition (3) holds under some suitable assumptions.

4 Regularized gap functions and D-gap functions
In general, the residual gap function fails to be smooth. For the algorithmic purpose, it is
desirable to deal with a smooth optimization problem. Sun and Chai [32] and Charitha et
al. [33] introduced the regularized gap function for GVVI and VVI, respectively. Li and
Li [37] introduced the D-gap function for MSVI. Aussel et al. [31] constructed the D-
gap function for IQVI. Taking motivation from these works, we design a regularized gap
function and a D-gap function for VIMQVI and develop corresponding error bounds for
VIMQVI.
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4.1 Regularized gap function
The regularized gap function for VIMQVI is defined for all x ∈ Rn as follows:

φρ(x) = min
1≤i≤m

sup
y∈K (x)

{〈
Fi(x), h(x) – y

〉
+ fi

(
h(x)

)
– fi(y) –

1
2ρ

∥∥h(x) – y
∥∥2

}
,

where ρ > 0 is a parameter.

Lemma 4.1 We have

φρ(x) = min
1≤i≤m

{〈
Fi(x), Ri

ρ(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

ρ(x)
)

–
1

2ρ

∥∥Ri
ρ(x)

∥∥2
}

, (8)

where

Ri
ρ(x) = h(x) – Π

fi
K (x)

[
h(x) – ρFi(x)

]
, ∀x ∈ Rn.

And if x ∈ h–1(K), where h–1(K) = {ξ ∈ Rn|h(ξ ) ∈ K(ξ )}, then

φρ(x) ≥ 1
2ρ

rρ(x)2. (9)

Proof For given x ∈ Rn and i ∈ {1, 2, . . . , m}, set

ψi(x, y) =
〈
Fi(x), h(x) – y

〉
+ fi

(
h(x)

)
– fi(y) –

1
2ρ

∥∥h(x) – y
∥∥2, y ∈ Rn.

Consider the following problem:

gi(x) = max
y∈K (x)

ψi(x, y).

Since ψi(x, ·) is a strongly concave function and K(x) is nonempty closed and convex, the
above optimization problem has a unique solution, say z ∈ K(x). Invoking the optimality
condition at z, we obtain

0 ∈ Fi(x) + ∂fi(z) +
1
ρ

(
z – h(x)

)
+ NK (x)(z),

where NK (x)(z) is the normal cone at z to K(x) and ∂fi(z) denotes the subdifferential of fi

at z. Therefore,

〈
z –

(
h(x) – ρFi(x)

)
, y – z

〉
+ ρfi(y) – ρfi(z) ≥ 0, ∀y ∈ K(x),

and so z = Π
fi
K (x)[h(x) – ρFi(x)]. Hence gi(x) can be rewritten as

gi(x) =
〈
Fi(x), h(x) – Π

fi
K (x)

[
h(x) – ρFi(x)

]〉

+ fi
(
h(x)

)
– fi

(
Π

fi
K (x)

[
h(x) – ρFi(x)

])

–
1

2ρ

∥∥h(x) – Π
fi
K (x)

[
h(x) – ρFi(x)

]∥∥2.
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Letting Ri
ρ(x) = h(x) – Π

fi
K (x)[h(x) – ρFi(x)], we get

gi(x) =
〈
Fi(x), Ri

ρ(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

ρ(x)
)

–
1

2ρ

∥∥Ri
ρ(x)

∥∥2, (10)

and so

φρ(x) = min
1≤i≤m

{〈
Fi(x), Ri

ρ(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

ρ(x)
)

–
1

2ρ

∥∥Ri
ρ(x)

∥∥2
}

.

From the definition of projection Π
fi
K (x)[h(x) – ρFi(x)], we have

〈
Π

fi
K (x)

[
h(x) – ρFi(x)

]
– h(x) + ρFi(x), y – Π

fi
K (x)

[
h(x) – ρFi(x)

]〉

+ ρfi(y) – ρfi
(
Π

fi
K (x)

[
h(x) – ρFi(x)

]) ≥ 0.

For any x ∈ h–1(K), we have h(x) ∈ K(x), and therefore, by taking y = h(x) in the above
relation, we get

〈
ρFi(x) – Ri

ρ(x), Ri
ρ(x)

〉
+ ρfi

(
h(x)

)
– ρfi

(
h(x) – Ri

ρ(x)
) ≥ 0,

that is,

〈
Fi(x), Ri

ρ(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

ρ(x)
) ≥ 1

ρ

〈
Ri

ρ(x), Ri
ρ(x)

〉
=

1
ρ

∥∥Ri
ρ(x)

∥∥2.

From the definition of rρ(x) and (8), we get φρ(x) ≥ 1
2ρ

rρ(x)2. This completes the proof.�

Theorem 4.1 For ρ > 0, φρ is a gap function for VIMQVI on the set h–1(K) = {ξ ∈ Rn|h(ξ ) ∈
K(ξ )}.

Proof From the definition of φρ , we have

φρ(x) ≥ min
1≤i≤m

{〈
Fi(x), h(x) – y

〉
+ fi

(
h(x)

)
– fi(y) –

1
2ρ

∥∥h(x) – y
∥∥2

}
, ∀y ∈ K(x).

Therefore, for any x ∈ h–1(K), by setting y = h(x), we have φρ(x) ≥ 0.
Suppose that x̄ ∈ h–1(K) with φρ(x̄) = 0. From (9), it follows that rρ(x̄) = 0, which implies

that x̄ is the solution of VIMQVI.
Conversely, if x̄ is a solution of VIMQVI, there exists 1 ≤ i0 ≤ m such that

〈
Fi0 (x̄), h(x̄) – y

〉
+ fi0

(
h(x̄)

)
– fi0 (y) ≤ 0, ∀y ∈ K(x̄),

which means that

min
1≤i≤m

{
sup

y∈K (x̄)

{〈
Fi(x̄), h(x̄) – y

〉
+ fi

(
h(x̄)

)
– fi(y) –

1
2ρ

∥∥h(x̄) – y
∥∥2

}}
≤ 0.

Thus, φρ(x̄) ≤ 0. The previous assertion leads to φρ(x̄) ≥ 0 and it follows that φρ(x̄) = 0.
This completes the proof. �
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Since, according to Theorem 4.1, φρ can act as a gap function for VIMQVI, it is interest-
ing to investigate the error bound properties that can be obtained with φρ . By Theorem 3.2
and (9), we obtain the following corollary directly.

Corollary 1 Let Fi : Rn → Rn (i = 1, 2, . . . , m) be Li-Lipschitz continuous, h : Rn → Rn be l-
Lipschitz continuous, and for i = 1, 2, . . . , m, (Fi, h) be strongly monotone couples with mod-
ulus μi. Let

⋂m
i=1 sol(IMQVI)i �= ∅. Assume that there exists ki ∈ (0, μi

Li
) such that

∥∥Π
fi
K (x)z – Π

fi
K (y)z

∥∥ ≤ ki‖x – y‖, ∀x, y ∈ Rn,∀z ∈ {
v|v = h(x) – ρFi(x)

}
.

Then, for any x ∈ h–1(K) and any ρ > kil
μi–kiLi

,

d
(
x, Sol(VIMQVI)

) ≤ ρLi + l
ρμi – ρkiLi – kil

√
2ρφρ(x).

4.2 D-Gap functions
It is remarkable that the regularized gap function φρ fails to give global error bounds for
VIMQVI on Rn. Solodov [26] proposed the D-gap function for MVI and obtained error
bounds related to the D-gap function for MVI. Li and Li [37] introduced the D-gap func-
tion for MSVI and obtained error bounds. For more details, see [27–29, 31]. With this
motivation we introduce the D-gap function for VIMQVI, which provides the global er-
ror bound for VIMQVI on Rn.

The D-gap function for VIMQVI with parameters α > β > 0 is defined as follows:

Gαβ (x) = min
1≤i≤m

{
sup

y∈K (x)

{〈
Fi(x), h(x) – y

〉
+ fi

(
h(x)

)
– fi(y)

–
1

2α

∥∥h(x) – y
∥∥2

}
– sup

y∈K (x)

{〈
Fi(x), h(x) – y

〉
+ fi

(
h(x)

)

– fi(y) –
1

2β

∥∥h(x) – y
∥∥2

}}
.

By (8) in Lemma 4.1, we know Gαβ can be rewritten as

Gαβ (x) = min
1≤i≤m

{〈
Fi(x), Ri

α(x)
〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

α(x)
)

–
1

2α

∥∥Ri
α(x)

∥∥2 –
(〈

Fi(x), Ri
β(x)

〉
+ fi

(
h(x)

)
– fi

(
h(x) – Ri

β (x)
)

–
1

2β

∥∥Ri
β (x)

∥∥2
)}

,

where Ri
α(x) = h(x) – Π

fi
K (x)[h(x) – αFi(x)] and Ri

β(x) = h(x) – Π
fi
K (x)[h(x) – βFi(x)], ∀x ∈ Rn.

Theorem 4.2 For any x ∈ Rn, α > β > 0, we have

1
2

(
1
β

–
1
α

)
r2
β (x) ≤ Gαβ (x) ≤ 1

2

(
1
β

–
1
α

)
r2
α(x). (11)
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Proof From the definition of Gαβ (x), it follows that

Gαβ (x) = min
1≤i≤m

{〈
Fi(x), Ri

α(x) – Ri
β (x)

〉
– fi

(
h(x) – Ri

α(x)
)

–
1

2α

∥∥Ri
α(x)

∥∥2 + fi
(
h(x) – Ri

β (x)
)

+
1

2β

∥∥Ri
β (x)

∥∥2
}

.

For any given i ∈ {1, 2, . . . , m}, we set

gi
αβ (x) =

〈
Fi(x), Ri

α(x) – Ri
β (x)

〉
– fi

(
h(x) – Ri

α(x)
)

–
1

2α

∥∥Ri
α(x)

∥∥2

+ fi
(
h(x) – Ri

β (x)
)

+
1

2β

∥∥Ri
β (x)

∥∥2. (12)

From Π
fi
K (x)[h(x) – βFi(x)] ∈ K(x), by Lemma 2.1, we know

〈
Π

fi
K (x)

[
h(x) – αFi(x)

]
–

(
h(x) – αFi(x)

)
,Π fi

K (x)
[
h(x) – βFi(x)

]

– Π
fi
K (x)

[
h(x) – αFi(x)

]〉

+ αfi
(
Π

fi
K (x)

[
h(x) – βFi(x)

])
– αfi

(
Π

fi
K (x)

[
h(x) – αFi(x)

]) ≥ 0,

which means that

〈
αFi(x) – Ri

α(x), Ri
α(x) – Ri

β (x)
〉

+ αfi
(
h(x) – Ri

β (x)
)

– αfi
(
h(x) – Ri

α(x)
) ≥ 0. (13)

Combining (12) and (13), we get

gi
αβ (x) ≥ 1

α

〈
Ri

α(x), Ri
α(x) – Ri

β (x)
〉
–

1
2α

∥∥Ri
α(x)

∥∥2 +
1

2β

∥∥Ri
β (x)

∥∥2

=
1

2α

∥∥Ri
α(x) – Ri

β (x)
∥∥2 +

1
2

(
1
β

–
1
α

)∥∥Ri
β (x)

∥∥2. (14)

Since Π
fi
K (x)[h(x) – αFi(x)] ∈ K(x), by Lemma 2.1, we have

〈
Π

fi
K (x)

[
h(x) – βFi(x)

]
–

(
h(x) – βFi(x)

)
,Π fi

K (x)
[
h(x) – αFi(x)

]

– Π
fi
K (x)

[
h(x) – βFi(x)

]〉

+ βfi
(
Π

fi
K (x)

[
h(x) – αFi(x)

])
– βfi

(
Π

fi
K (x)

[
h(x) – βFi(x)

]) ≥ 0.

Hence

〈
βFi(x) – Ri

β (x), Ri
β(x) – Ri

α(x)
〉
+ βfi

(
h(x) – Ri

α(x)
)

– βfi
(
h(x) – Ri

β (x)
) ≥ 0,

and so

1
β

〈
Ri

β (x), Ri
α(x) – Ri

β (x)
〉 ≥ 〈

Fi(x), Ri
α(x) – Ri

β (x)
〉

– fi
(
h(x) – Ri

α(x)
)

+ fi
(
h(x) – Ri

β(x)
)
.
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This and (12) imply that

gi
αβ (x) ≤ 1

β

〈
Ri

β (x), Ri
α(x) – Ri

β (x)
〉
–

1
2α

∥∥Ri
α(x)

∥∥2 +
1

2β

∥∥Ri
β (x)

∥∥2

= –
1

2β

∥∥Ri
α(x) – Ri

β (x)
∥∥2 +

1
2

(
1
β

–
1
α

)∥∥Ri
α(x)

∥∥2. (15)

From (14) and (15), for any i ∈ {1, 2, . . . , m}, we obtain

1
2

(
1
β

–
1
α

)∥∥Ri
β(x)

∥∥2 ≤ gi
αβ (x) ≤ 1

2

(
1
β

–
1
α

)∥∥Ri
α(x)

∥∥2.

Hence

1
2

(
1
β

–
1
α

)
min

1≤i≤m

{∥∥Ri
β (x)

∥∥2} ≤ min
1≤i≤m

{
gi
αβ (x)

} ≤ 1
2

(
1
β

–
1
α

)
min

1≤i≤m

{∥∥Ri
α(x)

∥∥2},

and so

1
2

(
1
β

–
1
α

)
r2
β (x) ≤ Gαβ (x) ≤ 1

2

(
1
β

–
1
α

)
r2
α(x).

This completes the proof. �

Now we prove that Gαβ is a global gap function for VIMQVI on the set Rn.

Theorem 4.3 For 0 < β < α, Gαβ is a gap function for VIMQVI on Rn.

Proof According to (11), we have Gαβ (x) ≥ 0, ∀x ∈ Rn. Suppose that x̄ ∈ Rn with Gαβ (x̄) = 0,
(11) implies that rβ (x̄) = 0. By Theorem 3.1, we know x̄ is a solution of VIMQVI.

Conversely, if x̄ is a solution of VIMQVI, from Theorem 3.1, it follows that rα(x̄) = 0.
(11) means that Gαβ (x̄) = 0. This completes the proof. �

Immediately, by using Theorem 3.2 and (11), we obtain a global error bound for VIMQVI
on the set Rn.

Corollary 2 Let Fi : Rn → Rn (i = 1, 2, . . . , m) be Li-Lipschitz continuous, h : Rn → Rn be l-
Lipschitz continuous, and for i = 1, 2, . . . , m, (Fi, h) be strongly monotone couples with mod-
ulus μi. Let

⋂m
i=1 sol(IMQVI)i �= ∅. Assume that there exists ki ∈ (0, μi

Li
) such that

∥∥Π
fi
K (x)z – Π

fi
K (y)z

∥∥ ≤ ki‖x – y‖, ∀x, y ∈ Rn, z ∈ {
v|v = h(x) – βFi(x)

}
.

Then, for any x ∈ Rn and any β > kil
μi–kiLi

,

d
(
x, Sol(VIMQVI)

) ≤ βLi + l
βμi – βkiLi – kil

√
2βα

α – β
Gαβ (x).
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5 Concluding remarks
One of the classical approaches in the analysis of a variational inequality (VI) and its vari-
ants is to transform it into an equivalent optimization problem by the notion of gap func-
tions. In addition, gap functions play a central role in deriving the so-called error bounds,
which provide a measure of the distances between the solution set and an arbitrary feasi-
ble point. These motivate us to study and analyze different gap functions and error bounds
for VIMQVI.

In this paper, we introduce a vector inverse mixed quasi-variational inequality
(VIMQVI), which includes IVI, IMVI, IQVI, VVI, and GVVI as special cases. We pro-
pose three gap functions for the VIMQVI, i.e., the residual gap function, the regularized
gap function, and the D-gap function, and obtain error bounds for VIMQVI under strong
monotonicity and Lipschitz continuity of underlying mappings by using these gap func-
tions. Our basic tool is the generalized f -projection operator, which is more general than
the well-known proximal mapping, see [37]. If i = 1 and f1(x) = 0 for all x ∈ Rn, then the
results obtained in this paper collapse to the corresponding ones in [31] and [36].
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